Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = aerosol-assisted chemical deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4415 KiB  
Article
A Novel Mechanism Based on Oxygen Vacancies to Describe Isobutylene and Ammonia Sensing of p-Type Cr2O3 and Ti-Doped Cr2O3 Thin Films
by Pengfei Zhou, Jone-Him Tsang, Chris Blackman, Yanbai Shen, Jinsheng Liang, James A. Covington, John Saffell and Ehsan Danesh
Chemosensors 2024, 12(10), 218; https://doi.org/10.3390/chemosensors12100218 - 18 Oct 2024
Cited by 2 | Viewed by 1536
Abstract
Gas sensors based on metal oxide semiconductors (MOS) have been widely used for the detection and monitoring of flammable and toxic gases. In this paper, p-type Cr2O3 and Ti-doped Cr2O3 (CTO) thin films were synthesized using an [...] Read more.
Gas sensors based on metal oxide semiconductors (MOS) have been widely used for the detection and monitoring of flammable and toxic gases. In this paper, p-type Cr2O3 and Ti-doped Cr2O3 (CTO) thin films were synthesized using an aerosol-assisted chemical vapor deposition (AACVD) method. Detailed analysis of the thin films deposited, including structural information, their elemental composition, oxidation state, and morphology, was investigated using XRD, Raman analysis, SEM, and XPS. All the gas sensors based on pristine Cr2O3 and CTO exhibited a reversible response and good sensitivity to isobutylene (C4H8) and ammonia (NH3) gases. Doping Ti into the Cr2O3 lattice improves the response of the CTO-based sensors to C4H8 and NH3. We describe a novel mechanism for the gas sensitivity of p-type metal oxides based on variations in the oxygen vacancy concentration. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Figure 1

3 pages, 1116 KiB  
Abstract
ZnO/WS2 Hybrid Material, for NO2 Detection, via the Combination of AACVD and APCVD Techniques
by Shuja Bashir Malik, Eduard Llobet and Fatima Ezahra Annanouch
Proceedings 2024, 97(1), 133; https://doi.org/10.3390/proceedings2024097133 - 1 Apr 2024
Cited by 1 | Viewed by 1029
Abstract
We report for the first time the successful synthesis of ZnO/WS2 hybrid material using a combination of aerosol-assisted chemical vapor deposition (AA-CVD) and atmospheric pressure CVD techniques. The morphology and the composition of the grown films were investigated and the results confirm [...] Read more.
We report for the first time the successful synthesis of ZnO/WS2 hybrid material using a combination of aerosol-assisted chemical vapor deposition (AA-CVD) and atmospheric pressure CVD techniques. The morphology and the composition of the grown films were investigated and the results confirm the co-existence of both materials. Moreover, gas-sensing results against 500 ppb of NO2 revealed the influence of WS2 material on the ZnO gas-sensing performance. The operating temperature shifted towards lower values, from 300 °C to 150 °C. Furthermore, at room temperature, the ZnO/WS2 sensor was able to detect NO2 at ppb level. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

16 pages, 5106 KiB  
Article
Pd-Nanoparticle-Decorated Multilayered MoS2 Sheets for Highly Sensitive Hydrogen Sensing
by Shuja Bashir Malik, Fatima Ezahra Annanouch and Eduard Llobet
Chemosensors 2023, 11(11), 550; https://doi.org/10.3390/chemosensors11110550 - 26 Oct 2023
Cited by 7 | Viewed by 3197
Abstract
In this work, efficient hydrogen gas sensors based on multilayered p-type bare MoS2 and Pd-decorated MoS2 were fabricated. MoS2 was deposited onto alumina transducers using an airbrushing technique to be used as a sensing material. Aerosol-assisted chemical vapor deposition (AACVD) [...] Read more.
In this work, efficient hydrogen gas sensors based on multilayered p-type bare MoS2 and Pd-decorated MoS2 were fabricated. MoS2 was deposited onto alumina transducers using an airbrushing technique to be used as a sensing material. Aerosol-assisted chemical vapor deposition (AACVD) was used to decorate layered MoS2 with Pd nanoparticles at 250 °C. The bare and Pd-decorated MoS2 was characterized using field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), and Raman spectroscopy. The characterization results reveal the multilayered crystalline structure of MoS2 with successful Pd decoration. The size of the Pd nanoparticles ranges from 15 nm to 23 nm. Gas sensing studies reveal that a maximum response of 55% is achieved for Pd-decorated MoS2 operated at 150 °C to 100 ppm of H2, which is clearly below the explosive limit (4%) in air. The higher sensitivity due to Pd nanoparticle decoration was owed to a spillover effect. This study reveals that the sensitivity of the sensors is highly dependent on the amount of Pd decoration. Moreover, sensor responses increase slightly when exposed to 50% relative humidity (RH at 25 °C). Full article
Show Figures

Figure 1

22 pages, 21673 KiB  
Article
Degradable Plasma-Polymerized Poly(Ethylene Glycol)-Like Coating as a Matrix for Food-Packaging Applications
by Maryam Zabihzadeh Khajavi, Anton Nikiforov, Maryam Nilkar, Frank Devlieghere, Peter Ragaert and Nathalie De Geyter
Nanomaterials 2023, 13(20), 2774; https://doi.org/10.3390/nano13202774 - 16 Oct 2023
Cited by 6 | Viewed by 2208
Abstract
Currently, there is considerable interest in seeking an environmentally friendly technique that is neither thermally nor organic solvent-dependent for producing advanced polymer films for food-packaging applications. Among different approaches, plasma polymerization is a promising method that can deposit biodegradable coatings on top of [...] Read more.
Currently, there is considerable interest in seeking an environmentally friendly technique that is neither thermally nor organic solvent-dependent for producing advanced polymer films for food-packaging applications. Among different approaches, plasma polymerization is a promising method that can deposit biodegradable coatings on top of polymer films. In this study, an atmospheric-pressure aerosol-assisted plasma deposition method was employed to develop a poly(ethylene glycol) (PEG)-like coating, which can act as a potential matrix for antimicrobial agents, by envisioning controlled-release food-packaging applications. Different plasma operating parameters, including the input power, monomer flow rate, and gap between the edge of the plasma head and substrate, were optimized to produce a PEG-like coating with a desirable water stability level and that can be biodegradable. The findings revealed that increased distance between the plasma head and substrate intensified gas-phase nucleation and diluted the active plasma species, which in turn led to the formation of a non-conformal rough coating. Conversely, at short plasma–substrate distances, smooth conformal coatings were obtained. Furthermore, at low input powers (<250 W), the chemical structure of the precursor was mostly preserved with a high retention of C-O functional groups due to limited monomer fragmentation. At the same time, these coatings exhibit low stability in water, which could be attributed to their low cross-linking degree. Increasing the power to 350 W resulted in the loss of the PEG-like chemical structure, which is due to the enhanced monomer fragmentation at high power. Nevertheless, owing to the enhanced cross-linking degree, these coatings were more stable in water. Finally, it could be concluded that a moderate input power (250–300 W) should be applied to obtain an acceptable tradeoff between the coating stability and PEG resemblance. Full article
(This article belongs to the Special Issue New Trends in Plasma Technology for Nanomaterials and Applications)
Show Figures

Graphical abstract

13 pages, 4179 KiB  
Article
The Glaze Icing Performance of a Robust Superhydrophobic Film Composed of Epoxy Resin and Polydimethylsiloxane
by Aoyun Zhuang, Chao Li, Jianping Yu and Yao Lu
Coatings 2023, 13(7), 1271; https://doi.org/10.3390/coatings13071271 - 20 Jul 2023
Cited by 2 | Viewed by 1869
Abstract
Ice accretion on transmission lines can cause operational difficulties and disastrous events. In this study, a micro/nano-structured epoxy resin/polydimethylsiloxane (EP/PDMS) film on glass, with water droplet contact angles (CA) observed as high as 160° and the water droplet sliding angle (SA) < 1° [...] Read more.
Ice accretion on transmission lines can cause operational difficulties and disastrous events. In this study, a micro/nano-structured epoxy resin/polydimethylsiloxane (EP/PDMS) film on glass, with water droplet contact angles (CA) observed as high as 160° and the water droplet sliding angle (SA) < 1° was fabricated by aerosol-assisted chemical vapor deposition (AACVD). The glaze icing performance of the superhydrophobic EP/PDMS films have been investigated by comparing the bare glass and room temperature vulcanized (RTV) silicon rubber-coated glass substrate representing the glass insulators and silicone rubber insulators, respectively. Compared with the bare glass and the RTV silicon rubber coating, the EP/PDMS superhydrophobic coating showed excellent performance in delaying glaze icing, especially in the early stages of icing. After 20 min of glaze icing with tilting angle of 90° at −5 and −10 °C, 38.9% and 85.7% of the RTV silicon rubber coating were covered, respectively, and less than 3% of the EP/PDMS coating was covered by ice when the blank glass sheet was completely covered. The EP/PDMS films also showed good mechanical robustness and long-term stability, which are important considerations in their widespread real-world adoption. Full article
(This article belongs to the Special Issue Structural, Mechanical and Tribological Properties of Hard Coatings)
Show Figures

Figure 1

13 pages, 2185 KiB  
Article
Atmospheric Pressure Plasma Deposition of Hybrid Nanocomposite Coatings Containing TiO2 and Carbon-Based Nanomaterials
by Regina Del Sole, Chiara Lo Porto, Sara Lotito, Chiara Ingrosso, Roberto Comparelli, Maria Lucia Curri, Gianni Barucca, Francesco Fracassi, Fabio Palumbo and Antonella Milella
Molecules 2023, 28(13), 5131; https://doi.org/10.3390/molecules28135131 - 30 Jun 2023
Cited by 4 | Viewed by 2244
Abstract
Among the different applications of TiO2, its use for the photocatalytic abatement of organic pollutants has been demonstrated particularly relevant. However, the wide band gap (3.2 eV), which requires UV irradiation for activation, and the fast electron-hole recombination rate of this [...] Read more.
Among the different applications of TiO2, its use for the photocatalytic abatement of organic pollutants has been demonstrated particularly relevant. However, the wide band gap (3.2 eV), which requires UV irradiation for activation, and the fast electron-hole recombination rate of this n-type semiconductor limit its photocatalytic performance. A strategy to overcome these limitations relies on the realization of a nanocomposite that combines TiO2 nanoparticles with carbon-based nanomaterials, such as rGO (reduced graphene oxide) and fullerene (C60). On the other hand, the design and realization of coatings formed of such TiO2-based nanocomposite coatings are essential to make them suitable for their technological applications, including those in the environmental field. In this work, aerosol-assisted atmospheric pressure plasma deposition of nanocomposite coatings containing both TiO2 nanoparticles and carbon-based nanomaterials, as rGO or C60, in a siloxane matrix is reported. The chemical composition and morphology of the deposited films were investigated for the different types of prepared nanocomposites by means of FT-IR, FEG-SEM, and TEM analyses. The photocatalytic activity of the nanocomposite coatings was evaluated through monitoring the photodegradation of methylene blue (MB) as a model organic pollutant. Results demonstrate that the nanocomposite coatings embedding rGO or C60 show enhanced photocatalytic performance with respect to the TiO2 counterpart. In particular, TiO2/C60 nanocomposites allow to achieve 85% MB degradation upon 180 min of UV irradiation. Full article
(This article belongs to the Special Issue Graphene-Based Nanocomposites for Advanced Applications)
Show Figures

Figure 1

10 pages, 1125 KiB  
Article
AACVD of Cu3N on Al2O3 Using CuCl2 and NH3
by Matthew Zervos
Materials 2022, 15(24), 8966; https://doi.org/10.3390/ma15248966 - 15 Dec 2022
Cited by 1 | Viewed by 1750
Abstract
Cu3N has been grown on m-Al2O3 by aerosol-assisted chemical vapor deposition using 0.1 M CuCl2 in CH3CH2OH under an excess of NH3 at 600 °C, which led to the deposition of Cu [...] Read more.
Cu3N has been grown on m-Al2O3 by aerosol-assisted chemical vapor deposition using 0.1 M CuCl2 in CH3CH2OH under an excess of NH3 at 600 °C, which led to the deposition of Cu that was subsequently converted into Cu3N under NH3: O2 at 400 °C in a two-step process without exposure to the ambient. The reaction of CuCl2 with an excess of NH3 did not lead to the growth of Cu3N, which is different to the case of halide vapor phase epitaxy of III-V semiconductors. The Cu3N layers obtained in this way had an anti-ReO3 cubic crystal structure with a lattice constant of 3.8 Å and were found to be persistently n-type, with a room temperature carrier density of n = 2 × 1016 cm−3 and mobility of µn = 32 cm2/Vs. The surface depletion, calculated in the effective mass approximation, was found to extend over ~0.15 µm by considering a surface barrier height of ϕB = 0.4 eV related to the formation of native Cu2O. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

11 pages, 3710 KiB  
Article
Microwave Plasma Assisted Aerosol Deposition (μ-PAD) for Ceramic Coating Applications
by Soo Ouk Jang, Changhyun Cho, Ji Hun Kim, In Je Kang, Hyonu Chang, Hyunjae Park, Kyungmin Lee, Dae Gun Kim and Hye Won Seok
Ceramics 2022, 5(4), 1174-1184; https://doi.org/10.3390/ceramics5040083 - 2 Dec 2022
Cited by 4 | Viewed by 2861
Abstract
To improve plasma and chemical resistance on various vacuum components used for semiconductor manufacturing equipment, various ceramic coating techniques have been applied. Among these methods for ceramic coating, the well-known atmospheric plasma spray (APS) is advantageous for providing thick film (100 µm or [...] Read more.
To improve plasma and chemical resistance on various vacuum components used for semiconductor manufacturing equipment, various ceramic coating techniques have been applied. Among these methods for ceramic coating, the well-known atmospheric plasma spray (APS) is advantageous for providing thick film (100 µm or more) deposition. However, there are problems associated with the phase transition of the coating film and poor film quality due to formation of voids. To solve these problems, the aerosol deposition (AD) method has been developed. This method provides nice ceramic film quality. However, the coating rate is quite slow and has difficulty producing thick films (>30 µm). To overcome these limitations, microwave plasma-assisted aerosol deposition (μ-PAD) is applied at low vacuum conditions without the AD nozzle. This method uses a microwave plasma source during the AD process. After enduring a long-term durability test, as a trial run, μ-PAD has been applied on the actual process site. With the Al2O3 powder, μ-PAD shows a coating rate that is 12 times higher than the AD method. In addition, the formation of a thicker film (96 µm) deposition has been demonstrated. On the other hand, the coating film hardness, porosity, adhesion, and withstand voltage characteristics were confirmed to be less than the AD method. Full article
(This article belongs to the Special Issue Advances in Ceramics)
Show Figures

Figure 1

16 pages, 6096 KiB  
Article
Photocatalytic Investigation of Aerosol-Assisted Atmospheric Pressure Plasma Deposited Hybrid TiO2 Containing Nanocomposite Coatings
by Chiara Lo Porto, Massimo Dell’Edera, Ilaria De Pasquale, Antonella Milella, Francesco Fracassi, Maria Lucia Curri, Roberto Comparelli and Fabio Palumbo
Nanomaterials 2022, 12(21), 3758; https://doi.org/10.3390/nano12213758 - 26 Oct 2022
Cited by 5 | Viewed by 1990
Abstract
We report on the aerosol-assisted atmospheric-pressure plasma deposition onto a stainless-steel woven mesh of a thin nanocomposite coating based on TiO2 nanoparticles hosted in a hybrid organic–inorganic matrix, starting from nanoparticles dispersed in a mixture of hexamethyldisiloxane and isopropyl alcohol. The stainless-steel [...] Read more.
We report on the aerosol-assisted atmospheric-pressure plasma deposition onto a stainless-steel woven mesh of a thin nanocomposite coating based on TiO2 nanoparticles hosted in a hybrid organic–inorganic matrix, starting from nanoparticles dispersed in a mixture of hexamethyldisiloxane and isopropyl alcohol. The stainless-steel mesh was selected as an effective support for the possible future technological application of the coating for photocatalytically assisted water depollution. The prepared coatings were thoroughly investigated from the chemical and morphological points of view and were demonstrated to be photocatalytically active in the degradation of an organic molecule, used as a pollutant model, in water upon UV light irradiation. In order to optimize the photocatalytic performance, different approaches were investigated for the coating’s realization, namely (i) the control of the deposition time and (ii) the application of a postdeposition O2 plasma treatment on the pristine coatings. Both strategies were found to be able to increase the photocatalytic activity, and, remarkably, their combination resulted in a further enhancement of the photoactivity. Indeed, the proposed combined approach allowed a three-fold increase in the kinetic constant of the degradation reaction of the model dye methylene blue with respect to the pristine coating. Interestingly, the chemical and morphological characterizations of all the prepared coatings were able to account for the enhancement of the photocatalytic performance. Indeed, the presence of the TiO2 nanoparticles on the outmost surface of the film confirmed the accessibility of the photocatalytic sites in the nanocomposite and reasonably explained the enhanced photocatalytic performance. In addition, the sustained photoactivity (>5 cycles of use) of the nanocomposites was demonstrated. Full article
Show Figures

Figure 1

12 pages, 2260 KiB  
Article
Distribution of Iron Nanoparticles in Arrays of Vertically Aligned Carbon Nanotubes Grown by Chemical Vapor Deposition
by Alexander V. Okotrub, Dmitriy V. Gorodetskiy, Artem V. Gusel’nikov, Anastasiya M. Kondranova, Lyubov G. Bulusheva, Mariya Korabovska, Raimonds Meija and Donats Erts
Materials 2022, 15(19), 6639; https://doi.org/10.3390/ma15196639 - 24 Sep 2022
Cited by 7 | Viewed by 2255
Abstract
Arrays of aligned carbon nanotubes (CNTs) are anisotropic nanomaterials possessing a high length-to-diameter aspect ratio, channels passing through the array, and mechanical strength along with flexibility. The arrays are produced in one step using aerosol-assisted catalytic chemical vapor deposition (CCVD), where a mixture [...] Read more.
Arrays of aligned carbon nanotubes (CNTs) are anisotropic nanomaterials possessing a high length-to-diameter aspect ratio, channels passing through the array, and mechanical strength along with flexibility. The arrays are produced in one step using aerosol-assisted catalytic chemical vapor deposition (CCVD), where a mixture of carbon and metal sources is fed into the hot zone of the reactor. Metal nanoparticles catalyze the growth of CNTs and, during synthesis, are partially captured into the internal cavity of CNTs. In this work, we considered various stages of multi-walled CNT (MWCNT) growth on silicon substrates from a ferrocene–toluene mixture and estimated the amount of iron in the array. The study showed that although the mixture of precursors supplies evenly to the reactor, the iron content in the upper part of the array is lower and increases toward the substrate. The size of carbon-encapsulated iron-based nanoparticles is 20–30 nm, and, according to X-ray diffraction data, most of them are iron carbide Fe3C. The reasons for the gradient distribution of iron nanoparticles in MWCNT arrays were considered, and the possibilities of controlling their distribution were evaluated. Full article
(This article belongs to the Special Issue New Advances in Low-Dimensional Materials and Nanostructures)
Show Figures

Figure 1

8 pages, 3842 KiB  
Communication
Ag-Doped TiO2 Composite Films Prepared Using Aerosol-Assisted, Plasma-Enhanced Chemical Vapor Deposition
by Jianghua Lang, Kazuma Takahashi, Masaru Kubo and Manabu Shimada
Catalysts 2022, 12(4), 365; https://doi.org/10.3390/catal12040365 - 23 Mar 2022
Cited by 18 | Viewed by 3209
Abstract
TiO2 is a promising photocatalyst, but its large bandgap restricts its light absorption to the ultraviolet region. The addition of noble metals can reduce the bandgap and electron-hole recombination; therefore, we prepared TiO2-Ag nanoparticle composite films by plasma-enhanced chemical vapor [...] Read more.
TiO2 is a promising photocatalyst, but its large bandgap restricts its light absorption to the ultraviolet region. The addition of noble metals can reduce the bandgap and electron-hole recombination; therefore, we prepared TiO2-Ag nanoparticle composite films by plasma-enhanced chemical vapor deposition (PECVD) using a mixture of aerosolized AgNO3, which was used as a Ag nanoparticle precursor, and titanium tetraisopropoxide, which acted as the TiO2 precursor. Notably, the use of PECVD enabled a low process temperature and eliminated the need for pre-preparing the Ag nanoparticles, thereby increasing the process efficiency. The structures and morphologies of the deposited films were characterized by ultraviolet (UV)—visible spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy, and the effects of the AgNO3 concentration on the photocatalytic activity of the deposited films were determined by assessing the degradation of methylene blue under UV light irradiation. The Ag ions were successfully reduced to metallic nanoparticles and were embedded in the TiO2 film. The best photocatalytic activity was achieved for a 1 wt% Ag-loaded TiO2 composite film, which was 1.75 times that of pristine TiO2. Full article
(This article belongs to the Special Issue Structured Semiconductors in Photocatalysis)
Show Figures

Figure 1

10 pages, 3389 KiB  
Article
Analysis of the Continuous Feeding of Catalyst Particles during the Growth of Vertically Aligned Carbon Nanotubes by Aerosol-Assisted CCVD
by Celia Castro, Rodrigo Fernández-Pacheco, Mathieu Pinault, Odile Stephan, Cécile Reynaud and Martine Mayne-L’Hermite
Nanomaterials 2022, 12(3), 449; https://doi.org/10.3390/nano12030449 - 28 Jan 2022
Cited by 6 | Viewed by 2323
Abstract
Aerosol-assisted catalytic chemical vapor deposition (AACCVD) is a powerful one-step process to produce vertically aligned carbon nanotubes (VACNTs), characterized by the continuous supply of the catalyst precursor (metallocene). The behavior of catalyst species all along the synthesis is essential for the continuous growth [...] Read more.
Aerosol-assisted catalytic chemical vapor deposition (AACCVD) is a powerful one-step process to produce vertically aligned carbon nanotubes (VACNTs), characterized by the continuous supply of the catalyst precursor (metallocene). The behavior of catalyst species all along the synthesis is essential for the continuous growth of VACNTs. It is there investigated through detailed observations and elemental analyses at scales of VACNT carpets and of individual CNTs. Our approach is based on two complementary experiments: quenching of the sample cooling, and sequential injection of two distinct metallocenes. Metal-based nanoparticles nucleated in the gas-phase during the whole synthesis duration are shown to diffuse in between the growing VACNTs from the top of the CNT carpet towards the substrate. They are much smaller than the catalyst particles formed on the substrate in the initial steps of the process and evidences are given that they continuously feed these catalyst particles at the VACNT roots. Particularly, the electron energy-loss spectroscopy (EELS) analyses of metal-based segments found into a single CNT show that the second injected metal is very gradually incorporated in the particle initially formed from the metal firstly injected. The feeding of the catalyst particles by the nanoparticles continuously nucleated in the gas-phase is therefore an essential feature of the base-growth of CNTs by AACCVD. Full article
(This article belongs to the Special Issue State-of-the-Art 2D and Carbon Nanomaterials in France)
Show Figures

Figure 1

20 pages, 5005 KiB  
Article
New Insight into the Interplay of Method of Deposition, Chemical State of Pd, Oxygen Storage Capability and Catalytic Activity of Pd-Containing Perovskite Catalysts for Combustion of Methane
by Silva Stanchovska, Georgy Ivanov, Sonya Harizanova, Krasimir Tenchev, Ekaterina Zhecheva, Anton Naydenov and Radostina Stoyanova
Catalysts 2021, 11(11), 1399; https://doi.org/10.3390/catal11111399 - 18 Nov 2021
Cited by 2 | Viewed by 2452
Abstract
Elaboration of Pd-supported catalysts for catalytic combustion is, nowadays, considered as an imperative task to reduce the emissions of methane. This study provides new insight into the method of deposition, chemical state of Pd and oxygen storage capability of transition metal ions and [...] Read more.
Elaboration of Pd-supported catalysts for catalytic combustion is, nowadays, considered as an imperative task to reduce the emissions of methane. This study provides new insight into the method of deposition, chemical state of Pd and oxygen storage capability of transition metal ions and their effects on the catalytic reactivity of supported catalysts for the combustion of methane. The catalyst with nominal composition La(Co0.8Ni0.1Fe0.1)0.85Pd0.15O3 was supported on SiO2-modified/γ-alumina using two synthetic procedures: (i) aerosol assisted chemical vapor deposition (U-AACVD) and (ii) wet impregnation (Imp). A comparative analysis shows that a higher catalytic activity is established for supported catalyst obtained by wet impregnation, where the PdO-like phase is well dispersed and the transition metal ions display a high oxygen storage capability. The reaction pathway over both catalysts proceeds most probably through Mars–van Krevelen mechanism. The supported catalysts are thermally stable when they are aged at 505 °C for 120 h in air containing 1.2 vol.% water vapor. Furthermore, the experimentally obtained data on La(Co0.8Ni0.1Fe0.1)0.85Pd0.15O3—based catalyst, supported on monolithic substrate VDM®Aluchrom Y Hf are simulated by using a two-dimensional heterogeneous model for monolithic reactor in order to predict the performance of an industrial catalytic reactor for abatement of methane emissions. Full article
Show Figures

Graphical abstract

31 pages, 3651 KiB  
Review
Low-Temperature Atmospheric Pressure Plasma Processes for the Deposition of Nanocomposite Coatings
by Antonella Uricchio and Fiorenza Fanelli
Processes 2021, 9(11), 2069; https://doi.org/10.3390/pr9112069 - 18 Nov 2021
Cited by 26 | Viewed by 6302
Abstract
Low-temperature atmospheric pressure (AP) plasma technologies have recently proven to offer a range of interesting opportunities for the preparation of a variety of nanocomposite (NC) coatings with different chemical compositions, structures, and morphologies. Since the late 2000s, numerous strategies have been implemented for [...] Read more.
Low-temperature atmospheric pressure (AP) plasma technologies have recently proven to offer a range of interesting opportunities for the preparation of a variety of nanocomposite (NC) coatings with different chemical compositions, structures, and morphologies. Since the late 2000s, numerous strategies have been implemented for the deposition of this intriguing class of coatings by using both direct and remote AP plasma sources. Interestingly, considerable progress has been made in the development of aerosol-assisted deposition processes in which the use of either precursor solutions or nanoparticle dispersions in aerosol form allows greatly widening the range of constituents that can be combined in the plasma-deposited NC films. This review summarizes the research published on this topic so far and, specifically, aims to present a concise survey of the developed plasma processes, with particular focus on their optimization as well as on the structural and functional properties of the NC coatings to which they provide access. Current challenges and opportunities are also briefly discussed to give an outlook on possible future research directions. Full article
(This article belongs to the Special Issue Micro and Nanotechnology: Application in Surface Modification)
Show Figures

Figure 1

17 pages, 3899 KiB  
Article
Impedance Spectroscopy Analysis of PbSe Nanostructures Deposited by Aerosol Assisted Chemical Vapor Deposition Approach
by Sadia Iram, Azhar Mahmood, Muhammad Fahad Ehsan, Asad Mumtaz, Manzar Sohail, Effat Sitara, Shehla Mushtaq, Mohammad Azad Malik, Syeda Arooj Fatima, Rubina Shaheen, Nasir Mahmood Ahmad and Sajid Nawaz Malik
Nanomaterials 2021, 11(11), 2817; https://doi.org/10.3390/nano11112817 - 23 Oct 2021
Cited by 4 | Viewed by 2787
Abstract
This research endeavor aimed to synthesize the lead (II) diphenyldiselenophosphinate complex and its use to obtain lead selenide nanostructured depositions and further the impedance spectroscopic analysis of these obtained PbSe nanostructures, to determine their roles in the electronics industry. The aerosol-assisted chemical vapor [...] Read more.
This research endeavor aimed to synthesize the lead (II) diphenyldiselenophosphinate complex and its use to obtain lead selenide nanostructured depositions and further the impedance spectroscopic analysis of these obtained PbSe nanostructures, to determine their roles in the electronics industry. The aerosol-assisted chemical vapor deposition technique was used to provide lead selenide deposition by decomposition of the complex at different temperatures using the glass substrates. The obtained films were revealed to be a pure cubic phase PbSe, as confirmed by X-ray diffraction analysis. SEM and TEM micrographs demonstrated three-dimensionally grown interlocked or aggregated nanocubes of the obtained PbSe. Characteristic dielectric measurements and the impedance spectroscopy analysis at room temperature were executed to evaluate PbSe properties over the frequency range of 100 Hz–5 MHz. The dielectric constant and dielectric loss gave similar trends, along with altering frequency, which was well explained by the Koops theory and Maxwell–Wagner theory. The effective short-range translational carrier hopping gave rise to an overdue remarkable increase in ac conductivity (σac) on the frequency increase. Fitting of a complex impedance plot was carried out with an equivalent circuit model (Rg Cg) (Rgb Qgb Cgb), which proved that grains, as well as grain boundaries, are responsible for the relaxation processes. The asymmetric depressed semicircle with the center lower to the impedance real axis provided a clear explanation of non-Debye dielectric behavior. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

Back to TopTop