Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,655)

Search Parameters:
Keywords = adverse conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1824 KiB  
Article
You Can Stand Under My Umbrella: Cognitive Load in Second-Language Reading
by Francisco Rocabado, Gianna Schmitz and Jon Andoni Duñabeitia
Behav. Sci. 2025, 15(8), 1051; https://doi.org/10.3390/bs15081051 (registering DOI) - 3 Aug 2025
Abstract
Second-language (L2) written processing has often been linked to cognitive disfluency, resembling fluency disruptions caused by perceptual challenges, such as visual degradation. This study used Virtual Reality to investigate whether cognitive disfluency in L2 mirrors perceptual disfluency by simulating adverse weather conditions (sunny [...] Read more.
Second-language (L2) written processing has often been linked to cognitive disfluency, resembling fluency disruptions caused by perceptual challenges, such as visual degradation. This study used Virtual Reality to investigate whether cognitive disfluency in L2 mirrors perceptual disfluency by simulating adverse weather conditions (sunny vs. rainy) and applying visual masking. Spanish–English bilinguals completed a language decision task, identifying orthotactically unmarked words as either Spanish (L1) or English (L2) while experiencing these perceptual manipulations. Results showed that visual masking significantly increased reaction times, particularly for L1 words, suggesting that masking can diminish the native language advantage. Spanish words under masking elicited slower responses than unmasked ones, whereas L2 word recognition remained comparatively stable. Additionally, rainy weather conditions consistently slowed responses across both languages, indicating a general effect of environmental disfluency. A significant interaction between language and masking emerged, highlighting distinct cognitive effects for different disfluency types. These findings suggest that cognitive disfluency in L2 does not equate to perceptual disfluency; each affects processing differently. The use of Virtual Reality enabled the controlled manipulation of realistic environmental variables, offering valuable insights into how perceptual and linguistic challenges jointly influence bilingual language processing. Full article
(This article belongs to the Section Cognition)
37 pages, 3813 KiB  
Review
Guardians of Water and Gas Exchange: Adaptive Dynamics of Stomatal Development and Patterning
by Eleni Giannoutsou, Ioannis-Dimosthenis S. Adamakis and Despina Samakovli
Plants 2025, 14(15), 2405; https://doi.org/10.3390/plants14152405 (registering DOI) - 3 Aug 2025
Abstract
Stomata, highly specialized structures that evolved on the aerial surfaces of plants, play a crucial role in regulating hydration, mitigating the effects of abiotic stress. Stomatal lineage development involves a series of coordinated events, such as initiation, stem cell proliferation, and cell fate [...] Read more.
Stomata, highly specialized structures that evolved on the aerial surfaces of plants, play a crucial role in regulating hydration, mitigating the effects of abiotic stress. Stomatal lineage development involves a series of coordinated events, such as initiation, stem cell proliferation, and cell fate determination, ultimately leading to the differentiation of guard cells. While core transcriptional regulators and signaling pathways controlling stomatal cell division and fate determination have been characterized over the past twenty years, the molecular mechanisms linking stomatal development to dynamic environmental cues remain poorly understood. Therefore, stomatal development is considered an active and compelling frontier in plant biology research. On the one hand, this review aims to provide an understanding of the molecular networks governing stomatal ontogenesis, which relies on the activation and function of the transcription factors SPEECHLESS (SPCH), MUTE, and FAMA; the EPF–TMM and ERECTA receptor systems; and downstream MAPK signaling. On the other hand, it synthesizes current discoveries of how hormonal signaling pathways regulate stomatal development in response to environmental changes. As the climate crisis intensifies, the understanding of the complex interplay between stress stimuli and key factors regulating stomatal development may reveal key mechanisms that enhance plant resilience under adverse environmental conditions. Full article
23 pages, 7023 KiB  
Article
Multistrain Microbial Inoculant Enhances Yield and Medicinal Quality of Glycyrrhiza uralensis in Arid Saline–Alkali Soil and Modulate Root Nutrients and Microbial Diversity
by Jun Zhang, Xin Li, Peiyao Pei, Peiya Wang, Qi Guo, Hui Yang and Xian Xue
Agronomy 2025, 15(8), 1879; https://doi.org/10.3390/agronomy15081879 (registering DOI) - 3 Aug 2025
Abstract
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and [...] Read more.
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and preventing and adjuvantly treating related diseases. However, the cultivation of G. uralensis is easily restricted by adverse soil conditions in these regions, characterized by high salinity, high alkalinity, and nutrient deficiency. This study investigated the impacts of four multistrain microbial inoculants (Pa, Pb, Pc, Pd) on the growth performance and bioactive compound accumulation of G. uralensis in moderately saline–sodic soil. The aim was to screen the most beneficial inoculant from these strains, which were isolated from the rhizosphere of plants in moderately saline–alkaline soils of the Hexi Corridor and possess native advantages with excellent adaptability to arid environments. The results showed that inoculant Pc, comprising Pseudomonas silesiensis, Arthrobacter sp. GCG3, and Rhizobium sp. DG1, exhibited superior performance: it induced a 0.86-unit reduction in lateral root number relative to the control, while promoting significant increases in single-plant dry weight (101.70%), single-plant liquiritin (177.93%), single-plant glycyrrhizic acid (106.10%), and single-plant total flavonoids (107.64%). Application of the composite microbial inoculant Pc induced no significant changes in the pH and soluble salt content of G. uralensis rhizospheric soils. However, it promoted root utilization of soil organic matter and nitrate, while significantly increasing the contents of available potassium and available phosphorus in the rhizosphere. High-throughput sequencing revealed that Pc reorganized the rhizospheric microbial communities of G. uralensis, inducing pronounced shifts in the relative abundances of rhizospheric bacteria and fungi, leading to significant enrichment of target bacterial genera (Arthrobacter, Pseudomonas, Rhizobium), concomitant suppression of pathogenic fungi, and proliferation of beneficial fungi (Mortierella, Cladosporium). Correlation analyses showed that these microbial shifts were linked to improved plant nutrition and secondary metabolite biosynthesis. This study highlights Pc as a sustainable strategy to enhance G. uralensis yield and medicinal quality in saline–alkali ecosystems by mediating microbe–plant–nutrient interactions. Full article
(This article belongs to the Section Farming Sustainability)
14 pages, 265 KiB  
Article
Bovine Leptospirosis: Serology, Isolation, and Risk Factors in Dairy Farms of La Laguna, Mexico
by Alejandra María Pescador-Gutiérrez, Jesús Francisco Chávez-Sánchez, Lucio Galaviz-Silva, Juan José Zarate-Ramos, José Pablo Villarreal-Villarreal, Sergio Eduardo Bernal-García, Uziel Castillo-Velázquez, Rubén Cervantes-Vega and Ramiro Avalos-Ramirez
Life 2025, 15(8), 1224; https://doi.org/10.3390/life15081224 (registering DOI) - 2 Aug 2025
Abstract
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse [...] Read more.
Leptospirosis is a globally significant zoonosis affecting animal health, productivity, and the environment. While typically associated with tropical climates, its persistence in semi-arid regions such as La Laguna, Mexico—characterized by low humidity, high temperatures, and limited water sources—remains poorly understood. Although these adverse environmental conditions theoretically limit the survival of Leptospira, high livestock density and synanthropic reservoirs (e.g., rodents) may compensate, facilitating transmission. In this cross-sectional study, blood sera from 445 dairy cows (28 herds: 12 intensive [MI], 16 semi-intensive [MSI] systems) were analyzed via microscopic agglutination testing (MAT) against 10 pathogenic serovars. Urine samples were cultured for active Leptospira detection. Risk factors were assessed through epidemiological surveys and multivariable analysis. This study revealed an overall apparent seroprevalence of 27.0% (95% CI: 22.8–31.1), with significantly higher rates in MSI (54.1%) versus MI (12.2%) herds (p < 0.001) and an estimated true seroprevalence of 56.3% (95% CI: 50.2–62.1) in MSI and 13.1% (95% CI: 8.5–18.7) in MI herds (p < 0.001). The Sejroe serogroup was isolated from urine in both systems, confirming active circulation. In MI herds, rodent presence (OR: 3.6; 95% CI: 1.6–7.9) was identified as a risk factor for Leptospira seropositivity, while first-trimester abortions (OR:10.1; 95% CI: 4.2–24.2) were significantly associated with infection. In MSI herds, risk factors associated with Leptospira seropositivity included co-occurrence with hens (OR: 2.8; 95% CI: 1.5–5.3) and natural breeding (OR: 2.0; 95% CI: 1.1–3.9), whereas mastitis/agalactiae (OR: 2.8; 95% CI: 1.5–5.2) represented a clinical outcome associated with seropositivity. Despite semi-arid conditions, Leptospira maintains transmission in La Laguna, particularly in semi-intensive systems. The coexistence of adapted (Sejroe) and incidental serogroups underscores the need for targeted interventions, such as rodent control in MI systems and poultry management in MSI systems, to mitigate both zoonotic and economic impacts. Full article
(This article belongs to the Section Animal Science)
13 pages, 3032 KiB  
Article
Combined Bioinformatic and Experimental Approaches to Analyze miR-182-3p and miR-24-3p Expression and Their Target Genes in Gestational Diabetes Mellitus and Iron Deficiency Anemia During Pregnancy
by Badr Alzahrani, Bisma Rauff, Aqsa Ikram and Mariya Azam
Curr. Issues Mol. Biol. 2025, 47(8), 610; https://doi.org/10.3390/cimb47080610 (registering DOI) - 2 Aug 2025
Abstract
Gestational diabetes mellitus (GDM) and iron deficiency anemia (IDA) are the most common pregnancy-related conditions resulting in adverse maternal and fetal complications. MicroRNAs (miRNAs), particularly miR-182-3p and miR-24-3p, are promising biomarkers as they act as regulatory elements in various diseases; however, their roles [...] Read more.
Gestational diabetes mellitus (GDM) and iron deficiency anemia (IDA) are the most common pregnancy-related conditions resulting in adverse maternal and fetal complications. MicroRNAs (miRNAs), particularly miR-182-3p and miR-24-3p, are promising biomarkers as they act as regulatory elements in various diseases; however, their roles in GDM and IDA are unclear. The present study aimed to analyze the expression and functional relevance of miR-182-3p and miR-24-3p in GDM and IDA. Experimental validation via RT-PCR revealed significant upregulation of both miRNAs in GDM and IDA samples. We identified common target genes and signaling pathways associated with these miRNAs, using a combination of data mining, bioinformatic tools (miRDB, TargetScan, miRTarBase, and miRWalk), and differentially expressed gene (DEGs) analysis using the GEO, OMIM, MalaCards, and GeneCards datasets. GO and KEGG pathway analyses revealed that the shared miRNA–mRNA in target genes were enriched in insulin signaling, apoptosis, and inflammatory pathways—key mechanisms implicated in GDM and IDA. Furthermore, hub genes such as IRS1, PIK3CA, CASP3, MAPK7, and PDGFRB were identified, supporting their central role in metabolic dysregulation during pregnancy. These findings demonstrate the potential of miR-182-3p and miR-24-3p as diagnostic biomarkers and therapeutic targets in managing GDM and IDA, offering new insights into the molecular interplay underlying pregnancy complications. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

17 pages, 1488 KiB  
Article
Experimental Investigation of Impact Mechanisms of Seeding Quality for Ridge-Clearing No-Till Seeder Under Strip Tillage
by Yuanyuan Gao, Yongyue Hu, Shuo Yang, Xueguan Zhao, Shengwei Lu, Hanjie Dou, Qingzhen Zhu, Peiying Li and Yongyun Zhu
Agronomy 2025, 15(8), 1875; https://doi.org/10.3390/agronomy15081875 (registering DOI) - 1 Aug 2025
Abstract
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the [...] Read more.
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the inadequate understanding of the seeder’s operational performance and governing mechanisms under varying field conditions hinders its high-quality and efficient implementation. To address this issue, this study selected the stubble height, forward speed, and stubble knife rotational speed (PTO speed) as experimental factors. Employing a three-factor quasi-level orthogonal experimental design, coupled with response surface regression analysis, this research systematically elucidated the interaction mechanisms among these factors concerning the seeding depth consistency and seed spacing uniformity of the seeder. An optimized parameter-matching model was subsequently derived through equation system solving. Field trials demonstrated that a lower forward speed improved the seed spacing uniformity and seeding depth consistency, whereas high speeds increased the missing rates and spacing deviations. An appropriate stubble height enhanced the seed spacing accuracy, but an excessive height compromised depth precision. Higher PTO speeds reduced multiple indices but impaired depth accuracy. Response surface analysis based on the regression models demonstrated that the peak value of the seed spacing qualification index occurred within the forward speed range of 8–9 km/h and the stubble height range of 280–330 mm, with the stubble height being the dominant factor. Similarly, the peak value of the seeding depth qualification index occurred within the stubble height range of 300–350 mm and the forward speed range of 7.5–9 km/h, with the forward speed as the primary factor. Validation confirmed that combining stubble heights of 300−330 mm, forward speeds of 8−9 km/h, and PTO speeds of 540 r/min optimized both metrics. This research reveals nonlinear coupling relationships between operational parameters and seeding quality metrics, establishes a stubble–speed dynamic matching model, and provides a theoretical foundation for the intelligent control of seeders in conservation tillage systems. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
27 pages, 3107 KiB  
Article
Modeling School Commuting Mode Choice Under Normal and Adverse Weather Conditions in Chiang Rai City
by Chanyanuch Pangderm, Tosporn Arreeras and Xiaoyan Jia
Future Transp. 2025, 5(3), 101; https://doi.org/10.3390/futuretransp5030101 (registering DOI) - 1 Aug 2025
Abstract
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit [...] Read more.
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit (MNL) regression model was applied to examine the effects of socio-demographic attributes, household vehicle ownership, travel distance, and spatial variables on mode selection. The results revealed notable modal shifts during adverse weather, with motorcycle usage decreasing and private vehicle reliance increasing, while school bus usage remained stable, highlighting its role as a resilient transport option. Car ownership emerged as a strong enabler of modal flexibility, whereas students with limited access to private transport demonstrated reduced adaptability. Additionally, increased waiting and travel times during adverse conditions underscored infrastructure and service vulnerabilities, particularly for mid-distance travelers. The findings suggest an urgent need for transport policies that promote inclusive and climate-resilient mobility systems, particularly in the context of Chiang Rai, including expanded school bus services, improved first-mile connectivity, and enhanced pedestrian infrastructure. This study contributes to the literature by addressing environmental variability in school travel behavior and offers actionable insights for sustainable transport planning in secondary cities and border regions. Full article
Show Figures

Figure 1

44 pages, 4144 KiB  
Article
Amelioration of Olive Tree Indices Related to Salinity Stress via Exogenous Administration of Amino Acid Content: Real Agronomic Effectiveness or Mechanistic Restoration Only?
by Helen Kalorizou, Paschalis Giannoulis, Stefanos Leontopoulos, Georgios Koubouris, Spyridoula Chavalina and Maria Sorovigka
Horticulturae 2025, 11(8), 890; https://doi.org/10.3390/horticulturae11080890 (registering DOI) - 1 Aug 2025
Viewed by 1
Abstract
Salinization of olive orchards constitutes a front-line agronomic challenge for farmers, consumers, and the scientific community as food security, olive logistics, and land use become more unsustainable and problematic. Plantlets of two olive varieties (var. Kalamon and var. Koroneiki) were tested for their [...] Read more.
Salinization of olive orchards constitutes a front-line agronomic challenge for farmers, consumers, and the scientific community as food security, olive logistics, and land use become more unsustainable and problematic. Plantlets of two olive varieties (var. Kalamon and var. Koroneiki) were tested for their performance under soil saline conditions, in which L-methionine, choline-Cl, and L-proline betaine were applied foliarly to alleviate adverse effects. The ‘Kalamon’ variety ameliorated its photosynthetic rates when L-proline betaine and L-methionine were administered at low saline exposure. The stressed varieties achieved higher leaf transpiration rates in the following treatment order: choline-Cl > L-methionine > L-proline betaine. Choline chloride supported stomatal conductance in stressed var. Kalamon olives without this pattern, which was also followed by var. Koroneiki. Supplementation regimes created a mosaic of responses on varietal water use efficiency under stress. The total phenolic content in leaves increased in both varieties after exogenous application only at the highest levels of saline stress. None of the substances applied to olive trees could stand alone as a tool to mitigate salinity stress in order to be recommended as a solid agronomic practice. The residual exploitation of amino acids by the olive orchard microbiome must also be considered as part of an environmentally friendly, integrated strategy to mitigate salinity stress. Full article
(This article belongs to the Special Issue Olive Stress Alleviation Strategies)
Show Figures

Figure 1

29 pages, 1505 KiB  
Review
Biological Macromolecule-Based Dressings for Combat Wounds: From Collagen to Growth Factors—A Review
by Wojciech Kamysz and Patrycja Kleczkowska
Med. Sci. 2025, 13(3), 106; https://doi.org/10.3390/medsci13030106 (registering DOI) - 1 Aug 2025
Viewed by 53
Abstract
Wound care in military and combat environments poses distinct challenges that set it apart from conventional medical practice in civilian settings. The nature of injuries sustained on the battlefield—often complex, contaminated, and involving extensive tissue damage—combined with limited access to immediate medical intervention, [...] Read more.
Wound care in military and combat environments poses distinct challenges that set it apart from conventional medical practice in civilian settings. The nature of injuries sustained on the battlefield—often complex, contaminated, and involving extensive tissue damage—combined with limited access to immediate medical intervention, significantly increases the risk of infection, delayed healing, and adverse outcomes. Traditional wound dressings frequently prove inadequate under such extreme conditions, as they have not been designed to address the specific physiological and logistical constraints present during armed conflicts. This review provides a comprehensive overview of recent progress in the development of advanced wound dressings tailored for use in military scenarios. Special attention has been given to multifunctional dressings that go beyond basic wound coverage by incorporating biologically active macromolecules such as collagen, chitosan, thrombin, alginate, therapeutic peptides, and growth factors. These compounds contribute to properties including moisture balance control, exudate absorption, microbial entrapment, and protection against secondary infection. This review highlights the critical role of advanced wound dressings in improving medical outcomes for injured military personnel. The potential of these technologies to reduce complications, enhance healing rates, and ultimately save lives underscores their growing importance in modern battlefield medicine. Full article
(This article belongs to the Collection Advances in Skin Wound Healing)
Show Figures

Figure 1

11 pages, 682 KiB  
Article
Long-Term Outcomes of First-Line Anti-TNF Therapy for Chronic Inflammatory Pouch Conditions: A Multi-Centre Multi-National Study
by Itai Ghersin, Maya Fischman, Giacomo Calini, Eduard Koifman, Valerio Celentano, Jonathan P. Segal, Orestis Argyriou, Simon D. McLaughlin, Heather Johnson, Matteo Rottoli, Kapil Sahnan, Janindra Warusavitarne and Ailsa L. Hart
Biomedicines 2025, 13(8), 1870; https://doi.org/10.3390/biomedicines13081870 - 1 Aug 2025
Viewed by 109
Abstract
Background/Objectives: Anti-tumour necrosis factor (anti-TNF) medications were historically commonly prescribed as the first-line biologic treatment for chronic inflammatory pouch conditions. However, their use in these conditions is mainly based on retrospective studies of relatively small numbers of patients with short follow up periods. [...] Read more.
Background/Objectives: Anti-tumour necrosis factor (anti-TNF) medications were historically commonly prescribed as the first-line biologic treatment for chronic inflammatory pouch conditions. However, their use in these conditions is mainly based on retrospective studies of relatively small numbers of patients with short follow up periods. We aimed to describe the long-term outcomes of first-line anti-TNF therapy in a large, multi-centre, multi-national patient cohort with chronic inflammatory pouch conditions. Methods: This was an observational, retrospective, multi-centre, multi-national study. We included patients with chronic inflammatory pouch conditions initially treated with anti-TNF drugs infliximab (IFX) or adalimumab (ADA), who had a follow up of at least 1 year. The primary outcome was anti-TNF treatment persistence, defined as continuation of anti-TNF throughout the study period. The secondary outcome was pouch failure, defined by the need for a defunctioning ileostomy or pouch excision. Results: We recruited 98 patients with chronic inflammatory pouch conditions initially treated with anti-TNF medications—63 (64.3%) treated with IFX and 35 (35.7%) treated with ADA. Average follow up length was 94.2 months (±54.5). At the end of the study period only 22/98 (22.4%) patients were still on anti-TNF treatment. In those in whom the first-line anti-TNF was discontinued, the median time to discontinuation was 12.2 months (range 5.1–26.9 months). The most common cause for anti-TNF discontinuation was lack of efficacy despite adequate serum drug levels and absence of anti-drug antibody formation (30 patients, 30.6%). Loss of response due to anti-drug antibody formation was the cause for discontinuation in 18 patients (18.4%), while 12 patients (12.2%) stopped treatment because of adverse events or safety concerns. Out of the 76 patients discontinuing anti-TNF treatment, 34 (34.7% of the cohort) developed pouch failure, and 42 (42.8% of the cohort) are currently treated with a different medical therapy. Conclusions: First-line anti-TNF therapy for chronic pouch inflammatory conditions is associated with low long-term persistence rates. This is due to a combination of lack of efficacy and adverse events. A significant percentage of patients initially treated with anti-TNF therapy develop pouch failure. Full article
Show Figures

Figure 1

15 pages, 1033 KiB  
Article
Transcranial Pulse Stimulation in Alzheimer’s: Long-Term Feasibility and a Multifocal Treatment Approach
by Celine Cont-Richter, Nathalie Stute, Anastasia Galli, Christina Schulte and Lars Wojtecki
Brain Sci. 2025, 15(8), 830; https://doi.org/10.3390/brainsci15080830 (registering DOI) - 1 Aug 2025
Viewed by 111
Abstract
Background/Objectives: Neuromodulation is under investigation as a possibly effective add-on therapy in Alzheimer’s disease (AD). While transcranial pulse stimulation (TPS) has shown positive short-term effects, long-term effects have not yet been fully explored. This study aims to evaluate the long-term feasibility, safety, and [...] Read more.
Background/Objectives: Neuromodulation is under investigation as a possibly effective add-on therapy in Alzheimer’s disease (AD). While transcranial pulse stimulation (TPS) has shown positive short-term effects, long-term effects have not yet been fully explored. This study aims to evaluate the long-term feasibility, safety, and potential cognitive benefits of TPS over one year in patients with Alzheimer’s disease, focusing on domains such as memory, speech, orientation, visuo-construction, and depressive symptoms. Methods: We analyzed preliminary data from the first ten out of thirty-five patients enrolled in a prospective TPS study who completed one year of follow-up and were included in a dedicated long-term database. The protocol consisted of six initial TPS sessions over two weeks, followed by monthly booster sessions delivering 6000 pulses each for twelve months. Patients underwent regular neuropsychological assessments using the Alzheimer Disease Assessment Scale (ADAS), Mini-Mental Status Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Beck Depression Inventory (BDI-II). All adverse events (AEs) were documented and monitored throughout the study. Results: Adverse events occurred in less than 1% of stimulation sessions and mainly included mild focal pain or transient unpleasant sensations, as well as some systemic behavioral or vigilance changes, particularly in patients with underlying medical conditions, with some potentially related to the device’s stimulation as adverse device reactions (ADRs). Cognitive test results showed significant improvement after the initial stimulation cycle (ADAS total improved significantly after the first stimulation cycle (M_pre = 28.44, M_post = 18.56; p = 0.001, d = 0.80, 95% CI (0.36, 1.25)), with stable scores across all domains over one year. Improvements were most notable in memory, speech, and mood. Conclusions: TPS appears to be a generally safe and feasible add-on treatment for AD, although careful patient selection and monitoring are advised. While a considerable number of participants were lost to follow-up for various reasons, adverse events and lack of treatment effect were unlikely primary causes. A multifocal stimulation approach (F-TOP2) is proposed to enhance effects across more cognitive domains. Full article
(This article belongs to the Special Issue Noninvasive Neuromodulation Applications in Research and Clinics)
Show Figures

Figure 1

18 pages, 1587 KiB  
Article
Urban Mangroves Under Threat: Metagenomic Analysis Reveals a Surge in Human and Plant Pathogenic Fungi
by Juliana Britto Martins de Oliveira, Mariana Barbieri, Dario Corrêa-Junior, Matheus Schmitt, Luana Lessa R. Santos, Ana C. Bahia, Cláudio Ernesto Taveira Parente and Susana Frases
Pathogens 2025, 14(8), 759; https://doi.org/10.3390/pathogens14080759 (registering DOI) - 1 Aug 2025
Viewed by 147
Abstract
Coastal ecosystems are increasingly threatened by climate change and anthropogenic pressures, which can disrupt microbial communities and favor the emergence of pathogenic organisms. In this study, we applied metagenomic analysis to characterize fungal communities in sediment samples from an urban mangrove subjected to [...] Read more.
Coastal ecosystems are increasingly threatened by climate change and anthropogenic pressures, which can disrupt microbial communities and favor the emergence of pathogenic organisms. In this study, we applied metagenomic analysis to characterize fungal communities in sediment samples from an urban mangrove subjected to environmental stress. The results revealed a fungal community with reduced richness—28% lower than expected for similar ecosystems—likely linked to physicochemical changes such as heavy metal accumulation, acidic pH, and eutrophication, all typical of urbanized coastal areas. Notably, we detected an increase in potentially pathogenic genera, including Candida, Aspergillus, and Pseudoascochyta, alongside a decrease in key saprotrophic genera such as Fusarium and Thelebolus, indicating a shift in ecological function. The fungal assemblage was dominated by the phyla Ascomycota and Basidiomycota, and despite adverse conditions, symbiotic mycorrhizal fungi remained present, suggesting partial resilience. A considerable fraction of unclassified fungal taxa also points to underexplored microbial diversity with potential ecological or health significance. Importantly, this study does not aim to compare pristine and contaminated environments, but rather to provide a sanitary alert by identifying the presence and potential proliferation of pathogenic fungi in a degraded mangrove system. These findings highlight the sensitivity of mangrove fungal communities to environmental disturbance and reinforce the value of metagenomic approaches for monitoring ecosystem health. Incorporating fungal metagenomic surveillance into environmental management strategies is essential to better understand biodiversity loss, ecological resilience, and potential public health risks in degraded coastal environments. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

14 pages, 2808 KiB  
Article
Polyparasitic Infections: Associated Factors and Effect on the Haemoglobin Level of Children Living in Lambaréné Remote and Surrounding Rural Areas from Gabon—A Cross-Sectional Study
by Paul Alvyn Nguema-Moure, Bayode Romeo Adegbite, Moustapha Nzamba Maloum, Jean-Claude Dejon-Agobé, Roméo-Aimé Laclong Lontchi, Yabo Josiane Honkpehedji, Danny-Carrel Manfoumbi Mabicka, Christian Chassem-Lapue, Pavel Warry Sole, Stephane Ogoula, Fabrice Beral M’Baidigium, Jenny Mouloungui-Mavoungou, Michael Ramharter, Peter Gottfried Kremsner and Ayôla Akim Adegnika
Trop. Med. Infect. Dis. 2025, 10(8), 218; https://doi.org/10.3390/tropicalmed10080218 (registering DOI) - 31 Jul 2025
Viewed by 84
Abstract
Background: Polyparasitic infections remain widespread in endemic regions, yet its contributing factors and health impact are not well understood. This study aims to estimate the prevalence and associated factors and examines the effect of polyparasitic infection on haemoglobin levels among children. Methods: A [...] Read more.
Background: Polyparasitic infections remain widespread in endemic regions, yet its contributing factors and health impact are not well understood. This study aims to estimate the prevalence and associated factors and examines the effect of polyparasitic infection on haemoglobin levels among children. Methods: A cross-sectional study was conducted in Lambaréné, Gabon, among children aged 2–17 years from November 2019 to December 2020. Haemoglobin levels, environmental conditions, and sociodemographic data were collected. Stool, urine, and blood samples were analysed using light microscopy for parasite detection. Factors associated with polyparasitism were explored. Results: Out of 656 participants, 65.4% had at least one infection, with intestinal protozoa species (21.3%), Trichuris trichiura (33%), Ascaris lumbricoides (22%), Schistosoma haematobium (20%), and Plasmodium falciparum (10%) being the most common. Polyparasitic infection was identified in 26% of children, mostly as bi-infections (69.2%), and was negatively associated with haemoglobin levels (β = −0.06). Conclusions: These findings emphasise the burden of polyparasitic infections and adverse health effects in Lambaréné, Gabon. Full article
Show Figures

Figure 1

15 pages, 490 KiB  
Article
The Labour Conditions and Health of Migrant Agricultural Workers in Spain: A Qualitative Study
by Vanesa Villa-Cordero, Amalia Sillero Sillero, María del Mar Pastor-Bravo, Iratxe Pérez-Urdiales, María del Mar Jiménez-Lasserrotte and Erica Briones-Vozmediano
Healthcare 2025, 13(15), 1877; https://doi.org/10.3390/healthcare13151877 - 31 Jul 2025
Viewed by 115
Abstract
Background/Objectives: Agricultural workers in Spain with a migratory background face challenging working and living conditions that significantly affect their health. This study aimed to explore how professionals in healthcare, social services, civil society organisations, and labour institutions perceive that the working conditions [...] Read more.
Background/Objectives: Agricultural workers in Spain with a migratory background face challenging working and living conditions that significantly affect their health. This study aimed to explore how professionals in healthcare, social services, civil society organisations, and labour institutions perceive that the working conditions affect the physical health of this population. Methods: A qualitative descriptive study was conducted through 92 semi-structured interviews with professionals from six provinces in Spain. Data were analysed using thematic analysis following Braun and Clarke’s six-phase framework. Rigour was ensured through triangulation, independent coding, and interdisciplinary consensus. Results: Two overarching themes were identified: (1) the health consequences of workplace demands and environmental hazards, and (2) navigating health services such as sick leave and disability permits. These findings highlight how the impact of precarious working conditions and limited access to healthcare affect the physical health of migrant agricultural workers. Conclusions: The professionals interviewed described and relate precarious working conditions with adverse health outcomes among migrant agricultural workers. Their insights reveal the need for systemic reforms to enforce labour rights, ensure access to health services, and address the structural factors that contribute to exclusion and vulnerability. Full article
Show Figures

Figure 1

29 pages, 482 KiB  
Review
AI in Maritime Security: Applications, Challenges, Future Directions, and Key Data Sources
by Kashif Talpur, Raza Hasan, Ismet Gocer, Shakeel Ahmad and Zakirul Bhuiyan
Information 2025, 16(8), 658; https://doi.org/10.3390/info16080658 (registering DOI) - 31 Jul 2025
Viewed by 154
Abstract
The growth and sustainability of today’s global economy heavily relies on smooth maritime operations. The increasing security concerns to marine environments pose complex security challenges, such as smuggling, illegal fishing, human trafficking, and environmental threats, for traditional surveillance methods due to their limitations. [...] Read more.
The growth and sustainability of today’s global economy heavily relies on smooth maritime operations. The increasing security concerns to marine environments pose complex security challenges, such as smuggling, illegal fishing, human trafficking, and environmental threats, for traditional surveillance methods due to their limitations. Artificial intelligence (AI), particularly deep learning, has offered strong capabilities for automating object detection, anomaly identification, and situational awareness in maritime environments. In this paper, we have reviewed the state-of-the-art deep learning models mainly proposed in recent literature (2020–2025), including convolutional neural networks, recurrent neural networks, Transformers, and multimodal fusion architectures. We have highlighted their success in processing diverse data sources such as satellite imagery, AIS, SAR, radar, and sensor inputs from UxVs. Additionally, multimodal data fusion techniques enhance robustness by integrating complementary data, yielding more detection accuracy. There still exist challenges in detecting small or occluded objects, handling cluttered scenes, and interpreting unusual vessel behaviours, especially under adverse sea conditions. Additionally, explainability and real-time deployment of AI models in operational settings are open research areas. Overall, the review of existing maritime literature suggests that deep learning is rapidly transforming maritime domain awareness and response, with significant potential to improve global maritime security and operational efficiency. We have also provided key datasets for deep learning models in the maritime security domain. Full article
(This article belongs to the Special Issue Advances in Machine Learning and Intelligent Information Systems)
Show Figures

Figure 1

Back to TopTop