Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (706)

Search Parameters:
Keywords = aerogel materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3586 KiB  
Article
Multi-Objective Optimization Design of Foamed Cement Mix Proportion Based on Response Surface Methodology
by Kailu Liu, Wanying Qu and Haoyang Zeng
Buildings 2025, 15(15), 2782; https://doi.org/10.3390/buildings15152782 - 6 Aug 2025
Abstract
Foam cement, as a building insulation material, encounters a major problem in practical application, which is the difficulty in achieving a balance between its strength and insulation performance. To achieve multi-objective optimization of foamed cement mix design, this study first determined the optimal [...] Read more.
Foam cement, as a building insulation material, encounters a major problem in practical application, which is the difficulty in achieving a balance between its strength and insulation performance. To achieve multi-objective optimization of foamed cement mix design, this study first determined the optimal ranges of nano-silica aerogel (NSA), foaming agent, and polypropylene (PP) fiber dosage through single-factor experiments. Then, response surface methodology (RSM) was employed to construct a quadratic polynomial regression model, systematically investigating the influence of different NSA contents, foaming agent contents, and PP fibers contents on the thermal conductivity and compressive strength of foamed cement. Finally, the optimal mix ratio was further predicted and experimentally validated. The results demonstrate that the regression model developed using RSM exhibits high accuracy and reliability. The correlation coefficients R2 of the regression models established by the response surface method are 0.9756 and 0.9684, respectively, indicating good prediction accuracy. The optimized mix ratio was determined as follows: NSA content, 9.548%; foaming agent content, 0.533%; and PP fiber content, 0.1%. Under this mix, the model predicted a thermal conductivity of 0.123 W/(m·K) and a 28-day compressive strength of 1.081 MPa. Experimental verification confirmed that the errors between predicted and measured values for all performance indicators were within 5%, demonstrating the high reliability of the predictive model. This study provides support for the practical application of foam cement as a thermal insulation material in construction projects and offers guidance for optimizing its mixture composition. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 6929 KiB  
Article
The Application and Effects of Aerogel in Ultra-Lightweight Mineralised Foams
by Tongyu Xu, Harald Garrecht, Chao Jiang and Chuanyuan Lu
Buildings 2025, 15(15), 2671; https://doi.org/10.3390/buildings15152671 - 28 Jul 2025
Viewed by 213
Abstract
This study aims to explore the potential of aerogel to optimise the thermal conductivity of mineralised foam materials. Experiments were conducted with (i) addition methods of aerogel, (ii) proportion of aerogels in cement slurry, and (iii) water/cement ratio as influencing parameters for mineralised [...] Read more.
This study aims to explore the potential of aerogel to optimise the thermal conductivity of mineralised foam materials. Experiments were conducted with (i) addition methods of aerogel, (ii) proportion of aerogels in cement slurry, and (iii) water/cement ratio as influencing parameters for mineralised foam. Additionally, mixed Ordinary Portland Cement (OPC)/Calcium Sulphoaluminate Cement (CSA) slurries were used to test whether a synergy could be achieved. In this study, the defoaming effect of the aerogel and its mitigation to a certain extent by pre-mixing the aerogel with cement slurry were confirmed. The thermal conductivity of the mineralised foams was reduced from 0.049 to 0.036 W/(m·K) when the aerogel was up to 10 wt.% of the cement. In the specimens prepared from the mixed OPC/CSA slurry, a homogeneous circular pore structure was observed under the microscope along with a reduction in the thermal conductivity. The use of aerogels and CSA cements can effectively reduce the thermal conductivity of ultra-low-density mineralised foams to levels comparable with certain plastic foams that dominate the building insulation market. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

25 pages, 6464 KiB  
Article
Eco-Friendly Sandwich Panels for Energy-Efficient Façades
by Susana P. B. Sousa, Helena C. Teixeira, Giorgia Autretto, Valeria Villamil Cárdenas, Stefano Fantucci, Fabio Favoino, Pamela Voigt, Mario Stelzmann, Robert Böhm, Gabriel Beltrán, Nicolás Escribano, Belén Hernández-Gascón, Matthias Tietze and Andreia Araújo
Sustainability 2025, 17(15), 6848; https://doi.org/10.3390/su17156848 - 28 Jul 2025
Viewed by 267
Abstract
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and [...] Read more.
To meet the European Green Deal targets, the construction sector must improve building thermal performance via advanced insulation systems. Eco-friendly sandwich panels offer a promising solution. Therefore, this work aims to develop and validate a new eco-friendly composite sandwich panel (basalt fibres and recycled extruded polystyrene) with enhanced multifunctionality for lightweight and energy-efficient building façades. Two panels were produced via vacuum infusion—a reference panel and a multifunctional panel incorporating phase change materials (PCMs) and silica aerogels (AGs). Their performance was evaluated through lab-based thermal and acoustic tests, numerical simulations, and on-site monitoring in a living laboratory. The test results from all methods were consistent. The PCM-AG panel showed 16% lower periodic thermal transmittance (0.16 W/(m2K) vs. 0.19 W/(m2K)) and a 92% longer time shift (4.26 h vs. 2.22 h), indicating improved thermal inertia. It also achieved a single-number sound insulation rating of 38 dB. These findings confirm the panel’s potential to reduce operational energy demand and support long-term climate goals. Full article
Show Figures

Figure 1

25 pages, 2550 KiB  
Review
Graphene Oxide Aerogels: From Synthesis Pathways to Mechanical Performance and Applications
by Mayur B. Wakchaure and Pradeep L. Menezes
Processes 2025, 13(8), 2375; https://doi.org/10.3390/pr13082375 - 26 Jul 2025
Viewed by 478
Abstract
Graphene oxide (GO) aerogels were discovered as lightweight, highly porous materials with exceptional mechanical, electrical, and thermal properties. These properties make them suitable for a wide range of advanced applications. This paper discusses GO aerogel synthesis processes, characterization, mechanical properties, applications, and future [...] Read more.
Graphene oxide (GO) aerogels were discovered as lightweight, highly porous materials with exceptional mechanical, electrical, and thermal properties. These properties make them suitable for a wide range of advanced applications. This paper discusses GO aerogel synthesis processes, characterization, mechanical properties, applications, and future directions. The synthesis methods discussed include hydrothermal reduction, chemical reduction, crosslinking methods, and 3D printing, with major emphasis on their effects on the aerogel’s structural and functional attributes. A detailed analysis of mechanical characterization techniques is elaborated upon, along with highlighting the effects of parameters such as porosity, crosslinking, and graphene concentration on mechanical strength, elasticity, and stability. Research has been carried out to find GO aerogel applications in various sectors, such as energy storage, environmental remediation, sensors, and thermal management, showcasing their versatility and potential. Additionally, the combination of nanoparticles and doping strategies to improve specific properties is addressed. The review concludes by identifying current challenges in scalability, brittleness, and property optimization and proposes future directions for synthesis innovations. This work will be helpful for researchers and engineers exploring new possibilities for GO aerogels in both academic and industrial areas. Full article
(This article belongs to the Special Issue Advanced Functionally Graded Materials)
Show Figures

Figure 1

18 pages, 5775 KiB  
Article
Precision Solar Spectrum Filtering in Aerogel Windows via Synergistic ITO-Ag Nanoparticle Doping for Hot-Climate Energy Efficiency
by Huilin Yang, Maoquan Huang, Mingyang Yang, Xuankai Zhang and Mu Du
Gels 2025, 11(7), 553; https://doi.org/10.3390/gels11070553 - 18 Jul 2025
Viewed by 209
Abstract
Windows are a major contributor to energy loss in buildings, particularly in hot climates where solar radiation heat gain significantly increases cooling demand. An ideal energy-efficient window must maintain high visible light transmittance while effectively blocking ultraviolet and near-infrared radiation, presenting a significant [...] Read more.
Windows are a major contributor to energy loss in buildings, particularly in hot climates where solar radiation heat gain significantly increases cooling demand. An ideal energy-efficient window must maintain high visible light transmittance while effectively blocking ultraviolet and near-infrared radiation, presenting a significant challenge for material design. We propose a plasma silica aerogel window utilizing the local surface plasmon resonance effect of plasmonic nanoparticles. This design incorporates indium tin oxide (ITO) nanospheres (for broad-band UV/NIR blocking) and silver (Ag) nanocylinders (targeted blocking of the 0.78–0.9 μm NIR band) co-doped into the silica aerogel. This design achieves a visible light transmittance of 0.8, a haze value below 0.12, and a photothermal ratio of 0.91. Building simulations indicate that compared to traditional glass, this window can achieve annual energy savings of 20–40% and significantly reduce the economic losses associated with traditional glass, providing a feasible solution for sustainable buildings. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

37 pages, 2969 KiB  
Review
Carbon Aerogels: Synthesis, Modification, and Multifunctional Applications
by Liying Li, Guiyu Jin, Jian Shen, Mengyan Guo, Jiacheng Song, Yiming Li and Jian Xiong
Gels 2025, 11(7), 548; https://doi.org/10.3390/gels11070548 - 15 Jul 2025
Viewed by 610
Abstract
Amidst global imperatives for sustainable energy and environmental remediation, carbon aerogels (CAs) present a transformative alternative to conventional carbon materials (e.g., activated carbon, carbon fibers), overcoming limitations of disordered pore structures, unmodifiable surface chemistry, and functional inflexibility. This review systematically examines CA-based electrochemical [...] Read more.
Amidst global imperatives for sustainable energy and environmental remediation, carbon aerogels (CAs) present a transformative alternative to conventional carbon materials (e.g., activated carbon, carbon fibers), overcoming limitations of disordered pore structures, unmodifiable surface chemistry, and functional inflexibility. This review systematically examines CA-based electrochemical systems as its primary focus, analyzing fundamental charge-storage mechanisms and establishing structure–property–application relationships critical to energy storage performance. We critically assess synthesis methodologies, emphasizing how stage-specific parameters govern structural/functional traits, and detail multifunctional modification strategies (e.g., heteroatom doping, composite engineering) that enhance electrochemical behavior through pore architecture optimization, surface chemistry tuning, and charge-transfer kinetics acceleration. Electrochemical applications are extensively explored, including the following: 1. Energy storage: supercapacitors (dual EDLC/pseudocapacitive mechanisms) and battery hybrids. 2. Electrocatalysis: HER, OER, ORR, and CO2 reduction reaction (CO2RR). 3. Electrochemical processing: capacitive deionization (CDI) and electrosorption. Beyond this core scope, we briefly acknowledge CA versatility in ancillary domains: environmental remediation (heavy metal removal, oil/water separation), flame retardancy, microwave absorption, and CO2 capture. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

39 pages, 3629 KiB  
Review
Radiative Heat Transfer Properties of Fiber–Aerogel Composites for Thermal Insulation
by Mohanapriya Venkataraman, Sebnem Sözcü and Jiří Militký
Gels 2025, 11(7), 538; https://doi.org/10.3390/gels11070538 - 11 Jul 2025
Viewed by 543
Abstract
Fiber–aerogel composites have gained significant attention as high-performance thermal insulation materials due to their unique microstructure, which suppresses conductive, convective, and radiative heat transfer. At room temperature, silica aerogels in particular exhibit ultralow thermal conductivity (<0.02 W/m·K), which is two to three times [...] Read more.
Fiber–aerogel composites have gained significant attention as high-performance thermal insulation materials due to their unique microstructure, which suppresses conductive, convective, and radiative heat transfer. At room temperature, silica aerogels in particular exhibit ultralow thermal conductivity (<0.02 W/m·K), which is two to three times lower than that of still air (0.026 W/m·K). Their brittle skeleton and high infrared transparency, however, restrict how well they insulate, particularly at high temperatures (>300 °C). Incorporating microscale fibers into the aerogel matrix enhances mechanical strength and reduces radiative heat transfer by increasing scattering and absorption. For instance, it has been demonstrated that adding glass fibers reduces radiative heat transmission by around 40% because of increased infrared scattering. This review explores the fundamental mechanisms governing radiative heat transfer in fiber–aerogel composites, emphasizing absorption, scattering, and extinction coefficients. We discuss recent advancements in fiber-reinforced aerogels, focusing on material selection, structural modifications, and predictive heat transfer models. Recent studies indicate that incorporating fiber volume fractions as low as 10% can reduce the thermal conductivity of composites by up to 30%, without compromising their mechanical integrity. Key analytical and experimental methods for determining radiative properties, including Fourier transform infrared (FTIR) spectroscopy and numerical modeling approaches, are examined. The emissivity and transmittance of fiber–aerogel composites have been successfully measured using FTIR spectroscopy; tests show that fiber reinforcement at high temperatures reduces emissivity by about 15%. We conclude by outlining the present issues and potential avenues for future research to optimize fiber–aerogel composites for high-temperature applications, including energy-efficient buildings (where long-term thermal stability is necessary), electronics thermal management systems, and aerospace (where temperatures may surpass 1000 °C), with a focus on improving the materials’ affordability and scalability for industrial applications. Full article
(This article belongs to the Special Issue Synthesis and Application of Aerogel (2nd Edition))
Show Figures

Figure 1

14 pages, 2683 KiB  
Article
Study on the Adsorption Behavior of a Cellulose Nanofibril/Tannic Acid/Polyvinyl Alcohol Aerogel for Cu(II), Cd(II), and Pb(II) Heavy Metal Ions
by Xuejin Zhang, Yulong Tian, Huanhuan Chen, Ying Liu, Shuaichuang Han, Minmin Chang, Jingshun Zhuang and Qingzhi Ma
Nanomaterials 2025, 15(14), 1063; https://doi.org/10.3390/nano15141063 - 9 Jul 2025
Viewed by 332
Abstract
Nanocellulose-based composite aerogels have the advantages of high porosity, biodegradability, and biocompatibility, with wide applications in many fields, such as adsorption, separation, energy storage, and heat insulation. In this study, a nanocellulose-based composite aerogel (NCA) was prepared using the one-pot method with cellulose [...] Read more.
Nanocellulose-based composite aerogels have the advantages of high porosity, biodegradability, and biocompatibility, with wide applications in many fields, such as adsorption, separation, energy storage, and heat insulation. In this study, a nanocellulose-based composite aerogel (NCA) was prepared using the one-pot method with cellulose nanofibrils (CNFs), tannic acid (TA), and polyvinyl alcohol (PVA) as raw materials. The adsorption behaviors of Pb2+, Cd2+, and Cu2+ were also studied. FT-IR analysis confirmed that TA successfully solidified on the nanocellulose, while SEM analysis revealed that the prepared NCA exhibited significantly higher porosity compared with the cellulose nanofibril-only aerogel. The results of the adsorption experiment demonstrated that the adsorption behavior of heavy metal ions using the prepared NCA followed pseudo-second-order kinetics. The adsorption isotherms fit well with the Langmuir adsorption model, indicating that the process of aerogels adsorbing heavy metal ions is that of monolayer adsorption. Under conditions of pH 6 and an initial heavy metal ion concentration of 100 mg/L, the maximum adsorption capacity calculated for the prepared NCA was up to 196.850 mg/g, 181.488 mg/g, and 151.515 mg/g for Cu2+, Cd2+, and Pb2+, respectively. Furthermore, the prepared NCA exhibited excellent reusability, with more than 90% efficiency retained after three cycles. NCAs have the potential to become an efficient material for absorbing heavy metal ions in water. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

21 pages, 3738 KiB  
Article
Morphologic Pattern Differences in Reconstructive Tissue Repair of Bone Defects Mediated by Bioactive Ceramics and Hydrogels: A Microscopic Follow-Up Evaluation of Re-Ossification
by Róbert Boda, Viktória Hegedűs, Sándor Manó, Andrea Keczánné-Üveges, Balázs Dezső and Csaba Hegedűs
Gels 2025, 11(7), 529; https://doi.org/10.3390/gels11070529 - 9 Jul 2025
Viewed by 317
Abstract
Although publications have documented the osteo-inductive effects of various bioactive materials on tissue sections, the associated morphologic patterns of tissue remodeling pathways at the cellular level have not been detailed. Therefore, we present a comparative histopathological follow-up evaluation of bone defect repair mediated [...] Read more.
Although publications have documented the osteo-inductive effects of various bioactive materials on tissue sections, the associated morphologic patterns of tissue remodeling pathways at the cellular level have not been detailed. Therefore, we present a comparative histopathological follow-up evaluation of bone defect repair mediated by silica aerogels and methacrylate hydrogels over a 6-month period, which is the widely accepted time course for complete resolution. Time-dependent microscopic analysis was conducted using the “critical size model”. In untreated rat calvaria bone defects (control), re-ossification exclusively started at the lateral regions from the edges of the remaining bone. At the 6th month, only a few new bones were formed, which were independent of the lateral ossification. The overall ossification resulted in a 57% osseous encroachment of the defect. In contrast, aerogels (AE), hydrogels (H), and their β-tricalcium-phosphate (βTCP)-containing counterparts, which were used to fill the bone defects, characteristically induced rapid early ossification starting from the 1st month. This was accompanied by fibrous granulomatous inflammation with multinucleated giant macrophages, which persisted in decreasing intensity throughout the observational time. In addition to lateral ossification, multiple and intense intralesional osseous foci developed as early as the 1st month, and grew progressively thereafter, reflecting the osteo-inductive effects of all compounds. However, both βTCP-containing bone substituents generated larger amounts and more mature new bones inside the defects. Nevertheless, only 72.8–76.9% of the bone defects treated with AE and H and 80.5–82.9% of those treated with βTCP-containing counterparts were re-ossified by the 6th month. Remarkably, by this time, some intra-osseous hydrogels were found, and traces of silica from AE were still detectable, indicating these as the causative agents for the persistent osseous–fibrous granulomatous inflammation. When silica or methacrylate-based bone substituents are used, chronic ossifying fibrous granulomatous inflammation develops. Although 100% re-ossification takes more than 6 months, by this time, the degree of osteo-fibrous solidification provides functionally well-suited bone repair. Full article
Show Figures

Figure 1

14 pages, 2481 KiB  
Article
Insights on the Influence of the Drying Method and Surface Wettability on the Final Properties of Silica Aerogels
by Beatriz Merillas, Maria Inês Roque, Cláudio M. R. Almeida, Miguel Ángel Rodríguez-Pérez and Luisa Durães
Gels 2025, 11(7), 511; https://doi.org/10.3390/gels11070511 - 1 Jul 2025
Viewed by 389
Abstract
In the synthesis of aerogels, the influence of the drying process on the nanostructure is an issue of utmost relevance for tailoring the final properties of these materials. Among the complex parameters affecting this process, the hydrophobicity of the aerogel structure plays a [...] Read more.
In the synthesis of aerogels, the influence of the drying process on the nanostructure is an issue of utmost relevance for tailoring the final properties of these materials. Among the complex parameters affecting this process, the hydrophobicity of the aerogel structure plays a key role. Thus, herein, four different silica aerogel formulations based on tetraethyl orthosilicate and trimethoxymethylsilane were employed to produce aerogels with different wettability properties (from hydrophilic samples to highly hydrophobic). The synthesized gels were dried by three methods, namely freeze-drying, high-temperature supercritical drying with ethanol, and low-temperature supercritical drying with carbon dioxide, and the influence of each procedure on bulk density, porosity, pore size, and specific surface area of the resulting aerogels was analyzed in detail. The direct correlation between the surface hydrophobicity/hydrophilicity of the silica gels and the effects of each drying technique was analyzed, providing insights into a proper selection of the drying method depending on both the water affinity of the gel and the desired textural properties and structures. Full article
(This article belongs to the Special Issue Polymer Aerogels and Aerogel Composites)
Show Figures

Figure 1

30 pages, 9790 KiB  
Review
A Comprehensive Review on Aero-Materials: Present and Future Perspectives
by Corina Orha, Mircea Nicolaescu, Mina-Ionela Morariu (Popescu), Tatiana Galatonova, Simon Busuioc, Carmen Lazau and Cornelia Bandas
Coatings 2025, 15(7), 754; https://doi.org/10.3390/coatings15070754 - 25 Jun 2025
Viewed by 339
Abstract
Recently, a new class of materials with very high porosity and ultra-lightweight, namely, semiconductor aero-materials, has attracted the attention of many researchers. Semiconductor aero-materials, due to their special properties, can be used in the development of devices applied in biomedical, electronics, optoelectronic, energy [...] Read more.
Recently, a new class of materials with very high porosity and ultra-lightweight, namely, semiconductor aero-materials, has attracted the attention of many researchers. Semiconductor aero-materials, due to their special properties, can be used in the development of devices applied in biomedical, electronics, optoelectronic, energy conversion and storage, sensors, biosensors, catalysis, automotive, and aeronautic industries. Although aero-materials and aerogels are similar, different methods of obtaining them are used. Aerogels are synthesized from organic, inorganic, or hybrid precursors, the main characteristic being that they are gel-like solids with a high air content (99.9%) in the structure. Thus, three-dimensional (3D) interconnected porous network chains are formed, resulting in light solid-state structures with very high porosity due to the large number of air pores in the network. On the other hand, to obtain aero-materials with controlled properties such as morphology, shape, or the formation of 3D hollow structures, sacrificial templates are used. Thus, sacrificial structures (which can be easily removed) can be obtained depending on the morphology of the 3D structure to be obtained. Therefore, this review paper offers a comprehensive coverage of the synthesis methods of different types of semiconductor aero-materials that use ZnO tetrapod, ZnO(T), as a sacrificial template, related to the present and future perspectives. These ZnO(T) sacrificial substrates offer several advantages, including diverse synthesis processes and easy removal methods that occur simultaneously with the growth of the desired aero-materials. Full article
Show Figures

Figure 1

62 pages, 13651 KiB  
Review
Engineering Gel-Based Precursors into Advanced ORR Catalysts for Zn–Air Batteries and Fuel Cells: Insights into Hydrogels, Aerogels, Xerogels, Metal–Organic Gels, and Metal Aerogels
by Shaik Gouse Peera and Myunghwan Byun
Gels 2025, 11(7), 479; https://doi.org/10.3390/gels11070479 - 21 Jun 2025
Viewed by 436
Abstract
Efficient electrocatalysts for the oxygen reduction reaction (ORR) are essential for numerous energy storage and conversion systems, including zinc–air batteries and fuel cells. Cutting-edge Pt/C catalysts remain the most efficient ORR catalysts to date; however, their high cost and inadequate stability impede their [...] Read more.
Efficient electrocatalysts for the oxygen reduction reaction (ORR) are essential for numerous energy storage and conversion systems, including zinc–air batteries and fuel cells. Cutting-edge Pt/C catalysts remain the most efficient ORR catalysts to date; however, their high cost and inadequate stability impede their use in commercial devices. Recently, transition metal-based electrocatalysts are being pursued as ideal alternatives for cost-effective and efficient materials with a promising future. This review provides an in-depth analysis of the principles, synthesis, and electrocatalytic assessment of noble metal and transition metal-based catalysts derived from diverse gel precursors, including hydrogels, aerogels, xerogels, metal–organic gels, and metal aerogels. Electrocatalysts derived from gel precursors have garnered significant interest due to their superior physicochemical properties, including an exceptionally high surface area, adjustable porosity, adaptability, and scalability. Catalysts obtained from gel precursors offer numerous advantages over conventional catalyst synthesis methods, including the complete utilization of precursors, precise control over surface area and porosity, and uniform distribution of ORR active sites. Among the various types, metal aerogels are distinguished as the superior catalysts, exceeding the Department of Energy’s (DoE) 2025 targets for the mass and specific activities of ORR catalysts. In contrast, hydrogel- and aerogel-derived catalysts excel in terms of ORR activity, specific surface area, and the potential to incorporate high loadings of single-atom catalysts composed of transition metals. Ultimately, we unequivocally categorized the electrocatalysts into high-, moderate-, and low-performance tiers, identifying the most promising catalyst candidate within each gel classification. Concluding insights, future outlooks, and recommendations were provided for the advancement of cost-effective, scalable electrocatalysts derived from gels for fuel cells and zinc–air batteries. Full article
(This article belongs to the Special Issue Gels for Flexible Electronics and Energy Devices (2nd Edition))
Show Figures

Graphical abstract

14 pages, 3526 KiB  
Article
Three-Dimensional Printing and Supercritical Technologies for the Fabrication of Intricately Structured Aerogels Derived from the Alginate–Chitosan Polyelectrolyte Complex
by Natalia Menshutina, Andrey Abramov, Eldar Golubev and Pavel Tsygankov
Gels 2025, 11(7), 477; https://doi.org/10.3390/gels11070477 - 20 Jun 2025
Viewed by 345
Abstract
Patient-specific scaffolds for tissue and organ regeneration are still limited by the difficulty of simultaneously shaping complex geometries, preserving hierarchical porosity, and guaranteeing sterility. Additive technologies represent a promising approach for addressing problems in tissue engineering, with the potential to develop personalized matrices [...] Read more.
Patient-specific scaffolds for tissue and organ regeneration are still limited by the difficulty of simultaneously shaping complex geometries, preserving hierarchical porosity, and guaranteeing sterility. Additive technologies represent a promising approach for addressing problems in tissue engineering, with the potential to develop personalized matrices for the growth of tissue and organ cells. The utilization of supercritical technologies, encompassing the processes of drying and sterilization within a supercritical fluid environment, has demonstrated significant opportunities for obtaining highly effective matrices for cell growth based on biocompatible materials. We present a comprehensive methodology for fabricating intricately structured, sterile aerogels based on alginate–chitosan polyelectrolyte complexes. The target three-dimensional macrostructure is achieved through (i) direct ink writing or (ii) heterophase printing, enabling the deposition of inks with diverse rheological profiles (viscosities ranging from 0.8 to 2500 Pa·s). A coupled supercritical carbon dioxide drying–sterilization regimen at 120 bar and 40 °C is employed to preserve the highly porous architecture of the printed constructs. The resulting aerogels exhibit 96 ± 2% porosity, a BET surface area of 108–238 m2 g−1, and complete sterility. The proposed integration of 3D printing and supercritical processing yields sterile, intricately structured aerogels with substantial potential for the fabrication of patient-specific scaffolds for tissue and organ regeneration. Full article
(This article belongs to the Special Issue Polymer Aerogels and Aerogel Composites)
Show Figures

Figure 1

18 pages, 6693 KiB  
Article
Tensile Resistance and Fracture Mechanisms of Silica Aerogels Reinforced by Nanotube–Graphene Hybrid Networks
by Lin Guo, Mu Du, Jiaqian Li, Wei Li, Mingyang Yang and Gongming Xin
Gels 2025, 11(6), 471; https://doi.org/10.3390/gels11060471 - 19 Jun 2025
Viewed by 376
Abstract
Despite their outstanding thermal insulation and ultralight structure, silica aerogels suffer from inherent mechanical fragility, making the investigation of their mechanical behavior crucial for expanding their practical utility in advanced applications. To enhance their mechanical performance, this study introduces a dual-phase reinforcement strategy [...] Read more.
Despite their outstanding thermal insulation and ultralight structure, silica aerogels suffer from inherent mechanical fragility, making the investigation of their mechanical behavior crucial for expanding their practical utility in advanced applications. To enhance their mechanical performance, this study introduces a dual-phase reinforcement strategy by anisotropically incorporating carbon nanotubes (CNTs) and graphene oxide (GO) sheets into the aerogel matrix. Using molecular dynamic simulations, we systematically investigate the tensile behavior and pore structure evolution of these hetero-structured composites. The results reveal a non-monotonic dependence of tensile strength on loading ratio, distinguishing three strain-dependent reinforcement regimes. High loading content (11.1%) significantly improves strength under low strain (0–26%), whereas low loading levels (1.8%) are more effective at preserving structural integrity under large strain (44–50%). Moderate loading (5.1%) yields balanced performance in intermediate regimes. While increasing carbon content reduces initial pore size by partially filling the framework, tensile deformation leads to interfacial debonding and the formation of larger pores due to CNT–GO hybrid structure interactions. This work elucidates a dual reinforcement mechanism—physical pore confinement and interfacial coupling—highlighting the critical role of nanostructure geometry in tuning strain-specific mechanical responses. The findings provide mechanistic insights into anisotropic nanocomposite behavior and offer guidance for designing robust porous materials for structural and functional applications. Full article
(This article belongs to the Special Issue Aerogels: Synthesis and Applications)
Show Figures

Figure 1

16 pages, 3109 KiB  
Article
Mitigating Shrinkage and Enhancing the Structure of Thermally Insulating Starch Aerogel via Solvent Exchange and Chitin Addition
by Jacob Staker, Gracie M. White, Sevinch Pasilova, Daniel A. Scheiman, Haiquan Guo, Andres Tovar and Amanda P. Siegel
Macromol 2025, 5(2), 28; https://doi.org/10.3390/macromol5020028 - 18 Jun 2025
Cited by 1 | Viewed by 419
Abstract
Bio-based compostable starch aerogels have significant potential as a sustainable alternative to traditional polymer aerogels across various applications. However, they suffer from very significant shrinkage, shown in published work as 40–50% using existing processes. We hypothesized that the shrinkage is largely caused by [...] Read more.
Bio-based compostable starch aerogels have significant potential as a sustainable alternative to traditional polymer aerogels across various applications. However, they suffer from very significant shrinkage, shown in published work as 40–50% using existing processes. We hypothesized that the shrinkage is largely caused by pore collapse through the solvent exchange process, during which the water used to fabricate the starch matrix is replaced with ethanol. To mitigate this issue, this work introduces two strategies: (1) implementing a deep-freezing protocol (DFP) prior to the solvent exchange, followed by pure ethanol solvent exchanges instead of water/ethanol mixtures, and (2) incorporating chitin as a structural additive. As a baseline, we fabricated potato starch aerogels (PSAs) using conventional processes of mixing, heating, and retrogradation. By applying a DFP before pure ethanol exchanges, shrinkage was reduced from 44% to 10% in pure PSA samples. Furthermore, the addition of chitin reduced shrinkage to 8% in potato starch-chitin aerogels. Porosity, density, surface area, pore size distribution, thermal decomposition temperature, thermal conductivities, and scanning electron microscopy images demonstrate a correlation between reduced shrinkage and desired thermal material properties. Full article
Show Figures

Figure 1

Back to TopTop