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Abstract: In this work, efficient hydrogen gas sensors based on multilayered p-type bare MoS2

and Pd-decorated MoS2 were fabricated. MoS2 was deposited onto alumina transducers using an
airbrushing technique to be used as a sensing material. Aerosol-assisted chemical vapor deposition
(AACVD) was used to decorate layered MoS2 with Pd nanoparticles at 250 ◦C. The bare and Pd-
decorated MoS2 was characterized using field emission scanning electron microscopy (FESEM),
high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), and Raman
spectroscopy. The characterization results reveal the multilayered crystalline structure of MoS2 with
successful Pd decoration. The size of the Pd nanoparticles ranges from 15 nm to 23 nm. Gas sensing
studies reveal that a maximum response of 55% is achieved for Pd-decorated MoS2 operated at 150 ◦C
to 100 ppm of H2, which is clearly below the explosive limit (4%) in air. The higher sensitivity due to
Pd nanoparticle decoration was owed to a spillover effect. This study reveals that the sensitivity of
the sensors is highly dependent on the amount of Pd decoration. Moreover, sensor responses increase
slightly when exposed to 50% relative humidity (RH at 25 ◦C).

Keywords: gas sensor; spillover; nanoparticles; TMDs; AACVD; decoration

1. Introduction

The ever-increasing demand for sustainable and clean energy sources has put hydro-
gen (H2) at the forefront as one of the most promising candidates for the next generation of
energy. Due to the abundance of hydrogen in nature, it offers the potential in the future
to replace fossil fuels as its combustion yields water; thus, it will [1] significantly reduce
greenhouse gas emissions [2]. However, hydrogen is highly explosive and flammable (air
mixtures at H2 concentrations above 4%), which demands the utmost caution in its storage
and handling [3]. Even a small leakage of hydrogen can pose a grave threat to safety.
Therefore, the development of highly sensitive and selective hydrogen gas sensors with
fast detection and recovery are of paramount importance to detect and mitigate potential
hazards associated with hydrogen storage, transport, and leakage.

Metal oxide gas sensors (MOX) have been widely used for hydrogen sensing [4], but
they suffer from several limitations like poor selectivity and a high working temperature
(200–400 ◦C) [5–7]. This leads to an increase in the power consumption and, at the same time,
reduces a sensor’s lifetime by inducing changes in the material morphology [8]. Moreover,
with hydrogen being extremely flammable, sensors working at high temperatures could be
potentially dangerous [9], requiring necessary remedies to mitigate damage. Recently, the
scientific community has turned its attention towards two-dimensional materials (2D) to
overcome the shortcomings of MOX sensors. Indeed, 2D materials have garnered tremen-
dous attention due to their unique electronic and remarkable sensing properties [10,11].
Among 2D materials, on the one hand, graphene has demonstrated outstanding sensing
capabilities for toxic gases like NO2, ammonia, and CO [12,13]. Decorating graphene with
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metal nanoparticles (NP) like Au, Pt, Pd, or Ag has been found to enhance the sensitivity to
gas molecules due to the catalytic effect of the nanoparticles [14,15].

On the other hand, transition metal dichalcogenides (TMDs) have emerged as an
exciting class of 2D materials for gas sensing applications [16–19]. Among the TMDs,
molybdenum disulfide (MoS2) has garnered significant interest and attention due to its
exceptional sensing, electronic, optical, and catalytic properties [3,20,21]. MoS2 is a layered
structure, with each layer consisting of covalently bonded Mo-S atoms, and neighboring
layers are stacked to each other via van der Waals forces [22]. Bulk MoS2 has an indirect
band gap of 1.2 eV, while, as for the atomically thin MoS2 sheets, there is a transition to a
direct bandgap of 1.8 eV, leading to enhanced charge transport, high specific surface areas
due to their sheet-like structures with large basal planes and highly reactive edges, and
increased electron concentration at the surface [23]. These properties of MoS2 make it highly
desirable for the development of next-generation memory devices [24], photodetectors [25],
solar cells [26], and gas sensors [3,11,27].

Several research works have demonstrated the potential of MoS2-based gas sensors
for detecting gases like nitrogen dioxide (NO2) [28], ammonia (NH3) [29], nitric oxide
(NO) [30], and hydrogen [11,18,27]. Duesberg et al. demonstrated the synthesis of MoS2
patterns and recorded high-sensitivity detection of ammonia with a limit of detection at
the ppm level [31]. Zhou et al. reported Schottky-contact MoS2-based sensors which are
sensitive to 20 ppb and 1 ppm of NO2 and NH3, respectively [32]. Zhang and co-workers
presented the influence of the thickness on the performance of MoS2 gas sensors to NO [33].
Zhou et al. demonstrated a MoS2-based sensor with a 92.6% response to 500 ppm of CO at
230 ◦C [34]. Moreover, Agarwal et al. presented a highly sensitive and fast hydrogen sensor
based on monolayer MoS2 pyramid structures with a 69.1% response to 1% of hydrogen [3].

However, sensors based on bare MoS2 suffer from sluggish response–recovery speeds
and low sensitivity, especially when it comes to the detection of hydrogen gas [3,35]. We
have seen that functionalizing the host matrix with a determined noble metal enhances
the sensitivity and the selectivity of the sensor to a specific gas. Based on our previous
works, we found that CuO nanoparticles are very suitable for the detection of H2S [36].
Additionally, we showed that Pd/PdO nanoparticles have highly enhanced the sensitivity
and selectivity of WO3 to H2 [37]. Additionally, it was reported that the incorporation of
noble metal nanoparticles onto MoS2 has shown promise in detecting hydrogen with low
power consumption and high sensitivity [9,27,35,38–40]. The improved sensing response
attributed to the incorporation of noble metals is a result of electronic sensitization (ES) and
chemical sensitization (CS) [41,42]. Electronic sensitization involves the oxidized form of
the noble metal creating electron-depletion layers (EDLs) at the interface between the noble
metal and the sensing layer [41,43], while chemical sensitization arises from a catalytic
surface reaction in which noble metals offer low energy sites for the gas adsorption, leading
to enhanced sensor sensitivity via a spillover process [41,44]. Noble metal decoration not
only enhances sensitivity and helps in decreasing the optimal sensing temperature but
helps in enhancing the long-term stability of the sensors as well [41]. Irrespective of the
functionalization process employed, two crucial factors governing noble metal decoration
are the amount and the size of the nanoparticles. The optimization of nanoparticle decora-
tion amounts on the sensing layer is important as it directly influences the dissociation of
gas molecules. If the decoration is insufficient, the sensitization effect will be diminished.
Conversely, excessive decoration would lead to the formation of a continuous film, leading
to reduced sensitivity [45].

MoS2 offers functional groups on both the basal plane and edge sites, which allows
for easy incorporation of adatoms on the surface [33,46,47]. The most common method
to deposit nanosized metal nanoparticles on MoS2 using a vacuum is with an e-beam
evaporator, as explored by Park et al. to decorate MoS2 with Pt nanoparticles for NH3
and H2S detection [48]. Suh et al. also utilized an e-beam evaporator to decorate Pd and
Au on MoS2 to demonstrate the selectivity of the composite to C2H5OH, H2, NH3, and
NO2 [49]. Nonetheless, vacuum-based processes pose drawbacks such as high costs and
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power consumption, limiting gas sensor development. Burman et al. employed a solution
process using glucose as a reducing agent for Au doping on MoS2 for detecting ammonia
with high sensitivity [50]. Huang et al. took advantage of various capping and reducing
agents for the epitaxial growth of Pd, Pt, and Ag metal nanostructures on MoS2 [51]. The
use of reducing agents for nanostructure decorations indeed facilitates the reduction of
metal precursors into controllable shapes of metal nanoparticles but may act as a barrier
for gas sensing [52]. Kim et al. addressed this issue by using a solution process reaction
without reducing agents to decorate 2D MoS2 nanoflakes with Au, Pt, and Pd for selective
ammonia, hydrogen, and ethanol sensing [52]. Lee and co-workers deposited Pt using
atomic layer deposition (ALD) on MoS2 for H2 sensing [53].

Herein, we report the development of bare and Pd-NP-decorated multilayer MoS2 for
hydrogen sensing. Our method is a simple two-step procedure: (i) airbrushing MoS2 onto
alumina substrates, followed by (ii) low-temperature AACVD decoration of Pd nanoparti-
cles onto MoS2 sensing layers. To the best of our knowledge, none of the reported works
have combined airbrushing and low-temperature AACVD methods to functionalize TMD
materials. The sensing materials were characterized with FESEM, HRTEM, XRD, and Ra-
man spectroscopy to study the morphology, crystal structure, and decoration characteristics.
We investigated the chemiresistive sensing mechanism of bare and Pd-decorated MoS2 and
studied the impact of Pd decoration on the sensing properties of MoS2 to hydrogen gas.
The sensors display a response of 55% to 100 ppm of hydrogen gas at 150 ◦C and show a
clear impact of Pd decoration on hydrogen sensitivity.

2. Experimental Section
2.1. Materials, Chemicals, and Sensor Fabrication
2.1.1. Materials and Sensor Fabrication

MoS2 powder (CAS:1317-33-5) was purchased from Sigma-Aldrich, Madrid, Spain
and used without further modifications. A total of 20 mg of MoS2 powders was sonicated
in 10 mL of ethanol (Scharlab, Barcelona, Spain CAS: 64-17-5) for 45 min to obtain a
homogenous suspension. The suspension was immediately airbrushed onto alumina
transducers (Ceram Tech GmBH, Plochingen, Germany) to achieve MoS2 thin films coating
the interdigitated electrode area. Nitrogen was used as a carrier gas during the airbrushing.
In order to achieve thin films of reproducible thickness, the resistance of the films was
monitored during deposition by connecting the alumina transducer to a multimeter. As
soon as the desired resistance of the material was reached, the deposition process was
stopped. Samples were fabricated in four sets for each type of material. The average
resistance of a pristine set of sensors was 400 MΩ ± 12 MΩ, while, as for sensors with 1 mg
of Pd precursor (MoS2-Pd_1), the average resistance was 72 MΩ ± 4 MΩ. Also, for the
sample with 2 mg of Pd precursor (MoS2-Pd_2), the average resistance was 55 MΩ ± 6 MΩ.
All these resistance values were calculated at room temperature. Moreover, the average
thickness of the deposited layers was calculated to be around 582 nm using focus ion beam
(FIB). The FESEM images of the thickness analysis of the sensing layer are presented in
Figure S1.

2.1.2. Pd-Nanoparticle-Decorated MoS2 Nanosheets Using AACVD Method

Palladium nanoparticles were incorporated onto the fabricated MoS2 sensors using
aerosol-assisted chemical vapor deposition (AACVD). The reaction was performed at
comparatively low temperature of 250 ◦C. To study the effect of Pd concentration on the
sensor responses, two amounts of the palladium precursor were used to decorate MoS2
sensors. In a typical synthesis procedure, 1 mg and 2 mg of Palladium (II) acetylacetonate
(Sigma-Aldrich, Madrid, Spain CAS: 14024-61-4) were dissolved in 5 mL methanol (CAS:
67-56-1). The solution was ultrasonicated to ensure full solubilization. The solution was
placed in an ultrasonic humidifier to generate aerosol. N2 gas with a flow of 0.5 L/min was
used as a carrier gas to transport the aerosol to the MoS2 sensors preheated at 250 ◦C in a
hot wall reactor. The AACVD method is similar to our previous reported works [54,55]. The
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deposition time was about 5 min; after that, the chamber was left to cool down naturally.
The sensors were named according to the Pd decoration concentration, viz., MoS2-Pd_1
and MoS2-Pd_2 for 1 mg and 2 mg precursor amounts, respectively.

2.2. Material Characterization Techniques

The morphology of the prepared samples was analyzed using a field emission scan-
ning electron microscope (FESEM-Thermo Scientific Scios 2, Waltham, MA, USA). The
FESEM microscope used in this study is equipped with EDX as well to calculate the wt. %
of palladium nanoparticles. Moreover, the FESEM equipment is also equipped with the
focus ion beam (FIB) tool used here to calculate the thickness of the sensing layer. The
crystal structure was analyzed via X-ray diffraction using a Bruker AXS D8 diffractome-
ter equipped with parallel incident beam (Gobel mirror) vertical θ-θ goniometer, XYZ
motorized stage, and with a GADDS (General Area Diffraction System). A JEOL F200
TEM ColdFEG (JEOL, Tokyo, Japan) operated at 200 kV was used for the high-resolution
transmission electron microscopy (HRTEM) characterization. EDX spectra and elemental
analysis was performed using the same HRTEM equipment. The Raman spectra were
recorded using a Renishaw in Via, laser 514 nm, ion argon-Novatech, 25 mW.

2.3. Gas Sensing Measurements

The gas sensing measurements were conducted using a homemade detection system
in a Teflon® chamber with a volume of 35 mL. The chamber is designed to accommodate
four sensors simultaneously. The chamber consists of an inlet connected to the gas delivery
system and an outlet which is connected to the exhaust. Commercial alumina substrates
with interdigitated platinum electrodes (300 µm electrode gap) on the front side and a
platinum resistive meander on the back side were used to deposit the sensing material. The
sensor responses were recorded by monitoring the sensing material resistance using an
Agilent-34972A data acquisition system. Calibrated cylinders of NO2 (total concentration,
1 ppm), H2 (total concentration, 1000 ppm), NH3 (total concentration, 100 ppm), CO (total
concentration, 100 ppm), and benzene (total concentration, 10 ppm) were mixed with pure
synthetic air using Bronkhorst mass-flow controllers. A constant flow rate of 100 mL min−1

was maintained during all the experiments. The sensors were exposed to the analyte gas
for 10 min and subsequently cleaned in dry air for 60 min. The cleaning time to recover
the baseline was adapted according to the sensor operating temperature; 60 min for 50 ◦C,
100 ◦C, and 150 ◦C and 120 min for room temperature operation. Prior to gas sensing
measurements, sensors were kept under a constant flow of dry air for a minimum of 5 h to
completely stabilize their initial baseline resistance. The sensor responses were calculated
using Equation (1) for reducing gas species and Equation (2) for oxidizing gas species.

(
Rgas − Rair

Rair
× 100) % (1)

(
Rair − Rgas

Rair
× 100) % (2)

where Rair and Rgas are the real-time resistances of the sensor exposed to air and to
analyte, respectively.

3. Results and Discussions
3.1. Material Characterization
3.1.1. FESEM Analysis

Figure 1 depicts the FESEM images of the sensing materials. Upon analysis, it is
evident that the deposited MoS2 exhibits a multilayered structure, as shown in Figure 1a.
The size of the MoS2 structures varies from 200 nm to 1.5 µm (edge to edge), displaying
clear and distinct ridges. In the case of MoS2-Pd_1, most of the decorated Pd nanoparticles
are spherical with an average size of 15 nm, as shown in Figure 1b. In the case of MoS2-Pd_2,
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the decorated nanoparticles are a mix of spherical and rice-grain shaped with an average
size slightly larger (23 nm) than that observed in MoS2-Pd_1, as illustrated in Figure 1c.
Decorating with a higher concentration of palladium leads to higher coverage, which can be
seen in the FESEM images. Different Pd decoration amounts were used to check the impact
of the decoration amount on the gas sensing properties of the material. The decoration of
the sensors was kept at low concentrations to avoid hindering the transport of dissociated
hydrogen atoms to the MoS2 channel. This could be owed to the hampering of the catalytic
effect due to the increased concentration of Pd [53]. Moreover, it is clear that the deposition
of metal nanoparticles has no visible influence on the morphology of the MoS2. Also, an
Energy Dispersive X-ray Analysis (EDX) of the samples was conducted to determine the
average weight percentage (wt. %) of Palladium (Pd) in the respective samples. The EDX
analysis was carried out at various spots on the samples; the resulting data were analyzed
to calculate the average wt. % of palladium. Based on the calculations, the average wt. %
of Pd in the MoS2-Pd_1 sample was 7.27 wt. %, while, as in the MoS2-Pd_2 sample, the wt.
% of palladium was 11.69 wt. %.
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Figure 1. FESEM images of (a) MoS2, (b) MoS2-Pd_1, and (c) MoS2-Pd_2.

3.1.2. HRTEM Analysis

Supplementing the FESEM morphological data, an HRTEM analysis of one of the
sensing materials, MoS2-Pd_2, was performed combined with EDX spectroscopy. Pd-
decorated MoS2 films were scraped off the alumina substrate and drop-casted over carbon-
coated copper grids. Analysis of the HRTEM results reveals the crystalline layered structure
of the MoS2 with successful Pd decoration, as shown in Figure 2a,b. At some places, the
layers are randomly oriented, while at other places the layers are stacked one on other.
EDX spectra and HRTEM images of the sensing material are presented in Figure 2c–e,
respectively. EDX analysis revealed the presence of Pd nanoparticles on MoS2 sheets. Upon
further analysis, we verified the interlayer distance, with d equal to 0.215 nm corresponding
to the (103) plane of MoS2 (ICDD card number: 65-1951) as shown in Figure 2d. The
d-spacing calculated for Pd nanoparticles is 0.232 nm, which corresponds to the (111) plane
of Pd (ICDD card number 88-2335). The interlayer distance results of both MoS2 and
palladium were confirmed with XRD analysis.

3.1.3. XRD

The crystal structure of the sensing films was analyzed using an X-ray diffraction
(XRD) method. Figure 3 shows the XRD diffractogram recorded from pristine MoS2 and Pd-
decorated MoS2 in the range of 2θ = 5◦ to 80◦. The observed diffraction peaks match with the
hexagonal phase of MoS2 (ICDD card number: 65-1951) with lattice constants a = 0.316 nm
and c = 1.2294 nm belonging to the P63/mmc space group. The major diffraction peaks can
be indexed to the (002) at 14.42◦, (102) at 35.88◦, (103) at 39.56◦, and (105) at 49.81◦ lattice
planes. Some additional peaks are observed in Figure 3b,c. These peaks can be indexed to
palladium (ICDD card number: 88-2335). The diffraction peaks of palladium match the
cubic phase with lattice constant a = 0.39 nm (Fm-3m space group). At 2θ = 40.01, 46.53,
and 67.92, the peaks of MoS2 and Al2O3 almost coincide with the peaks of Pd. Hence,
in Figure 3b,c, the peaks are more intense than those in Figure 3a, which corresponds to
pristine MoS2. This confirms the presence of Pd decorating the surface of MoS2.
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3.1.4. Raman Spectroscopy

Figure 4 shows the typical Raman spectra of pristine and Pd-decorated MoS2. The
Raman spectra of all the samples show peaks near 400 cm−1, which confirms the 2H phase
of MoS2. The two characteristic peaks signify the vibration modes for MoS2: E1

2g, which
corresponds to in-plane vibration of the molybdenum atom and is opposite to two sulfur
atoms, and A1g, mode which corresponds to the out-of-plane vibration of sulfur atoms (Mo
atom being immobile) [56]. In addition to the main characteristic peaks, the small peak at
~283 cm−1 can be assigned to the MoO2 phase [57,58]. Table 1 summarizes the Raman peak
positions of all the samples. The values of ∆ provide the information about the number
of layers in the MoS2. As can be seen from the table, ∆ ≥ 25, indicating the multilayered
structure of MoS2 [59,60]. This is in agreement with the FESEM and HRTEM results.
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Table 1. Summary of Raman data.

Sample E1
2g A1g ∆ = (A1g−E1

2g)

MoS2 381 406 25

MoS2-Pd_1 381 407 26

MoS2-Pd_2 378 405 27

3.2. Gas Sensing Results
3.2.1. Hydrogen Gas Sensing

The gas sensing characteristics of pristine and Pd-decorated MoS2 thin films were
analyzed to hydrogen gas. The sensor responses were checked at different operating tem-
peratures (room temperature, 50 ◦C, 100 ◦C, and 150 ◦C) to study the optimal working
temperature. Optimal temperature is an important parameter to define thermally active
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interactions between the target gas molecules and the adsorbed oxygen ionic species. Op-
erating temperature plays an important role in determining the gas sensing performance
of the sensors as it directly affects the selectivity, sensitivity, and response/recovery time.
The desorption rate of the reacted by-products surpasses the adsorption rate of the target
gas as temperature increases, reaching the peak efficiency at the optimal working tempera-
ture [61]. Figure 5 shows the sensor responses to 100 ppm H2 with respect to increases in
temperature. The sensor responses increase with increases in the temperature, showing
maximum response at 150 ◦C. Thus, the optimal working temperature of the sensors is
150 ◦C. The sensors were not operated beyond 150 ◦C to avoid the risk of oxidizing MoS2
to MoOx [62]. Indeed, based on our previous studies regarding the long-term stability of
TMD-based gas sensors operated at temperatures equal to or below 150 ◦C, there were
no remarkable changes in the material characteristics or the gas sensing performances.
It is clear from the figure that there is a significant increase in the sensor response from
pristine MoS2 to Pd-decorated MoS2, specifically in the case of MoS2-Pd_1. All three sensors
showed reproducible responses. The sensor responses were calculated to be 55% at 150 ◦C
to 100 ppm of H2 for MoS2-Pd_1, which is 1471% higher than the responses recorded in
the case of pristine MoS2. Also, in the case of MoS2-Pd_2, the response is 300% higher
than that for the pristine MoS2 sensor. As is evident from Figure 5, the minimum response
recorded in the case of MoS2-Pd_1 is 14.3% at room temperature, which is 2760% higher
than that of the pristine MoS2 under the same conditions. We can clearly observe the impact
of Pd decoration on the sensitivity of the sensors to H2 gas. The main reason behind this
increase in the sensitivity is the reaction between Pd and H2 atoms generating palladium
hydride (PdHx) at room temperature [63,64] and also the affinity of MoS2 for H atoms [65].
Moreover, Pd nanoparticles have one of the highest sticking and diffusion coefficients [66].
Therefore, the results confirm the synergistic contribution of Pd and MoS2 for H2 sensing.
The dynamics of resistance change and baseline recovery for all the sensors in a hydrogen
environment as well as in synthetic air are shown in Figure 6. The amount of Pd decoration
has a clear impact on the response of the sensors to hydrogen. Higher Pd coverage leads to
the formation of more Schottky barriers, which, in turn, increases the resistance. In our case,
we found the baseline resistance of the sensors with higher Pd decoration approximately
1 MΩ higher than the sensors with low Pd decoration (Figure 6b,c). When exposed to air,
Pd tends to oxidize and form PdO nanoparticles, a p-type semiconductor. The decrease
in the baseline resistance indicates that PdO nanoparticles inject holes in the MoS2 films.
Moreover, excessive decoration of Pd on MoS2 impedes the transport efficiency of disso-
ciated hydrogen atoms to the MoS2 channel, consequently hindering the catalytic effect.
Furthermore, abundant Pd decoration leads to a reduction in the available surface area
of MoS2 for interactions with hydrogen gas species owing to increased coverage by Pd
nanoparticles. This results in lower sensing characteristics of the MoS2, suggesting lower Pd
decoration amounts [41]. We compared our sensor responses with the highest-performing
sensors in the literature based on noble metals and MoS2. Our sensors outperform the
sensors in every aspect. Table 2 shows the comparison of our sensors with some highly
responsive MoS2-based sensors for hydrogen sensing.

Table 2. Hydrogen gas sensing comparison of various noble metal-doped/decorated MoS2 sensors.

Gas Sensing Material Concentration Response Calculation
Formula Response % Operating

Temperature Reference

ALD Pt-decorated
MoS2 nanosheets 1000 ppm Rair

RH2
440 250 ◦C [53]

Pd nanoclusters–MoS2
heterostructure 140 ppm RH2−Rair

Rair
× 100 17 RT (with light

activation) [9]

Pd-functionalized
MoS2 nanosheet 10,000 ppm RH2−Rair

Rair
× 100 35.3 RT [38]
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Table 2. Cont.

Gas Sensing Material Concentration Response Calculation
Formula Response % Operating

Temperature Reference

Pt-decorated MoS2
hollow structures 40,000 ppm RH2−Rair

Rair
× 100 11.2 RT [63]

Pd-functionalized
edge-enriched MoS2

500 ppm RH2−Rair
Rair

× 100 33.7 RT [67]

Pd-decorated MoS2 100 ppm RH2−Rair
Rair

× 100
55 150 ◦C

This work
14.9 RT
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at 150 ◦C.

The increase in the electrical resistance values of the sensors upon exposure to hy-
drogen molecules (reducing gas) indicates the p-type nature of both the pristine and
Pd-decorated sensors. Also, the sensors were exposed to increasing concentrations of H2
ranging from 50 ppm to 500 ppm in a background of dry air. Figure 7 show the resistance
change dynamics of the sensors to increasing H2 pulses while being operated at 150 ◦C.
As can be seen in the figure, the sensors responded well to the respective hydrogen con-
centrations with almost complete baseline recovery except in the case of pristine MoS2,
which shows a slight drift. The sensors were able to detect a very low concentration of
50 ppm of H2 with excellent sensitivity. Rapid changes in the sensing signals exceeding
final steady-state values can be seen in Figure 7b,c. This can be owed to the competition
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between reaction speed and gas diffusion [68–70]. The phenomenon is prominent when
H2 concentration is high or Pd decoration is in excess. That is why this is much more
prominent in the sensor with higher Pd content, as depicted in Figure 7c. To suppress
this issue, when sensing higher concentrations of H2, thinner materials with high porosity
can be helpful [63]. Figure 8 shows the sensor response as a function of the hydrogen
concentration. The Pd-decorated sensor response values saturate above 100 ppm, and up to
100 ppm, the relationship between the sensor responses and the H2 concentration is quite
linear. Also, the sensor responses with respect to H2 concentration in the case of pristine
MoS2 are linear. It is worth mentioning that 100 ppm is much below the permissible limit
for H2 gas for safety purposes. Palladium facilitates the dissociation of hydrogen molecules
into chemisorbed hydrogen atoms (H) on its surface under ambient conditions without
encountering any significant barriers. After their formation, these atoms quickly saturate
the surface and migrate into interstitial lattice sites in the subsurface region before finally
diffusing into the bulk. The diffusion of H atoms is impeded by an energy landscape
characterized by subsurface sites that are energetically more favorable compared with bulk
interstitials. Therefore, it is safe to assume that subsurface sites are occupied irrespective of
the hydrogen concentration in the bulk. Additionally, it has been demonstrated that the
presence of hydrogen in the subsurface layer can lead to the generation of lattice strain,
which can impact the thermodynamics of the sorption process in nanoscale systems like
nanoparticles [71].
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3.2.2. Selectivity Test

In addition to H2 gas, the gas sensing performance of MoS2 and Pd-decorated MoS2
was investigated to reducing gases such as CO, NH3, ethanol, and benzene. Also, the sensor
responses were investigated against an oxidizing gas: NO2. The typical resistance response
dynamics for 5 ppm benzene, 80 ppm CO, 10 ppm ethanol, and 5 ppm NH3 are shown in
Figures S2, S3, S4, and S5, respectively (supporting information). The histogram in Figure 9
summarizes the sensing results analyzed for each gas. Decorating MoS2 with Pd clearly
enhances the response to H2 and diminishes cross-sensitivity to carbon monoxide, ammonia,
benzene, and ethanol. However, all the sensors respond to NO2 with a significant response.
It is worth mentioning and stressing that 800 ppb of NO2 is a very high concentration.
The United States Environmental Protection Agency (U.S. EPA) has regulated the limit
of exposure of NO2 at less than 100 ppb, keeping in view its negative effects both on the
environment and human life [72]. For NO2 concentrations of 100 ppb, the sensor response
is 18%. The pristine MoS2 demonstrates a robust response to NO2, while it lacks sensitivity
to H2. By combining these two distinct sensors, we anticipate that the composite system can
effectively mitigate the issue of cross-sensitivity displayed by Pd-decorated MoS2 to NO2.
The complementary nature of the individual sensors, with pristine MoS2 being selective
to NO2 and Pd-decorated MoS2 being responsive to H2, allows for a synergistic response
that can enhance the discrimination capabilities of the composite sensor. This combination
holds promise in suppressing the undesired cross-sensitivity exhibited by the Pd-decorated
MoS2 sensor to NO2, enabling more accurate and reliable gas sensing applications. All
the interfering species were tested at significantly higher concentrations; hence, it can be
derived that Pd decoration improved selectivity to H2.
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Ambient moisture affects the electrical properties of gas sensors dramatically and
ultimately impacts the sensitivity heavily. This makes it mandatory to evaluate the behavior
of the gas sensors in humid environments. Figure 10 depicts the sensor responses to 5 ppm
of benzene (a reducing gas) under dry air and at 50% relative humidity (at 25 ◦C). Also,
Figure S6 illustrates the normalized sensor resistance changes as a function of time. Analysis
of the results reveals an overall decrease in the baseline resistance of the sensing layer when
exposed to a humid environment. This has been reported in metal oxide semi-conducting
materials as well [73]. We noticed a slight increase in the sensor responses, except in the
MoS2-Pd_2 sensor. Generally, in humid environments, the water vapors (hydroxyl group)
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and the target gas molecules enter a competition at the active sites. The impact of the
humidity is much more prominent when the relative surface distribution of the hydroxyl
groups is much higher than the oxygen species [60]. The obtained results indicate that the
sensors exhibit strong resilience to high levels of moisture.
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3.2.3. Hydrogen Gas Sensing Mechanism

The sensing mechanism of chemoresistive gas sensors is based on electrical resistance
modulation, which can be attributed to the interactions occurring on the sensor substrate
because of the chemical reactions between the sensor surface and target gas [74]. When a
sensor surface interacts with hydrogen, a reducing gas, it donates electrons upon adsorption.
Depending on the type of the material (n-type or p-type), the transferred electrons lead to
an increase or decrease in the electrical resistance of the material [39,40,75,76]. In this work,
the resistance of MoS2 increased upon exposure to H2, indicating the p-type behavior of
the material.

When the sensors are exposed to air, the oxygen molecules dissociate on the MoS2
surface, resulting in the formation of adsorbed oxygen species like (O−2 and O−) at elevated
temperatures [39], as is shown in Equations (3) and (4).

O2 (g)→ O2(ads) (3)

O2 (ads) + e− → O−2 (ads) ≤ 100 ◦C (4)

Pd nanoparticle addition promotes the gas sensing ability of MoS2 by acting as an
electronic sensitizer while sensing H2. Pd enhances the sensor responses by increasing the
rate of chemical processes. One of the main roles of the Pd is to make catalytic oxidation
easy on the MoS2 active layer [39]. When the sensors are exposed to hydrogen, the Pd
nanoparticles provide adsorption sites for hydrogen molecules, as seen in Equation (5). Pd
decoration enables barrierless dissociation of hydrogen molecules (H2) into chemisorbed
hydrogen atoms (H) on its surface. The dissociation of the adsorbed hydrogen molecules
takes place to form hydrogen atoms (Equation (6)). This process is known as the spillover
effect of Pd catalysts with respect to H2 sensing [63]. For Pd particles larger than 5 to 10 nm
(as in our case), the diffusion lengths for H atoms to reach the core are shorter [77]. The
hydrogen atoms react with the O− oxygen species (Equation (7)), facilitating the electrons to
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the sensor. These electrons combine with holes and reduce the charge carrier concentration,
eventually leading to the increase in the sensor resistance. This increase is proportional to
the concentration of hydrogen gas. These reactions are facilitated by the presence of Pd
nanoparticles in the matrix owing to their strong affinity for the mitigation of chemisorbed
gaseous species.

H2 (gas) → 2H(ads) (5)

H2 (ads) → 2H(ads) (6)

2H(ads) + O−
(ads) → H2O + e− (7)

4. Conclusions

In this paper, layered MoS2 was successfully deposited onto alumina substrates.
AACVD at 250 ◦C was employed for the Pd decoration of MoS2. The sensing material was
well characterized using FESEM, XRD, HRTEM, and Raman spectroscopy. Multilayered
crystalline MoS2 sheets were observed with homogenous Pd nanoparticle decoration. The
size of the Pd nanoparticles was between 15 nm and 23 nm. The gas sensing results of bare
and Pd-decorated MoS2 to H2 were analyzed. The Pd-nanoparticle-decorated MoS2 sensing
layer acts as an active hydrogen-sensing layer with a maximum response of 55% at 150 ◦C
to 100 ppm of H2. The sensors show high resilience to humidity, as the sensor responses
increase slightly when exposed to 50% relative humidity. The effect of Pd decoration is
evident with the sensitivity of the sensors depending on the amount of Pd decoration. A
combined bare and Pd-decorated MoS2 sensor system holds promise for achieving a highly
sensitive and selective H2 detection.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors11110550/s1, Figure S1 depicts the thickness of
the sensing layer, Figures S2–S5 show resistance dynamics towards interfering gases and Figure S6
shows normalized resistance dynamics in humid environment.
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