Coordinated Development and Spatiotemporal Evolution Trends of China’s Agricultural Trade and Production from the Perspective of Food Security
Abstract
1. Introduction
2. Research Theoretical Analysis Framework
2.1. Mechanism Analysis of Coupling Coordination Between Agricultural Trade and Production
2.2. Construction of an Evaluation Index System
2.2.1. Agricultural Product Trade
2.2.2. Agricultural Production
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. The Entropy-Weighted TOPSIS Model
3.2.2. Coupling Coordination Degree Model
3.2.3. Spatial Autocorrelation Model
4. Results and Discussion
4.1. Spatiotemporal Analysis of China’s Agricultural Trade and Production Development Levels
4.2. Spatiotemporal Analysis of the Coupling Coordination Between China’s Agricultural Trade and Production
4.3. Spatial Autocorrelation Analysis of Coupling Coordination Between Chinese Agricultural Trade and Production
5. Conclusions and Countermeasures
5.1. Conclusions
5.2. Countermeasures
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ricardo, D. The Works and Correspondence of David Ricardo; Sraffa, P., Dobb, M.H., Eds.; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Eaton, J.; Kortum, S. Technology, geography, and trade. Econometrica 2002, 70, 1741–1779. [Google Scholar] [CrossRef]
- Andrianarimanana, M.H.; Pu, Y. Importance of the Improvement in the Agricultural Technology of Sub-Saharan Africa on Local Economic Development and International Trade. Sustainability 2021, 13, 2555. [Google Scholar] [CrossRef]
- Ramesh, S. The Crucial Role of Agricultural Production in Facilitating International Commerce and Trade. Int. J. Agric. Anim. Prod. 2021, 11, 43–46. [Google Scholar] [CrossRef]
- Ferguson, S.M.; Gars, J. Measuring the impact of agricultural production shocks on international trade flows. Eur. Rev. Agric. Econ. 2020, 47, 1094–1132. [Google Scholar] [CrossRef]
- MacDonald, G.K.; Brauman, K.A.; Sun, S.; Carlson, K.M.; Cassidy, E.S.; Gerber, J.S.; West, P.C. Rethinking agricultural trade relationships in an era of globalization. BioScience 2015, 65, 275–289. [Google Scholar] [CrossRef]
- D’Amour, C.B.; Anderson, W. International trade and the stability of food supplies in the Global South. Environ. Res. Lett. 2020, 15, 074005. [Google Scholar] [CrossRef]
- Baylis, K.; Heckelei, T.; Hertel, T.W. Agricultural trade and environmental sustainability. Annu. Rev. Resour. Econ. 2021, 13, 379–401. [Google Scholar] [CrossRef]
- Ngepah, N. International trade and agricultural production: Evidence from the Southern African Development Community sub-region. Dev. South. Africa 2014, 31, 494–514. [Google Scholar] [CrossRef]
- Trakem, V.; Fan, H. Agricultural trade liberalization, governance quality, and technical efficiency in the agricultural sector of Southeast Asia. Heliyon 2024, 10, e39553. [Google Scholar] [CrossRef] [PubMed]
- Fleming, D.A.; Abler, D.G. Does agricultural trade affect productivity? Evidence from Chilean farms. Food Policy 2013, 41, 11–17. [Google Scholar] [CrossRef]
- Bai, Z.; Ma, W.; Zhao, H.; Guo, M.; Oenema, O.; Smith, P.; Velthof, G.; Liu, X.; Hu, C.; Wang, P.; et al. Food and feed trade has greatly impacted global land and nitrogen use efficiencies over 1961–2017. Nat. Food 2021, 2, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Farrokhi, F.; Pellegrina, H.S. Trade, technology, and agricultural productivity. J. Political Econ. 2023, 131, 2509–2555. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, D.; Feng, F.; Zhao, T. Moving out of agriculture: How trade liberalization affects agricultural productivity in China. China Econ. Rev. 2025, 91, 102388. [Google Scholar] [CrossRef]
- Huang, H.W.; Jiang, S.; Zhang, S.Y.; Wang, Y.M.; Wang, J.C.; Zhao, X.N.; Gao, X.R. Agricultural and energy products trade intensified the water scarcity in the grain and energy base in northern China. Agric. Water Manag. 2025, 307, 109208. [Google Scholar] [CrossRef]
- Verburg, R.; Stehfest, E.; Woltjer, G.; Eickhout, B. The effect of agricultural trade liberalisation on land-use related greenhouse gas emissions. Glob. Environ. Chang. 2009, 19, 434–446. [Google Scholar] [CrossRef]
- Schwarzmueller, F.; Kastner, T. Agricultural trade and its impacts on cropland use and the global loss of species habitat. Sustain. Sci. 2022, 17, 2363–2377. [Google Scholar] [CrossRef]
- Headey, D. Rethinking the global food crisis: The role of trade shocks. Food Policy 2011, 36, 136–146. [Google Scholar] [CrossRef]
- Anderson, K.; Nelgen, S. Trade barrier volatility and agricultural price stabilization. World Dev. 2012, 40, 36–48. [Google Scholar] [CrossRef]
- Du, Z.X.; Zhang, H.Y.; Zhu, J.; Lin, W.L.; Luo, B.L. Further Deepening Rural Reform and Improving Support Systems for Improving Support Systems for Strengthening, Benefiting, and Enriching Agriculture: Authoritative Experts’ Analysis and Interpretation of the 2024 Central Economic Work Conference and Central Rural Work Conference Spirit. Chin. Rural. Econ. 2025, 2, 3–19. [Google Scholar]
- Wang, X.; Ma, L.; Yan, S.; Chen, X.; Growe, A. Trade for Food Security: The Stability of Global Agricultural Trade Networks. Foods 2023, 12, 271. [Google Scholar] [CrossRef] [PubMed]
- Aremu, C.O.; Ojuederie, O.B.; Olayanju, A.; Modupe, A.; Kayode, O.; Erere, A.; Faith, O.; Adebayo, S. Agricultural Productivity: A Key Component of Inclusive Growth Towards Food Security. In Food Security and Safety: African Perspectives; Springer International Publishing: Cham, Switzerland, 2021; pp. 195–216. [Google Scholar]
- Hassine, N.B.; Kandil, M. Trade liberalisation, agricultural productivity and poverty in the Mediterranean region. Eur. Rev. Agric. Econ. 2009, 36, 1–29. [Google Scholar] [CrossRef]
- Sunge, R.; Ngepah, N. Agricultural trade liberalization, regional trade agreements and agricultural technical efficiency in Africa. Outlook Agric. 2020, 49, 66–76. [Google Scholar] [CrossRef]
- Tyszynski, H. World Trade in Manufactured Commodities: 1899–1950. Manch. Sch. Econ. Soc. Stud. 1951, 19, 221–304. [Google Scholar]
- Leamer, E.E.; Stern, R.M. Quantitative International Economics; Allen&Bacon: Boston, MA, USA, 1970. [Google Scholar]
- Jepma, C.J. Extensions and Application Possibilities of the Constant Market Analysis: The Case of the Developing Countries’ Exports; University of Groningen Press: Groningen, The Netherlands, 1986. [Google Scholar]
- Milana, C. Constant Market Shares Analysis and Index Number Theory. Eur. J. Political Econ. 1988, 4, 491–506. [Google Scholar] [CrossRef]
- Mao, R. Measurement of Trade Power Index across Countries. J. World Econ. 2019, 42, 23–48. [Google Scholar]
- Hayati, D.; Ranjbar, Z.; Karami, E. Measuring agricultural sustainability. In Biodiversity, Biofuels, Agroforestry and Conservation Agriculture; Springer: Cham, Switzerland, 2011; pp. 73–100. [Google Scholar]
- Ghorbanpour, A.K.; Afshar, A.; Hessels, T.; Duan, Z. Water and productivity accounting using WA+ framework for sustainable water resources management: Case study of northwestern Iran. Phys. Chem. Earth Parts A/B/C 2022, 128, 103245. [Google Scholar] [CrossRef]
- Patle, P.; Sharma, A. A novel coupled hydrological model-water accounting framework for quantification of water resources and agricultural production. J. Hydrol. 2025, 661, 133676. [Google Scholar] [CrossRef]
- Stockle, C.O.; Papendick, R.I.; Saxton, K.E.; Campbell, G.S.; van Evert, F.K. A framework for evaluating the sustainability of agricultural production systems. Am. J. Altern. Agric. 1994, 9, 45–50. [Google Scholar] [CrossRef]
- Walters, J.P.; Archer, D.W.; Sassenrath, G.F.; Hendrickson, J.R.; Hanson, J.D.; Halloran, J.M.; Vadas, P.A.; Alarcon, V.J. Exploring agricultural production systems and their fundamental components with system dynamics modelling. Ecol. Model. 2016, 333, 51–65. [Google Scholar] [CrossRef]
- Omokaro, G.O. Multi-impacts of climate change and mitigation strategies in Nigeria: Agricultural production and food security. Sci. One Health 2025, 4, 100113. [Google Scholar] [CrossRef] [PubMed]
- Habib Ullah, K.; Abbas, M.; Alruwaili, O.; Nazir, S.; Siddiqi, M.H.; Alanazi, S. Selection of a smart and secure education school system based on the internet of things using entropy and TOPSIS approaches. Comput. Hum. Behav. 2024, 24, 3124. [Google Scholar]
- Wang, S.; Yang, J.; Wang, A.; Liu, T.; Du, S.; Liang, S. Coordinated analysis and evaluation of water–energy–food coupling: A case study of the Yellow River basin in Shandong Province, China. Ecol. Indic. 2023, 148, 110138. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; Zhao, J.; Kang, X.; Liu, L.; Wang, M.; Chen, W. Coupling and coordinated evolution characteristics of regional economy-energy-carbon emission multiple systems: A case study of main China’s Basin. J. Environ. Sci. 2024, 140, 204–218. [Google Scholar] [CrossRef] [PubMed]
System | Primary Indicator | Secondary Indicator | Measurement Method | Attribute |
---|---|---|---|---|
Agricultural Trade | Trade Scale | Total Trade Value | Directly Acquired | + |
Export Value | Directly Acquired | + | ||
Import Value | Directly Acquired | + | ||
Trade Balance | Export Value − Import Value | + | ||
Trade Structure | Processed Agricultural Product Export Share | Processed Agricultural Export Value/Total Export Value | + | |
Agricultural Sideline Product Export Share | Agricultural Sideline Export Value/Total Export Value | + | ||
Primary Product Import Share | Primary Product Import Value/Total Import Value | + | ||
Animal Product Import Share | Animal Product Import Value/Total Import Value | + | ||
Export Market Diversification | , where Share of exports of product from region to country in region total exports | + | ||
Import Market Diversification | , where Share of import from region to country in region total imports | + | ||
Trade Competitiveness | Import Market Diversification | (Regional Export Value − Regional Import Value)/(Regional Export Value + Regional Import Value) | + | |
Export Market Share | Regional Export Value/National Export Value | + | ||
Import Market Share | Regional Import Value/National Import Value | + | ||
Agricultural Production | Production Scale | Agricultural Land Area | Directly Acquired | + |
Agricultural Water Usage | Directly Acquired | |||
Agricultural Labor Force | Directly Acquired | + | ||
Total Agricultural Machinery Power | Directly Acquired | + | ||
Agricultural R&D Investment | (Gross Agricultural Output/GDP) × Government Science and Technology Expenditure | + | ||
Gross Output Value of Agriculture, Forestry, Animal Husbandry, and Fisheries | Directly Acquired | + | ||
Value-added of Agriculture, Forestry, Animal Husbandry, and Fishery | Directly Acquired | + | ||
Grain Output | Directly Acquired | + | ||
Fruit and Vegetable Output | Directly Acquired | + | ||
Meat, Egg, and Dairy Output | Directly Acquired | + | ||
Aquatic Product Output | Directly Acquired | + | ||
Production Structure | Cash Crop Sown Area Ratio | Cash Crop Sown Area/Total Crop Sown Area | + | |
Forestry Output Share | Forestry Output Value/Gross Output Value of Agriculture, Forestry, Animal Husbandry, and Fisheries | + | ||
Animal Husbandry Output Share | Animal Husbandry Output Value/Gross Output Value of Agriculture, Forestry, Animal Husbandry, and Fisheries | + | ||
Fishery Output Share | Fishery Output Value/Gross Output Value of Agriculture, Forestry, Animal Husbandry, and Fisheries | + | ||
Production Efficiency | Land Productivity | Gross Agricultural Output Value/Crop Sown Area | + | |
Labor Productivity | Gross Output Value of Agriculture, Forestry, Animal Husbandry, and Fisheries/Primary Industry Employment | + | ||
Resource Utilization Efficiency | Gross Output Value of Agriculture, Forestry, Animal Husbandry, and Fisheries/Fertilizer Usage | + |
α = 0.5, β = 0.5 | α = 0.4, β = 0.6 | α = 0.3, β = 0.7 | α = 0.6, β = 0.4 | α = 0.7, β = 0.3 | |||||
---|---|---|---|---|---|---|---|---|---|
Year | Nationwide | Nationwide | Volatility% | Nationwide | Volatility% | Nationwide | Volatility% | Nationwide | Volatility% |
2010 | 0.413 | 0.420 | 1.88 | 0.428 | 3.68 | 0.404 | 2.02 | 0.396 | 4.25 |
2011 | 0.420 | 0.428 | 1.83 | 0.435 | 3.57 | 0.412 | 1.98 | 0.403 | 4.16 |
2012 | 0.427 | 0.435 | 1.88 | 0.442 | 3.66 | 0.418 | 2.02 | 0.409 | 4.25 |
2013 | 0.430 | 0.439 | 1.93 | 0.447 | 3.76 | 0.422 | 2.07 | 0.413 | 4.35 |
2014 | 0.434 | 0.442 | 1.99 | 0.450 | 3.89 | 0.424 | 2.14 | 0.415 | 4.50 |
2015 | 0.438 | 0.446 | 1.82 | 0.453 | 3.55 | 0.429 | 1.97 | 0.420 | 4.15 |
2016 | 0.444 | 0.451 | 1.67 | 0.458 | 3.25 | 0.436 | 1.80 | 0.428 | 3.79 |
2017 | 0.443 | 0.451 | 1.71 | 0.458 | 3.33 | 0.435 | 1.85 | 0.426 | 3.89 |
2018 | 0.447 | 0.455 | 1.79 | 0.462 | 3.48 | 0.438 | 1.93 | 0.429 | 4.06 |
2019 | 0.452 | 0.461 | 1.94 | 0.469 | 3.79 | 0.443 | 2.09 | 0.433 | 4.40 |
2020 | 0.458 | 0.467 | 1.89 | 0.475 | 3.68 | 0.449 | 2.03 | 0.440 | 4.28 |
2021 | 0.467 | 0.476 | 1.79 | 0.484 | 3.48 | 0.458 | 1.93 | 0.449 | 4.05 |
2022 | 0.479 | 0.487 | 1.57 | 0.494 | 3.05 | 0.471 | 1.70 | 0.463 | 3.57 |
2023 | 0.477 | 0.486 | 1.80 | 0.494 | 3.50 | 0.468 | 1.94 | 0.459 | 4.09 |
Range of Coupling Coordination Degree | Qualitative Descriptor | Coupling and Coordination Stage |
---|---|---|
[0.0–0.1] | Extreme disorder | Antagonistic Stage |
[0.1–0.2] | Serious disorder | |
[0.2–0.3] | Moderate disorder | |
[0.3–0.4] | Low disorder | |
[0.4–0.5] | Marginal disorder | Running-in Stage |
[0.5–0.6] | Marginal coordination | |
[0.6–0.7] | Low coordination | |
[0.7–0.8] | Moderate coordination | Coordinated Stage |
[0.8–0.9] | Good coordination | |
[0.9–1.0] | High coordination |
Province | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anhui | 0.386 | 0.394 | 0.390 | 0.391 | 0.398 | 0.408 | 0.431 | 0.453 | 0.472 | 0.492 | 0.501 | 0.502 | 0.496 | 0.487 | 0.443 |
Beijing | 0.378 | 0.385 | 0.428 | 0.433 | 0.449 | 0.436 | 0.443 | 0.445 | 0.492 | 0.548 | 0.510 | 0.515 | 0.496 | 0.472 | 0.459 |
Fujian | 0.525 | 0.543 | 0.553 | 0.566 | 0.571 | 0.596 | 0.611 | 0.609 | 0.621 | 0.624 | 0.638 | 0.665 | 0.679 | 0.672 | 0.605 |
Gansu | 0.322 | 0.320 | 0.318 | 0.323 | 0.324 | 0.321 | 0.339 | 0.320 | 0.318 | 0.321 | 0.333 | 0.320 | 0.327 | 0.330 | 0.324 |
Guangdong | 0.607 | 0.616 | 0.624 | 0.626 | 0.641 | 0.673 | 0.679 | 0.689 | 0.697 | 0.709 | 0.720 | 0.728 | 0.754 | 0.762 | 0.681 |
Guangxi | 0.429 | 0.443 | 0.464 | 0.461 | 0.468 | 0.452 | 0.481 | 0.467 | 0.458 | 0.445 | 0.453 | 0.469 | 0.475 | 0.489 | 0.461 |
Guizhou | 0.345 | 0.378 | 0.413 | 0.403 | 0.406 | 0.421 | 0.423 | 0.439 | 0.468 | 0.449 | 0.438 | 0.428 | 0.474 | 0.475 | 0.426 |
Hainan | 0.329 | 0.332 | 0.333 | 0.329 | 0.332 | 0.337 | 0.341 | 0.337 | 0.333 | 0.325 | 0.316 | 0.333 | 0.366 | 0.376 | 0.337 |
Hebei | 0.454 | 0.454 | 0.455 | 0.466 | 0.464 | 0.462 | 0.468 | 0.458 | 0.450 | 0.446 | 0.461 | 0.469 | 0.480 | 0.475 | 0.462 |
Henan | 0.462 | 0.470 | 0.476 | 0.475 | 0.470 | 0.469 | 0.494 | 0.485 | 0.486 | 0.486 | 0.484 | 0.499 | 0.499 | 0.511 | 0.483 |
Heilongjiang | 0.410 | 0.411 | 0.423 | 0.436 | 0.441 | 0.428 | 0.444 | 0.407 | 0.431 | 0.444 | 0.448 | 0.445 | 0.457 | 0.464 | 0.435 |
Hubei | 0.415 | 0.429 | 0.438 | 0.452 | 0.452 | 0.454 | 0.480 | 0.460 | 0.447 | 0.453 | 0.475 | 0.508 | 0.531 | 0.528 | 0.466 |
Hunan | 0.402 | 0.406 | 0.388 | 0.404 | 0.401 | 0.417 | 0.395 | 0.442 | 0.434 | 0.448 | 0.460 | 0.466 | 0.479 | 0.493 | 0.431 |
Jilin | 0.376 | 0.385 | 0.388 | 0.393 | 0.372 | 0.359 | 0.376 | 0.345 | 0.347 | 0.345 | 0.360 | 0.342 | 0.359 | 0.351 | 0.364 |
Jiangsu | 0.563 | 0.560 | 0.558 | 0.553 | 0.565 | 0.580 | 0.620 | 0.596 | 0.606 | 0.603 | 0.611 | 0.623 | 0.644 | 0.644 | 0.595 |
Jiangxi | 0.381 | 0.368 | 0.396 | 0.371 | 0.370 | 0.373 | 0.376 | 0.367 | 0.367 | 0.365 | 0.370 | 0.395 | 0.404 | 0.398 | 0.379 |
Liaoning | 0.482 | 0.491 | 0.500 | 0.511 | 0.508 | 0.519 | 0.515 | 0.520 | 0.510 | 0.513 | 0.504 | 0.492 | 0.508 | 0.515 | 0.506 |
Inner Mongolia | 0.360 | 0.355 | 0.376 | 0.396 | 0.393 | 0.390 | 0.369 | 0.389 | 0.393 | 0.404 | 0.423 | 0.430 | 0.443 | 0.439 | 0.397 |
Ningxia | 0.275 | 0.272 | 0.286 | 0.280 | 0.283 | 0.279 | 0.284 | 0.291 | 0.311 | 0.285 | 0.302 | 0.319 | 0.333 | 0.344 | 0.296 |
Qinghai | 0.368 | 0.432 | 0.384 | 0.369 | 0.392 | 0.415 | 0.328 | 0.417 | 0.431 | 0.434 | 0.433 | 0.455 | 0.458 | 0.424 | 0.410 |
Shandong | 0.688 | 0.711 | 0.720 | 0.732 | 0.738 | 0.731 | 0.738 | 0.734 | 0.733 | 0.743 | 0.753 | 0.769 | 0.778 | 0.781 | 0.739 |
Shanxi | 0.293 | 0.291 | 0.302 | 0.344 | 0.353 | 0.342 | 0.347 | 0.329 | 0.292 | 0.295 | 0.323 | 0.336 | 0.360 | 0.339 | 0.325 |
Shaanxi | 0.326 | 0.359 | 0.347 | 0.357 | 0.357 | 0.376 | 0.377 | 0.377 | 0.368 | 0.341 | 0.365 | 0.372 | 0.384 | 0.372 | 0.363 |
Shanghai | 0.478 | 0.477 | 0.473 | 0.474 | 0.485 | 0.499 | 0.502 | 0.530 | 0.534 | 0.545 | 0.554 | 0.552 | 0.555 | 0.562 | 0.516 |
Sichuan | 0.432 | 0.427 | 0.435 | 0.440 | 0.436 | 0.446 | 0.441 | 0.428 | 0.440 | 0.442 | 0.457 | 0.453 | 0.452 | 0.444 | 0.441 |
Tianjin | 0.368 | 0.381 | 0.388 | 0.399 | 0.404 | 0.405 | 0.391 | 0.409 | 0.412 | 0.440 | 0.471 | 0.460 | 0.458 | 0.445 | 0.417 |
Tibet | 0.367 | 0.362 | 0.376 | 0.362 | 0.358 | 0.355 | 0.365 | 0.349 | 0.338 | 0.372 | 0.329 | 0.403 | 0.449 | 0.418 | 0.372 |
Xinjiang | 0.380 | 0.367 | 0.383 | 0.376 | 0.376 | 0.367 | 0.382 | 0.366 | 0.378 | 0.380 | 0.378 | 0.383 | 0.376 | 0.388 | 0.377 |
Yunnan | 0.351 | 0.352 | 0.355 | 0.363 | 0.370 | 0.398 | 0.419 | 0.417 | 0.410 | 0.421 | 0.441 | 0.430 | 0.410 | 0.413 | 0.397 |
Zhejiang | 0.501 | 0.514 | 0.512 | 0.513 | 0.515 | 0.529 | 0.542 | 0.546 | 0.555 | 0.559 | 0.569 | 0.584 | 0.604 | 0.617 | 0.547 |
Chongqing | 0.333 | 0.343 | 0.345 | 0.346 | 0.345 | 0.335 | 0.362 | 0.309 | 0.311 | 0.340 | 0.333 | 0.340 | 0.367 | 0.368 | 0.341 |
Year | Global Moran’s I | Z-Score | p-Value |
---|---|---|---|
2010 | 0.293 | 3.693 | 0.000 |
2011 | 0.294 | 3.731 | 0.000 |
2012 | 0.316 | 3.998 | 0.000 |
2013 | 0.333 | 4.196 | 0.000 |
2014 | 0.323 | 4.072 | 0.000 |
2015 | 0.324 | 4.051 | 0.000 |
2016 | 0.280 | 3.521 | 0.000 |
2017 | 0.302 | 3.751 | 0.000 |
2018 | 0.298 | 3.696 | 0.000 |
2019 | 0.314 | 3.871 | 0.000 |
2020 | 0.302 | 3.734 | 0.000 |
2021 | 0.273 | 3.425 | 0.001 |
2022 | 0.281 | 3.531 | 0.000 |
2023 | 0.280 | 3.509 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Qi, C.; Gu, Y.; Gui, C. Coordinated Development and Spatiotemporal Evolution Trends of China’s Agricultural Trade and Production from the Perspective of Food Security. Foods 2025, 14, 2538. https://doi.org/10.3390/foods14142538
Yang Y, Qi C, Gu Y, Gui C. Coordinated Development and Spatiotemporal Evolution Trends of China’s Agricultural Trade and Production from the Perspective of Food Security. Foods. 2025; 14(14):2538. https://doi.org/10.3390/foods14142538
Chicago/Turabian StyleYang, Yueyuan, Chunjie Qi, Yumeng Gu, and Cheng Gui. 2025. "Coordinated Development and Spatiotemporal Evolution Trends of China’s Agricultural Trade and Production from the Perspective of Food Security" Foods 14, no. 14: 2538. https://doi.org/10.3390/foods14142538
APA StyleYang, Y., Qi, C., Gu, Y., & Gui, C. (2025). Coordinated Development and Spatiotemporal Evolution Trends of China’s Agricultural Trade and Production from the Perspective of Food Security. Foods, 14(14), 2538. https://doi.org/10.3390/foods14142538