Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,553)

Search Parameters:
Keywords = agglomeration characteristic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1637 KiB  
Article
Collaborative Industrial Agglomeration and a Green Low-Carbon Circular Development Economy: A Study Based on Provincial Panel Data in China
by Mengqi Gong, Gege He, Yizi Wang, Yiyue Yang and Xinru Li
Sustainability 2025, 17(15), 6950; https://doi.org/10.3390/su17156950 (registering DOI) - 31 Jul 2025
Viewed by 248
Abstract
As an important direction in industrial evolution, the synergistic agglomeration of manufacturing and productive service industries has become a key path to promote the green transformation of the economy. Based on China’s provincial panel data, this study utilizes a variety of econometric methods [...] Read more.
As an important direction in industrial evolution, the synergistic agglomeration of manufacturing and productive service industries has become a key path to promote the green transformation of the economy. Based on China’s provincial panel data, this study utilizes a variety of econometric methods to explore in depth the mechanisms, spatial effects and regional differences in the impact of the synergistic agglomeration of manufacturing and productive service industries on the green, low-carbon and recycling development of the economy. The empirical results show that the synergistic agglomeration of manufacturing and productive services not only directly promotes the green, low-carbon and recycling development of the economy, but also generates an indirect impact through the intermediary channel and exhibits significant spillover characteristics in the spatial dimension. This conclusion holds firm after a series of robustness tests. In addition, environmental regulations and the level of regional industrialization play a moderating role on the impact of industrial synergistic agglomeration and green, low-carbon and recycling development of the economy, and the effect of the role varies across regions and levels of economic development. This paper provides a decision-making reference for further optimizing the regional layout of China’s industries and enhancing the green, low-carbon and recycling development of the economy in each province. Full article
Show Figures

Figure 1

36 pages, 1201 KiB  
Article
Between Smart Cities Infrastructure and Intention: Mapping the Relationship Between Urban Barriers and Bike-Sharing Usage
by Radosław Wolniak and Katarzyna Turoń
Smart Cities 2025, 8(4), 124; https://doi.org/10.3390/smartcities8040124 - 29 Jul 2025
Viewed by 291
Abstract
Society’s adaptation to shared mobility services is a growing topic that requires detailed understanding of the local circumstances of potential and current users. This paper focuses on analyzing barriers to the adoption of urban bike-sharing systems in post-industrial cities, using a case study [...] Read more.
Society’s adaptation to shared mobility services is a growing topic that requires detailed understanding of the local circumstances of potential and current users. This paper focuses on analyzing barriers to the adoption of urban bike-sharing systems in post-industrial cities, using a case study of the Silesian agglomeration in Poland. Methodologically, the article integrates quantitative survey methods with multivariate statistical analysis to analyze the demographic, socioeconomic, and motivational factors that underline the adoption of shared micromobility. The study highlights a detailed segmentation of users by income, age, professional status, and gender, as well as the observation of profound disparities in access and perceived usefulness. Of note is the study’s identification of a highly concentrated segment of young, low-income users (mostly students), which largely accounts for the general perception of economic and infrastructural barriers. These include the use of factor analysis and regression to plot the interaction patterns between individual user characteristics and certain system-level constraints, such as cost, infrastructure coverage, weather, and health. The study’s findings prioritize problem-specific interventions in urban mobility planning: bridging equity gaps between user groups. This research contributes to the current literature by providing detailed insights into the heterogeneity of user mobility behavior, offering evidence-based recommendations for inclusive and adaptive options for shared transportation infrastructure in a changing urban context. Full article
Show Figures

Figure 1

18 pages, 7058 KiB  
Article
Does Urban Economic Development Increase Sewage Discharge Intensity? A Case Study of 288 Cities in China
by Xiaoli Yue, Yingmei Wu, Yang Wang, Wenlu Li, Yufei Wang, Guiquan Sun and Hong’ou Zhang
Water 2025, 17(15), 2251; https://doi.org/10.3390/w17152251 - 28 Jul 2025
Viewed by 210
Abstract
Accelerated urbanization and intensified urban development globally lead to increased sewage discharge, challenging environmental protection. Therefore, exploring the correlation mechanism between the economic development level (EDL) and sewage discharge intensity (SDI) is crucial for sustainable development. This study uses panel data from 288 [...] Read more.
Accelerated urbanization and intensified urban development globally lead to increased sewage discharge, challenging environmental protection. Therefore, exploring the correlation mechanism between the economic development level (EDL) and sewage discharge intensity (SDI) is crucial for sustainable development. This study uses panel data from 288 Chinese cities between 2003 and 2021, employs spatial analysis techniques to uncover the spatiotemporal evolution characteristics of SDI, and investigates the influence of economic development on this intensity using spatial panel models. The results reveal that (1) while the spatial distribution of SDI in China generally exhibits a downward trend, changes in the Northeast region are relatively modest, with SDI remaining higher than in other regions. Global autocorrelation analysis further indicates significant spatial agglomeration and positive correlation effects in urban SDI. (2) Economic development exerts a notable inhibitory effect on SDI, with a 0.570% decrease for every 1% rise in GDP per capita, thus demonstrating a significant spatial spillover effect. (3) For megacities, large cities, and small and medium-sized cities, EDLs have significant negative spatial spillover effects on SDI, with a more pronounced impact on large cities. This study provides a theoretical foundation for sewage management and empirical support for environmental policies, crucial for sustainable urban development. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

19 pages, 12174 KiB  
Article
Spatiotemporal Trends and Exceedance Drivers of Ozone Concentration in the Yangtze River Delta Urban Agglomeration, China
by Junli Xu and Jian Wang
Atmosphere 2025, 16(8), 907; https://doi.org/10.3390/atmos16080907 - 26 Jul 2025
Viewed by 298
Abstract
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring [...] Read more.
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring stations between 2015 and 2025, this paper analyzed the spatio-temporal variation of 8 h O3 concentrations and instances of exceedance. On the basis of exploring the influence of meteorological factors on regional 8 h O3 concentration, the potential source contribution areas of pollutants under the exceedance condition were investigated using the HYSPLIT model. The results indicate a rapid increase in the 8 h O3 concentration at a rate of 0.91 ± 0.98 μg·m−3·a−1, with the average number of days exceeding concentration standards reaching 41.05 in the Yangtze River Delta urban agglomeration. Spatially, the 8 h O3 concentrations were higher in coastal areas and lower in inland regions, as well as elevated in plains compared to hilly terrains. This distribution was significantly distinct from the concentration growth trend characterized by higher levels in the northwest and lower levels in the southeast. Furthermore, it diverged from the spatial characteristics where exceedances primarily occurred in the heavily industrialized northeastern region and the lightly industrialized central region, indicating that the growth and exceedance of 8 h O3 concentrations were influenced by disparate factors. Local human activities have intensified the emissions of ozone precursor substances, which could be the key driving factor for the significant increase in regional 8 h O3 concentrations. In the context of high temperatures and low humidity, this has contributed to elevated levels of 8 h O3 concentrations. When wind speeds were below 2.5 m·s−1, the proportion of 8 h O3 concentrations exceeding the standards was nearly 0 under almost calm wind conditions, and it showed an increasing trend with rising wind speeds, indicating that the potential precursor sources that caused high O3 concentrations originated occasionally from inland regions, with very limited presence within the study area. This observation implies that the main cause of exceedances was the transport effect of pollution from outside the region. Therefore, it is recommended that the Yangtze River Delta urban agglomeration adopt economic and technological compensation mechanisms within and between regions to reduce the emission intensity of precursor substances in potential source areas, thereby effectively controlling O3 concentrations and improving public living conditions and quality of life. Full article
Show Figures

Figure 1

19 pages, 10374 KiB  
Article
Nanoscale Nickel Oxide: Synthesis, Characterization, and Impact on Antibacterial Activity Against Representative Microorganisms
by Daniela Istrate, Mihai Oproescu, Ecaterina Magdalena Modan, Sorin Georgian Moga, Denis Aurelian Negrea and Adriana-Gabriela Schiopu
ChemEngineering 2025, 9(4), 77; https://doi.org/10.3390/chemengineering9040077 - 25 Jul 2025
Viewed by 222
Abstract
Among the various available synthesis approaches, hydrolytic precipitation offers a simple, cost-effective, and scalable route for producing phase-pure NiO with a controlled morphology and crystallite size. However, the influence of calcination temperature on its crystalline phase, particle size, and antimicrobial activity remains an [...] Read more.
Among the various available synthesis approaches, hydrolytic precipitation offers a simple, cost-effective, and scalable route for producing phase-pure NiO with a controlled morphology and crystallite size. However, the influence of calcination temperature on its crystalline phase, particle size, and antimicrobial activity remains an active field of research. This study aims to investigate the structural, morphological, and antibacterial properties of NiO nanoparticles synthesized via hydrolytic methods and thermally treated at different temperatures. XRD data indicate the presence of the hexagonal crystallographic phase of NiO (space group 166: R-3m), a structural variant less commonly reported in the literature, stabilized under mild hydrolytic synthesis conditions. The average crystallite size increases significantly from 4.97 nm at 300 °C to values of ~17.8 nm at 500–700 °C, confirming the development of the crystal lattice. The ATR-FTIR analysis confirms the presence of the characteristic Ni–O band for all samples, positioned between 367 and 383 cm−1, with a reference value of 355 cm−1 for commercial NiO. The displacements and variations in intensity reflect a thermal evolution of the crystalline structure, but also an important influence of the size of the crystallites and the agglomeration state. The results reveal a systematic evolution in particle morphology from porous, flake-like nanostructures at 300 °C to dense, well-faceted polyhedral crystals at 900 °C. With an increasing temperature, particle size increases. EDS spectra confirm the high purity of the NiO phase across all samples. Additionally, the NiO nanoparticles exhibit calcination-temperature-dependent antibacterial activity, with the complete inhibition of Escherichia coli and Enterococcus faecalis observed after 24 h for the sample calcined at 300 °C and over 90% CFU reduction within 4 h. A significant reduction in E. faecalis viability across all samples indicates time- and strain-specific bactericidal effects. Due to its remarkable multifunctionality, NiO has emerged as a strategic nanomaterial in fields ranging from energy storage and catalysis to antimicrobial technologies, where precise control over its structural phase and particle size is essential for optimizing performance. Full article
Show Figures

Figure 1

25 pages, 2756 KiB  
Article
The People-Oriented Urban Planning Strategies in Digital Era—Inspiration from How Urban Amenities Shape the Distribution of Micro-Celebrities
by Han He and Huasheng Zhu
Land 2025, 14(8), 1519; https://doi.org/10.3390/land14081519 - 23 Jul 2025
Viewed by 343
Abstract
How to promote sustainable development and deal with the actual development demands in economic transformation through land-use planning is crucial for local governments. The urban sustainable development mainly relies on creativity and talents in the digital era, and talents are increasingly attracted by [...] Read more.
How to promote sustainable development and deal with the actual development demands in economic transformation through land-use planning is crucial for local governments. The urban sustainable development mainly relies on creativity and talents in the digital era, and talents are increasingly attracted by local people-oriented land use. However, the current planning ideology remains at meeting corporate and people’s basic needs rather than specific needs of talents, especially the increasingly emerging digital creatives. To promote the talent agglomeration and sustainable development through land planning, this paper uses micro-celebrities on Bilibili, an influential creative content creation platform among young people in China, as an example to study the geographical distribution of digital creative talents and its relationship with urban amenities by constructing an index system of urban amenities, comprising natural, leisure, infrastructure, and social and institutional amenities. The concept of borrowed amenities is introduced to examine the effects of amenities of surrounding cities. This study demonstrates that micro-celebrities show a stronger preference for amenities compared with other skilled talents. Meanwhile, social and institutional amenities are most crucial. Furthermore, urban leisure represented by green spaces and consumption spaces is also attractive. At the regional scale, with prefecture-level cities as units, the local talents agglomeration is also influenced by the borrowed amenities in the context of regional integration. It indicates that the local land use should consider the characteristics of the surrounding cities. This study provides strategic inspiration that a happy and sustainable city should first be people-oriented and provide sufficient space for consumption, entertainment, and interaction. Full article
Show Figures

Figure 1

19 pages, 8699 KiB  
Article
Study on the Spatio-Temporal Characteristics and Driving Factors of PM2.5 in the Inter-Provincial Border Region of Eastern China (Jiangsu, Anhui, Shandong, Henan) from 2022 to 2024
by Xiaoli Xia, Shangpeng Sun, Xinru Wang and Feifei Shen
Atmosphere 2025, 16(8), 895; https://doi.org/10.3390/atmos16080895 - 22 Jul 2025
Viewed by 239
Abstract
The inter-provincial border region in eastern China, encompassing the junction of Jiangsu, Anhui, Shandong, and Henan provinces, serves as a crucial zone that connects the important economic zones of Beijing–Tianjin–Hebei and the Yangtze River Delta. It is of great significance to study the [...] Read more.
The inter-provincial border region in eastern China, encompassing the junction of Jiangsu, Anhui, Shandong, and Henan provinces, serves as a crucial zone that connects the important economic zones of Beijing–Tianjin–Hebei and the Yangtze River Delta. It is of great significance to study the temporal variation characteristics, spatial distribution patterns, and driving factors of PM2.5 concentrations in this region. Based on the PM2.5 concentration observation data, ground meteorological data, environmental data, and socio-economic data from 2022 to 2024, this study conducted in-depth and systematic research by using advanced methods, such as spatial autocorrelation analysis and geographical detectors. The research results show that the concentration of PM2.5 rose from 2022 to 2023, but decreased from 2023 to 2024. From the perspective of seasonal variations, the concentration of PM2.5 shows a distinct characteristic of being “high in winter and low in summer”. The monthly variation shows a “U”-shaped distribution pattern. In terms of spatial changes, the PM2.5 concentration in the inter-provincial border region of eastern China (Jiangsu, Anhui, Shandong, Henan) forms a gradient difference of “higher in the west and lower in the east”. The high-concentration agglomeration areas are mainly concentrated in the Henan part of the study region, while the low-concentration agglomeration areas are distributed in the eastern coastal parts of the study region. The analysis of the driving factors of the PM2.5 concentration based on geographical detectors reveals that the average temperature is the main factor affecting the PM2.5 concentration. The interaction among the factors contributing to the spatial differentiation of the PM2.5 concentration is very obvious. Temperature and population density (q = 0.92), temperature and precipitation (q = 0.95), slope and precipitation (q = 0.97), as well as DEM and population density (q = 0.96), are the main combinations of factors that have continuously affected the spatial differentiation of the PM2.5 concentration for many years. The research results from this study provide a scientific basis and decision support for the prevention, control, and governance of PM2.5 pollution. Full article
(This article belongs to the Special Issue Atmospheric Pollution Dynamics in China)
Show Figures

Figure 1

20 pages, 8592 KiB  
Article
Spatial Differentiation in the Contribution of Innovation Influencing Factors: An Empirical Study in Nanjing from the Perspective of Nonlinear Relationships
by Chengyu Wang, Renchao Luo and Lingchao Zhou
Buildings 2025, 15(14), 2565; https://doi.org/10.3390/buildings15142565 - 21 Jul 2025
Viewed by 254
Abstract
The agglomeration characteristics of innovation spaces reflect the intrinsic mechanisms of regional resource integration and collaborative innovation. Investigating the contributions of influencing factors to innovation space agglomeration and their spatial differentiation has significant implications for improving urban innovation quality. Taking the Nanjing central [...] Read more.
The agglomeration characteristics of innovation spaces reflect the intrinsic mechanisms of regional resource integration and collaborative innovation. Investigating the contributions of influencing factors to innovation space agglomeration and their spatial differentiation has significant implications for improving urban innovation quality. Taking the Nanjing central urban area as a case study, this research applied gradient boosting regression trees (GBRT) and multiscale geographically weighted regression (MGWR) models to explore the contributions of influencing factors to innovation space agglomeration and its spatial differentiation. Findings demonstrated that (1) Innovation platforms and patents emerged as the most significant driving factors, collectively accounting for 54.8% of the relative contributions; (2) The contributions of influencing factors to innovation space agglomeration exhibited marked nonlinear characteristics, specifically categorized into five distinct patterns: Sustained Growth Pattern, Growth-Stabilization Pattern, Growth-Decline Pattern, Global Stabilization Pattern, and Global Decline Pattern. The inflection thresholds of marginal effects across factors ranged from approximately 12% to 55% (e.g., 40% for metro stations, 13% for integrated commercial hubs); (3) Each influence factor’s contribution mechanism showed pronounced spatial heterogeneity across different regions. Based on these discoveries, governments should optimize innovation resource allocation according to regional characteristics and enhance spatial quality to promote efficient resource integration and transformation. This research provides a novel perspective for understanding innovation space agglomeration mechanisms and offers actionable references for urban policymakers to implement context-specific innovation economic development strategies. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

14 pages, 3471 KiB  
Article
Dispersant-Induced Enhancement of Rheological Properties in Metal–Photopolymer Mixtures for 3D Printing
by Zhiyuan Qu, Guangchao Song, Josue Olortegui-Revoredo, Patrick Kwon and Haseung Chung
J. Manuf. Mater. Process. 2025, 9(7), 244; https://doi.org/10.3390/jmmp9070244 - 20 Jul 2025
Viewed by 320
Abstract
The Scalable and Expeditious Additive Manufacturing (SEAM) process is an advanced additive manufacturing (AM) technique that relies on the optimization of metal powder suspensions to achieve high-quality 3D-printed components. This study explores the critical role of dispersants in enhancing the performance of stainless [...] Read more.
The Scalable and Expeditious Additive Manufacturing (SEAM) process is an advanced additive manufacturing (AM) technique that relies on the optimization of metal powder suspensions to achieve high-quality 3D-printed components. This study explores the critical role of dispersants in enhancing the performance of stainless steel (SS) 420 metal powder suspensions for the SEAM process by improving powder loading, recyclability, flowability, and consequent final part density. The addition of dispersant allows for increased powder contents while preserving stable rheological properties, thereby enabling higher powder loading without compromising the rheological characteristics required in the SEAM process. Previously, our team implemented a two-step printing strategy to address the segregation issues during printing. Nonetheless, the semi-cured layer was not recyclable after printing, resulting in a significant amount of waste in the SEAM process. This, in turn, leads to a considerable increase in material costs. On the other hand, the addition of a dispersant has been shown to enhance suspension stability, enabling multiple cycles of reuse. This novel approach has been demonstrated to reduce material waste and lower production costs. The enhanced flowability guarantees uniform suspension spreading, resulting in defect-free layer deposition and superior process control. Moreover, the dispersant’s ability to impede particle agglomeration and promote powder loading contributes to the attainment of a 99.33% relative density in the final sintered SS420 parts, thereby markedly enhancing their mechanical integrity. These findings demonstrate the pivotal role of dispersants in refining the SEAM process, enabling the production of high-density, cost-effective metal components with superior material utilization and process efficiency. Full article
Show Figures

Figure 1

19 pages, 923 KiB  
Article
Coordinated Development and Spatiotemporal Evolution Trends of China’s Agricultural Trade and Production from the Perspective of Food Security
by Yueyuan Yang, Chunjie Qi, Yumeng Gu and Cheng Gui
Foods 2025, 14(14), 2538; https://doi.org/10.3390/foods14142538 - 20 Jul 2025
Viewed by 504
Abstract
Ensuring food security necessitates a high level of coordinated development between agricultural trade and production. Based on China’s provincial panel data from 2010 to 2023, this study constructs an evaluation index system for agricultural trade and production, employing an entropy-weighted TOPSIS model to [...] Read more.
Ensuring food security necessitates a high level of coordinated development between agricultural trade and production. Based on China’s provincial panel data from 2010 to 2023, this study constructs an evaluation index system for agricultural trade and production, employing an entropy-weighted TOPSIS model to measure their development levels. On this basis, a coupling coordination degree model and Moran’s I indices are used to analyze the coordinated development level’s temporal changes and spatial effects. The research finds that the development levels of China’s agricultural trade and production show an upward trend but currently still exhibit the pattern of higher levels in Eastern China and lower levels in Western China. The coupling coordination level between them demonstrates an increasing trend, yet the overall level remains relatively low, with an average value of only 0.445, consistently staying in a marginal disorder “running-in stage” and spatially presenting a distinct “east-high–west-low” stepped distribution pattern. Furthermore, from a spatial perspective, the Global Moran’s index decreased from 0.293 to 0.280. The coupling coordination degree of agricultural trade and production in China generally exhibits a positive spatial autocorrelation, but this effect has been weakening over time. Most provinces show spatial clustering characteristics of high–high and low–low agglomeration in local space, and this feature is relatively stable. Building on these insights, this study proposes a refinement of the coordination mechanisms between agricultural trade and production, alongside the implementation of differentiated regional coordinated development strategies, to promote the coupled and coordinated advancement of agricultural trade and production. Full article
(This article belongs to the Special Issue Global Food Insecurity: Challenges and Solutions)
Show Figures

Figure 1

34 pages, 31153 KiB  
Article
Study on Urban System Relationships and Resilience Promotion Strategies in Underdeveloped Mountainous Areas Based on Social Network Analysis: A Case Study of Qiandongnan Miao and Dong Autonomous Prefecture
by Huayan Yuan, Jinyu Fan, Jie Luo, Rui Ren and Hai Li
Land 2025, 14(7), 1500; https://doi.org/10.3390/land14071500 - 19 Jul 2025
Viewed by 325
Abstract
Urban systems are the spatial carriers of social and economic relations at the regional level, and their relational and structural resilience are key to regional coordination and sustainable development, attracting widespread attention from scholars. In order to analyze the internal relationships of urban [...] Read more.
Urban systems are the spatial carriers of social and economic relations at the regional level, and their relational and structural resilience are key to regional coordination and sustainable development, attracting widespread attention from scholars. In order to analyze the internal relationships of urban agglomerations in underdeveloped mountainous regions and optimize their spatial resource allocation and resilience, this study takes the urban agglomeration of Qiandongnan in China as an example and researches their internal relationships, development potential, and influencing factors based on quantitative methods such as social network analysis. The results show that the urban cluster in Qiandongnan presents “large dispersion and small aggregation” distribution characteristics, with the karst landscape as the main influencing factor; the spatial network exhibits a scale-free morphology with an obvious core–periphery structure, demonstrating moderate stability but poor completeness, weak equilibrium, and low overall resilience; only 15.61% of nodes demonstrate high competitiveness; urban units with functional roles serve as critical network nodes; urban units’ development potential is divided into three tiers (with 47.31% being medium-high), although overall levels remain low; and the development potential, overall network, individual network, and network resilience of urban units are all positively correlated, with economic and transportation development conditions being the main influencing factors. Based on the abovementioned findings, this study proposes a “multi-level resilience promotion path for network structure optimization”, which provides a theoretical basis and optimization control methods for the reconstruction and synergistic development of urban agglomerations. It also serves as a reference for the development planning of urban systems in other underdeveloped mountainous regions. Full article
Show Figures

Figure 1

23 pages, 4027 KiB  
Article
Ecology, Culture, and Tourism Integration Efficiency, Spatial Evolution, and Influencing Factors in China
by Ruihan Zheng and Yufei Zhang
Sustainability 2025, 17(14), 6614; https://doi.org/10.3390/su17146614 - 19 Jul 2025
Viewed by 467
Abstract
To explore the integration efficiency of ecology, culture and tourism in China, this study uses a Super-Efficiency SBM model with undesirable outputs to measure integration efficiency, employs kernel density estimation (KDE) to analyze dynamic spatial distribution characteristics, applies the standard deviational ellipse (SDE) [...] Read more.
To explore the integration efficiency of ecology, culture and tourism in China, this study uses a Super-Efficiency SBM model with undesirable outputs to measure integration efficiency, employs kernel density estimation (KDE) to analyze dynamic spatial distribution characteristics, applies the standard deviational ellipse (SDE) to examine the migration trend of the spatial agglomeration center of gravity, and uses Tobit regression to identify spatiotemporal influencing factors. The findings show that: the national integration efficiency presents a trend that first decreases and then increases, with North and South China having relatively high integration efficiency. The national integration efficiency has gone through three stages: narrowing differences, coexistence of slow efficiency, and gradient effects, and increasing efficiency with weakened multipolarization. The degree of spatial agglomeration has gradually increased, and the center of gravity has shifted eastward as a whole. The internal gaps in East and South China have expanded, while the internal balance in North China has improved; the internal differences in other regions have narrowed. The influencing factors of integration efficiency have shifted from traditional economy-led to innovation and institutional collaboration. Economic development level and market openness have a positive impact on the overall integration efficiency, while transportation conditions show a restraining effect. Full article
Show Figures

Figure 1

17 pages, 5683 KiB  
Article
Synergistic Effect of Calcination Temperature and Silver Doping on Photocatalytic Performance of ZnO Material
by K. Kusdianto, Nurdiana Ratna Puri, Manabu Shimada, Suci Madhania and Sugeng Winardi
Materials 2025, 18(14), 3362; https://doi.org/10.3390/ma18143362 - 17 Jul 2025
Viewed by 216
Abstract
Ag-doped ZnO is a promising photocatalyst. However, the combined influence of the Ag doping concentration and furnace temperature has not been adequately explored, hindering the optimization of ZnO/Ag materials for practical applications. In this study, ZnO/Ag materials were synthesized via ultrasonic spray pyrolysis [...] Read more.
Ag-doped ZnO is a promising photocatalyst. However, the combined influence of the Ag doping concentration and furnace temperature has not been adequately explored, hindering the optimization of ZnO/Ag materials for practical applications. In this study, ZnO/Ag materials were synthesized via ultrasonic spray pyrolysis by systematically varying both the furnace calcination temperature and the Ag doping concentration. The synthesized materials were analyzed through a range of spectroscopic methods to investigate their structural, morphological, and surface characteristics. Their photocatalytic activity was assessed by monitoring the degradation of methylene blue (MB) under ultraviolet light exposure. The findings indicate that the ZnO sample that was calcined at 400 °C exhibited the highest degradation efficiency among the undoped samples, which can be attributed to its submicron particle size, moderate crystallinity, and high surface hydroxylation. The sample with 5-wt% Ag doping achieved enhanced performance, demonstrating the best photocatalytic activity (65% MB degradation). This improvement was attributed to the synergistic effects of surface plasmon resonance and optimized interaction between the Ag nanoparticles and surface hydroxyl groups. Excessive Ag loading (10 wt%) led to reduced activity owing to potential agglomeration and recombination centers. These results highlight the critical role of both the thermal and chemical parameters in tailoring ZnO-based photocatalysts for wastewater treatment applications. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

22 pages, 3160 KiB  
Article
Monthly Urban Electricity Power Consumption Prediction Using Nighttime Light Remote Sensing: A Case Study of the Yangtze River Delta Urban Agglomeration
by Shuo Chen, Dongmei Yan, Cuiting Li, Jun Chen, Jun Yan and Zhe Zhang
Remote Sens. 2025, 17(14), 2478; https://doi.org/10.3390/rs17142478 - 17 Jul 2025
Viewed by 268
Abstract
Urban electricity power consumption (EPC) prediction plays a crucial role in urban management and sustainable development. Nighttime light (NTL) remote sensing imagery has demonstrated significant potential in estimating urban EPC due to its strong correlation with human activities and energy use. However, most [...] Read more.
Urban electricity power consumption (EPC) prediction plays a crucial role in urban management and sustainable development. Nighttime light (NTL) remote sensing imagery has demonstrated significant potential in estimating urban EPC due to its strong correlation with human activities and energy use. However, most existing models focus on annual-scale estimations, limiting their ability to capture month-scale EPC. To address this limitation, a novel monthly EPC prediction model that incorporates monthly average temperature, and the interaction between NTL data and temperature was proposed in this study. The proposed method was applied to cities within the Yangtze River Delta (YRD) urban agglomeration, and was validated using datasets constructed from NPP/VIIRS and SDGSAT-1 satellite imageries, respectively. For the NPP/VIIRS dataset, the proposed method achieved a Mean Absolute Relative Error (MARE) of 7.96% during the training phase (2017–2022) and of 10.38% during the prediction phase (2023), outperforming the comparative methods. Monthly EPC spatial distribution maps from VPP/VIIRS data were generated, which not only reflect the spatial patterns of EPC but also clearly illustrate the temporal evolution of EPC at the spatial level. Annual EPC estimates also showed superior accuracy compared to three comparative methods, achieving a MARE of 7.13%. For the SDGSAT-1 dataset, leave-one-out cross-validation confirmed the robustness of the model, and high-resolution (40 m) monthly EPC maps were generated, enabling the identification of power consumption zones and their spatial characteristics. The proposed method provides a timely and accurate means for capturing monthly EPC dynamics, effectively supporting the dynamic monitoring of urban EPC at the monthly scale in the YRD urban agglomeration. Full article
Show Figures

Graphical abstract

22 pages, 11295 KiB  
Article
Process-Driven Structural and Property Evolution in Laser Powder Bed Fusion of a Newly Developed AISI 316L Stainless Steel
by Amir Behjat, Morteza Shamanian, Fazlollah Sadeghi, Mohammad Hossein Mosallanejad and Abdollah Saboori
Materials 2025, 18(14), 3343; https://doi.org/10.3390/ma18143343 - 16 Jul 2025
Viewed by 330
Abstract
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser [...] Read more.
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser powder bed fusion (L-PBF) process. Moreover, establishing process–structure–properties linkages is a critical point that should be evaluated carefully before adding newly developed alloys into the AM market. Hence, the current study investigates the influences of various process parameters on the as-built quality and microstructure of the newly developed alloy. The results revealed that increasing laser energy density led to reduced porosity and surface roughness, likely due to enhanced melting and solidification. Microstructural analysis revealed a uniform distribution of copper within the austenite phase without forming any agglomeration or secondary phases. Electron backscatter diffraction analysis indicated a strong texture along the build direction with a gradual increase in Goss texture at higher energy densities. Grain boundary regions exhibited higher local misorientation and dislocation density. These findings suggest that changing the process parameters of the L-PBF process is a promising method for developing tailored microstructures and chemical compositions of commercially available AISI 316L stainless steel. Full article
Show Figures

Figure 1

Back to TopTop