Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,225)

Search Parameters:
Keywords = advanced thermal analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4942 KiB  
Review
A Review of Crack Sealing Technologies for Asphalt Pavement: Materials, Failure Mechanisms, and Detection Methods
by Weihao Min, Peng Lu, Song Liu and Hongchang Wang
Coatings 2025, 15(7), 836; https://doi.org/10.3390/coatings15070836 - 17 Jul 2025
Abstract
Asphalt pavement cracking represents a prevalent form of deterioration that significantly compromises road performance and safety under the combined effects of environmental factors and traffic loading. Crack sealing has emerged as a widely adopted and cost-effective preventive maintenance strategy that restores the pavement’s [...] Read more.
Asphalt pavement cracking represents a prevalent form of deterioration that significantly compromises road performance and safety under the combined effects of environmental factors and traffic loading. Crack sealing has emerged as a widely adopted and cost-effective preventive maintenance strategy that restores the pavement’s structural integrity and extends service life. This paper presents a systematic review of the development of crack sealing technology, conducts a comparative analysis of conventional sealing materials (including emulsified asphalt, hot-applied asphalt, polymer-modified asphalt, and rubber-modified asphalt), and examines the existing performance evaluation methodologies. Critical failure mechanisms are thoroughly investigated, including interfacial bond failure resulting from construction defects, material aging and degradation, hydrodynamic scouring effects, and thermal cycling impacts. Additionally, this review examines advanced sensing methodologies for detecting premature sealant failure, encompassing both non-destructive testing techniques and active sensing technologies utilizing intelligent crack sealing materials with embedded monitoring capabilities. Based on current research gaps, this paper identifies future research directions to guide the development of intelligent and sustainable asphalt pavement crack repair technologies. The proposed research framework provides valuable insights for researchers and practitioners seeking to improve the long-term effectiveness of pavement maintenance strategies. Full article
Show Figures

Figure 1

35 pages, 2895 KiB  
Review
Ventilated Facades for Low-Carbon Buildings: A Review
by Pinar Mert Cuce and Erdem Cuce
Processes 2025, 13(7), 2275; https://doi.org/10.3390/pr13072275 - 17 Jul 2025
Abstract
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding [...] Read more.
The construction sector presently consumes about 40% of global energy and generates 36% of CO2 emissions, making facade retrofits a priority for decarbonising buildings. This review clarifies how ventilated facades (VFs), wall assemblies that interpose a ventilated air cavity between outer cladding and the insulated structure, address that challenge. First, the paper categorises VFs by structural configuration, ventilation strategy and functional control into four principal families: double-skin, rainscreen, hybrid/adaptive and active–passive systems, with further extensions such as BIPV, PCM and green-wall integrations that couple energy generation or storage with envelope performance. Heat-transfer analysis shows that the cavity interrupts conductive paths, promotes buoyancy- or wind-driven convection, and curtails radiative exchange. Key design parameters, including cavity depth, vent-area ratio, airflow velocity and surface emissivity, govern this balance, while hybrid ventilation offers the most excellent peak-load mitigation with modest energy input. A synthesis of simulation and field studies indicates that properly detailed VFs reduce envelope cooling loads by 20–55% across diverse climates and cut winter heating demand by 10–20% when vents are seasonally managed or coupled with heat-recovery devices. These thermal benefits translate into steadier interior surface temperatures, lower radiant asymmetry and fewer drafts, thereby expanding the hours occupants remain within comfort bands without mechanical conditioning. Climate-responsive guidance emerges in tropical and arid regions, favouring highly ventilated, low-absorptance cladding; temperate and continental zones gain from adaptive vents, movable insulation or PCM layers; multi-skin adaptive facades promise balanced year-round savings by re-configuring in real time. Overall, the review demonstrates that VFs constitute a versatile, passive-plus platform for low-carbon buildings, simultaneously enhancing energy efficiency, durability and indoor comfort. Future advances in smart controls, bio-based materials and integrated energy-recovery systems are poised to unlock further performance gains and accelerate the sector’s transition to net-zero. Emerging multifunctional materials such as phase-change composites, nanostructured coatings, and perovskite-integrated systems also show promise in enhancing facade adaptability and energy responsiveness. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

16 pages, 4361 KiB  
Article
Residual Stress Evolution of Graphene-Reinforced AA2195 (Aluminum–Lithium) Composite for Aerospace Structural Hydrogen Fuel Tank Application
by Venkatraman Manokaran, Anthony Xavior Michael, Ashwath Pazhani and Andre Batako
J. Compos. Sci. 2025, 9(7), 369; https://doi.org/10.3390/jcs9070369 - 16 Jul 2025
Abstract
This study investigates the fabrication and residual stress behavior of a 0.5 wt.% graphene-reinforced AA2195 aluminum matrix composite, developed for advanced aerospace structural applications. The composite was synthesized via squeeze casting, followed by a multi-pass hot rolling process and subsequent T8 heat treatment. [...] Read more.
This study investigates the fabrication and residual stress behavior of a 0.5 wt.% graphene-reinforced AA2195 aluminum matrix composite, developed for advanced aerospace structural applications. The composite was synthesized via squeeze casting, followed by a multi-pass hot rolling process and subsequent T8 heat treatment. The evolution of residual stress was systematically examined after each rolling pass and during thermal treatments. The successful incorporation of graphene into the matrix was confirmed through Energy-Dispersive Spectroscopy (EDS) analysis. Residual stress measurements after each pass revealed a progressive increase in compressive stress, reaching a maximum of −68 MPa after the fourth hot rolling pass. Prior to the fifth pass, a solution treatment at 530 °C was performed to dissolve coarse precipitates and relieve internal stresses. Cold rolling during the fifth pass reduced the compressive residual stress to −40 MPa, and subsequent artificial aging at 180 °C for 48 h further decreased it to −23 MPa due to recovery and stress relaxation mechanisms. Compared to the unreinforced AA2195 alloy in the T8 condition, which exhibited a tensile residual stress of +29 MPa, the graphene-reinforced composite in the same condition retained a compressive residual stress of −23 MPa. This represents a net improvement of 52 MPa, highlighting the composite’s superior capability to retain compressive residual stress. The presence of graphene significantly influenced the stress distribution by introducing thermal expansion mismatch and acting as a barrier to dislocation motion. Overall, the composite demonstrated enhanced residual stress characteristics, making it a promising candidate for lightweight, fatigue-resistant aerospace components. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

15 pages, 3688 KiB  
Article
Temperature Field Prediction of Glulam Timber Connections Under Fire Hazard: A DeepONet-Based Approach
by Jing Luo, Guangxin Tian, Chen Xu, Shijie Zhang and Zhen Liu
Fire 2025, 8(7), 280; https://doi.org/10.3390/fire8070280 - 16 Jul 2025
Abstract
This paper presents an integrated computational framework for predicting temperature fields in glulam beam–column connections under fire conditions, combining finite element modeling, automated parametric analysis, and deep learning techniques. A high-fidelity heat transfer finite element model was developed, incorporating the anisotropic thermal properties [...] Read more.
This paper presents an integrated computational framework for predicting temperature fields in glulam beam–column connections under fire conditions, combining finite element modeling, automated parametric analysis, and deep learning techniques. A high-fidelity heat transfer finite element model was developed, incorporating the anisotropic thermal properties of wood and temperature-dependent material behavior, validated against experimental data with strong agreement. To enable large-scale parametric studies, an automated Abaqus model modification and data processing system was implemented, improving computational efficiency through the batch processing of geometric and material parameters. The extracted temperature field data was used to train a DeepONet neural network, which achieved accurate temperature predictions (with a L2 relative error of 1.5689% and an R2 score of 0.9991) while operating faster than conventional finite element analysis. This research establishes a complete workflow from fundamental heat transfer analysis to efficient data generation and machine learning prediction, providing structural engineers with practical tools for the performance-based fire safety design of timber connections. The framework’s computational efficiency enables comprehensive parametric studies and design optimizations that were previously impractical, offering significant advancements for structural fire engineering applications. Full article
(This article belongs to the Special Issue Advances in Structural Fire Engineering)
Show Figures

Figure 1

25 pages, 2968 KiB  
Article
Modernizing District Heating Networks: A Strategic Decision-Support Framework for Sustainable Retrofitting
by Reza Bahadori, Matthias Speich and Silvia Ulli-Beer
Energies 2025, 18(14), 3759; https://doi.org/10.3390/en18143759 - 16 Jul 2025
Abstract
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct [...] Read more.
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct strategies for retrofitting district heating grids and includes a portfolio analysis. This framework serves as a tool to guide DH operators and stakeholders in selecting well-founded modernization pathways by considering technical, economic, and social dimensions. The review identifies several promising measures, such as reducing operational temperatures at substations, implementing optimized substations, integrating renewable and waste heat sources, implementing thermal energy storage (TES), deploying smart metering and monitoring infrastructure, and expanding networks while addressing public concerns. Additionally, the review highlights the importance of stakeholder engagement and policy support in successfully implementing these strategies. The developed strategic decision-support framework helps practitioners select a tailored modernization strategy aligned with the local context. Furthermore, the findings show the necessity of adopting a comprehensive approach that combines technical upgrades with robust stakeholder involvement and supportive policy measures to facilitate the transition to sustainable urban heating solutions. For example, the development of decision-support tools enables stakeholders to systematically evaluate and select grid modernization strategies, directly helping to reduce transmission losses and lower greenhouse gas (GHG) emissions contributing to climate goals and enhancing energy security. Indeed, as shown in the reviewed literature, retrofitting high-temperature district heating networks with low-temperature distribution and integrating renewables can lead to near-complete decarbonization of the supplied heat. Additionally, integrating advanced digital technologies, such as smart grid systems, can enhance grid efficiency and enable a greater share of variable renewable energy thus supporting national decarbonization targets. Further investigation could point to the most determining context factors for best choices to improve the sustainability and efficiency of existing DH systems. Full article
Show Figures

Figure 1

22 pages, 1906 KiB  
Article
Explainable and Optuna-Optimized Machine Learning for Battery Thermal Runaway Prediction Under Class Imbalance Conditions
by Abir El Abed, Ghalia Nassreddine, Obada Al-Khatib, Mohamad Nassereddine and Ali Hellany
Thermo 2025, 5(3), 23; https://doi.org/10.3390/thermo5030023 - 15 Jul 2025
Viewed by 89
Abstract
Modern energy storage systems for both power and transportation are highly related to lithium-ion batteries (LIBs). However, their safety depends on a potentially hazardous failure mode known as thermal runaway (TR). Predicting and classifying TR causes can widely enhance the safety of power [...] Read more.
Modern energy storage systems for both power and transportation are highly related to lithium-ion batteries (LIBs). However, their safety depends on a potentially hazardous failure mode known as thermal runaway (TR). Predicting and classifying TR causes can widely enhance the safety of power and transportation systems. This paper presents an advanced machine learning method for forecasting and classifying the causes of TR. A generative model for synthetic data generation was used to handle class imbalance in the dataset. Hyperparameter optimization was conducted using Optuna for four classifiers: Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), tabular network (TabNet), and Extreme Gradient Boosting (XGBoost). A three-fold cross-validation approach was used to guarantee a robust evaluation. An open-source database of LIB failure events is used for model training and testing. The XGBoost model outperforms the other models across all TR categories by achieving 100% accuracy and a high recall (1.00). Model results were interpreted using SHapley Additive exPlanations analysis to investigate the most significant factors in TR predictors. The findings show that important TR indicators include energy adjusted for heat and weight loss, heater power, average cell temperature upon activation, and heater duration. These findings guide the design of safer battery systems and preventive monitoring systems for real applications. They can help experts develop more efficient battery management systems, thereby improving the performance and longevity of battery-operated devices. By enhancing the predictive knowledge of temperature-driven failure mechanisms in LIBs, the study directly advances thermal analysis and energy storage safety domains. Full article
Show Figures

Figure 1

27 pages, 3720 KiB  
Article
Thermal Management in Multi-Stage Hot Forging: Computational Advances in Contact and Spray-Cooling Modelling
by Gonzalo Veiga-Piñeiro, Elena Martin-Ortega and Salvador Pérez-Betanzos
Materials 2025, 18(14), 3318; https://doi.org/10.3390/ma18143318 - 15 Jul 2025
Viewed by 235
Abstract
Innovative approaches in hot forging, such as the use of floating dies, which aim to minimise burr formation by controlling material flow, require precise management of die geometry distortions. These distortions, primarily caused by thermal gradients, must be tightly controlled to prevent malfunctions [...] Read more.
Innovative approaches in hot forging, such as the use of floating dies, which aim to minimise burr formation by controlling material flow, require precise management of die geometry distortions. These distortions, primarily caused by thermal gradients, must be tightly controlled to prevent malfunctions during production. This study introduces a comprehensive thermal analysis framework that captures the complete forging cycle—from billet transfer and die closure to forging, spray-cooling, and lubrication. Two advanced heat transfer models were developed: a pressure- and lubrication-dependent contact heat transfer model and a spray-cooling model that simulates fluid dispersion over die surfaces. These models were implemented within the finite element software FORGE-NxT to evaluate the thermal behaviour of dies under realistic operating conditions. These two new models, contact and spray-cooling, implemented within a full-cycle thermal simulation and validated with industrial thermal imaging data, represent a novel contribution. The simulation results showed an average temperature deviation of just 5.8%, demonstrating the predictive reliability of this approach. This validated framework enables accurate estimation of thermal fields in the dies, and offers a practical tool for optimising process parameters, reducing burr formation, and extending die life. Moreover, its structure and methodology can be adapted to various hot forging applications where thermal control is critical to ensuring part quality and process efficiency. Full article
(This article belongs to the Special Issue Advanced Computational Methods in Manufacturing Processes)
Show Figures

Figure 1

31 pages, 1834 KiB  
Review
A Review of Polylactic Acid (PLA) and Poly(3-hydroxybutyrate) (PHB) as Bio-Sourced Polymers for Membrane Production Applications
by Lacrimioara Senila, Eniko Kovacs and Marin Senila
Membranes 2025, 15(7), 210; https://doi.org/10.3390/membranes15070210 - 14 Jul 2025
Viewed by 228
Abstract
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane [...] Read more.
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane composition. Among these materials, polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB) are two bio-sourced and biodegradable polymers that can be derived from lignocellulosic waste. These polymers also possess suitable characteristics, such as thermal resistance and mechanical strength, which make them potential candidates for replacing conventional plastics. This study provides an overview of recent advances in the production of PLA and PHB, with a focus on their extraction from lignocellulosic biomass, as well as the recent applications of these two biodegradable polymers as sustainable materials in membrane manufacturing. The advantages and limitations of membranes produced from these materials are also summarized. Lastly, an analysis of future trends is provided concerning new sources, production possibilities, and potential applications in water treatment (mainly for metal ions separation), gas separation, oil–water separation, medical applications, drug release control, and food packaging. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

25 pages, 6935 KiB  
Article
Multi-Scale Analysis of the Mitigation Effect of Green Space Morphology on Urban Heat Islands
by Jie Liu, Xueying Wu, Liyu Pan and Chun-Ming Hsieh
Atmosphere 2025, 16(7), 857; https://doi.org/10.3390/atmos16070857 - 14 Jul 2025
Viewed by 138
Abstract
Urban green spaces (UGS) serve as critical mitigators of urban heat islands (UHIs), yet the scale-dependent mechanisms through which UGS morphology regulates thermal effects remain insufficiently understood. This study investigates the multi-scale relationships between UGS spatial patterns and cooling effects in Macao, employing [...] Read more.
Urban green spaces (UGS) serve as critical mitigators of urban heat islands (UHIs), yet the scale-dependent mechanisms through which UGS morphology regulates thermal effects remain insufficiently understood. This study investigates the multi-scale relationships between UGS spatial patterns and cooling effects in Macao, employing morphological spatial pattern analysis (MSPA) to characterize UGS configurations and geographically weighted regression (GWR) to examine city-scale thermal interactions, complemented by patch-scale buffer analyses of area, perimeter, and landscape shape index effects. Results demonstrate that high-UGS-integrity areas significantly enhance cooling capacity (area with proportion of core ≥35% showing optimal performance), while fragmented elements (branches, edges) exacerbate UHIs, with patch-scale analyses revealing nonlinear threshold effects in cooling efficiency. A tripartite classification of UGS by cooling capacity identifies strong mitigation types with optimal shape metrics and cooling extents. These findings establish a tripartite UGS classification system based on cooling performance and identify optimal morphological parameters, advancing understanding of thermal regulation mechanisms in urban environments. This research provides empirical evidence for UGS planning strategies prioritizing core area conservation, morphological optimization, and seasonal adaptation to improve urban climate resilience, offering practical insights for sustainable development in high-density coastal cities. Full article
(This article belongs to the Special Issue Urban Design Guidelines for Climate Change (2nd edition))
Show Figures

Figure 1

26 pages, 3013 KiB  
Review
Intumescent Coatings and Their Applications in the Oil and Gas Industry: Formulations and Use of Numerical Models
by Taher Hafiz, James Covello, Gary E. Wnek, Abdulkareem Melaiye, Yen Wei and Jiujiang Ji
Polymers 2025, 17(14), 1923; https://doi.org/10.3390/polym17141923 - 11 Jul 2025
Viewed by 233
Abstract
The oil and gas industry is subject to significant fire hazards due to the flammability of hydrocarbons and the extreme conditions of operational facilities. Intumescent coatings (ICs) serve as a crucial passive fire protection strategy, forming an insulating char layer when exposed to [...] Read more.
The oil and gas industry is subject to significant fire hazards due to the flammability of hydrocarbons and the extreme conditions of operational facilities. Intumescent coatings (ICs) serve as a crucial passive fire protection strategy, forming an insulating char layer when exposed to heat, thereby reducing heat transfer and delaying structural failure. This review article provides an overview of recent developments in the effectiveness of ICs in mitigating fire risks, enhancing structural resilience, and reducing environmental impacts within the oil and gas industry. The literature surveyed shows that analytical techniques, such as thermogravimetric analysis, scanning electron microscopy, and large-scale fire testing, have been used to evaluate the thermal insulation performances of the coatings. The results indicate significant temperature reductions on protected steel surfaces that extend critical failure times under hydrocarbon fire conditions. Recent advancements in nano-enhanced and bio-derived ICs have also improved thermal stability and mechanical durability. Furthermore, numerical modeling based on heat transfer, mass conservation, and kinetic equations aids in optimizing formulations for real-world applications. Nevertheless, challenges remain in terms of standardizing modeling frameworks and enhancing the environmental sustainability of ICs. This review highlights the progress made and the opportunities for continuous advances and innovation in IC technologies to meet the ever-evolving challenges and complexities in oil and gas industry operations. Consequently, the need to enhance fire protection by utilizing a combination of tools improves predictive modeling and supports regulatory compliance in high-risk industrial environments. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

18 pages, 15953 KiB  
Review
Development of Objective Measurements of Scratching as a Proxy of Atopic Dermatitis—A Review
by Cheuk-Yan Au, Neha Manazir, Huzhaorui Kang and Ali Asgar Saleem Bhagat
Sensors 2025, 25(14), 4316; https://doi.org/10.3390/s25144316 - 10 Jul 2025
Viewed by 258
Abstract
Eczema, or atopic dermatitis (AD), is a chronic inflammatory skin condition characterized by persistent itching and scratching, significantly impacting patients’ quality of life. Effective monitoring of scratching behaviour is crucial for assessing disease severity, treatment efficacy, and understanding the relationship between itch and [...] Read more.
Eczema, or atopic dermatitis (AD), is a chronic inflammatory skin condition characterized by persistent itching and scratching, significantly impacting patients’ quality of life. Effective monitoring of scratching behaviour is crucial for assessing disease severity, treatment efficacy, and understanding the relationship between itch and sleep disturbances. This review explores current technological approaches for detecting and monitoring scratching and itching in AD patients, categorising them into contact-based and non-contact-based methods. Contact-based methods primarily involve wearable sensors, such as accelerometers, electromyography (EMG), and piezoelectric sensors, which track limb movements and muscle activity associated with scratching. Non-contact methods include video-based motion tracking, thermal imaging, and acoustic analysis, commonly employed in sleep clinics and controlled environments to assess nocturnal scratching. Furthermore, emerging artificial intelligence (AI)-driven approaches leveraging machine learning for automated scratch detection are discussed. The advantages, limitations, and validation challenges of these technologies, including accuracy, user comfort, data privacy, and real-world applicability, are critically analysed. Finally, we outline future research directions, emphasizing the integration of multimodal monitoring, real-time data analysis, and patient-centric wearable solutions to improve disease management. This review serves as a comprehensive resource for clinicians, researchers, and technology developers seeking to advance objective itch and scratch monitoring in AD patients. Full article
Show Figures

Figure 1

24 pages, 7102 KiB  
Article
Comparing a New Passive Lining Method for Jet Noise Reduction Using 3M™ Nextel™ Ceramic Fabrics Against Ejector Nozzles
by Alina Bogoi, Grigore Cican, Laurențiu Cristea, Daniel-Eugeniu Crunțeanu, Constantin Levențiu and Andrei-George Totu
Technologies 2025, 13(7), 295; https://doi.org/10.3390/technologies13070295 - 9 Jul 2025
Viewed by 258
Abstract
This study investigates the complementary noise control capabilities of two passive jet noise mitigation strategies: a traditional ejector nozzle and a novel application of 3M™ Nextel™ 312 ceramic fabric as a thermal–acoustic liner on the central cone of a micro turbojet nozzle. Three [...] Read more.
This study investigates the complementary noise control capabilities of two passive jet noise mitigation strategies: a traditional ejector nozzle and a novel application of 3M™ Nextel™ 312 ceramic fabric as a thermal–acoustic liner on the central cone of a micro turbojet nozzle. Three nozzle configurations, baseline, ejector, and Nextel-treated, were evaluated under realistic operating conditions using traditional and advanced acoustic diagnostics applied to data from a five-microphone circular array. The results show that while the ejector provides superior directional suppression and low-frequency redistribution, making it ideal for far-field noise control, it maintains high total energy levels and requires structural modifications. In contrast, the Nextel lining achieves comparable reductions in overall noise, especially in high-frequency ranges, while minimizing structural impact and promoting spatial energy dissipation. Analyses in both the time-frequency and spatial–spectral domains demonstrate that the Nextel configuration not only lowers acoustic energy but also disrupts coherent noise patterns, making it particularly effective for near-field protection in compact propulsion systems. A POD analysis further shows that NEXTEL more evenly distributes energy across mid-order modes, indicating its role in smoothing spatial variations and dampening localized acoustic concentrations. According to these results, ceramic fabric linings offer a lightweight, cost-effective solution for reducing the high noise levels typically associated with drones and UAVs powered by small turbojets. When combined with ejectors, they could enhance acoustic suppression in compact propulsion systems where space and weight are critical. Full article
(This article belongs to the Special Issue Aviation Science and Technology Applications)
Show Figures

Figure 1

18 pages, 2582 KiB  
Article
Thermal Stability and Eutectic Point of Chloride-Based High-Temperature Molten Salt Energy Systems
by Sunghyun Yoo, Jihun Kim, Sungyeol Choi and Jeong Ik Lee
Energies 2025, 18(14), 3616; https://doi.org/10.3390/en18143616 - 9 Jul 2025
Viewed by 200
Abstract
In response to the growing impact of the climate crisis, many countries are accelerating efforts to develop sustainable and carbon-free energy solutions. This has led to increasing interest in advanced energy storage and conversion technologies, particularly the development of high-temperature molten salt energy [...] Read more.
In response to the growing impact of the climate crisis, many countries are accelerating efforts to develop sustainable and carbon-free energy solutions. This has led to increasing interest in advanced energy storage and conversion technologies, particularly the development of high-temperature molten salt energy systems. Among these, chloride salt-based molten salt systems, which offer excellent thermal properties such as high thermal conductivity, low melting points, and favorable chemical stability, are emerging as strong candidates for thermal energy storage and heat-transfer applications. This study focuses on deriving key thermophysical properties essential for selecting suitable molten salt heat-transfer fluids by examining their eutectic points and thermal stability with respect to various salt compositions. Three chloride mixtures—NaCl-MgCl2, NaCl-KCl-MgCl2, and NaCl-KCl-ZnCl2—were evaluated for potential use in high-temperature molten salt energy systems. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were employed to measure the melting points and thermal stability of molten salts with various compositions near their eutectic regions. Experimental results were compared with predicted eutectic points to assess the thermal performance of each salt mixture. The findings indicate that the NaCl-KCl-MgCl2 mixture exhibits the most promising characteristics, including a low melting point below 400 °C and superior thermal stability, making it highly suitable as a heat-transfer fluid in high-temperature molten salt energy systems. In contrast, NaCl-KCl-ZnCl2 was found unsuitable for such applications due to its high hygroscopicity and poor thermal stability. This study provides essential data for selecting optimal molten salt compositions for the efficient and reliable operation of high-temperature molten salt energy systems. Full article
Show Figures

Figure 1

19 pages, 2841 KiB  
Article
Next-Generation Sustainable Composites with Flax Fibre and Biobased Vitrimer Epoxy Polymer Matrix
by Hoang Thanh Tuyen Tran, Johannes Baur, Racim Radjef, Mostafa Nikzad, Robert Bjekovic, Stefan Carosella, Peter Middendorf and Bronwyn Fox
Polymers 2025, 17(14), 1891; https://doi.org/10.3390/polym17141891 - 8 Jul 2025
Viewed by 354
Abstract
This work presents the development of two vanillin-based vitrimer epoxy flax fibre-reinforced composites, with both the VER1-1-FFRC (a vitrimer-to-epoxy ratio of 1:1) and VER1-2-FFRC (a vitrimer-to-epoxy ratio of 1:2), via a vacuum-assisted resin infusion. The thermal and mechanical properties of the resulting vitrimer [...] Read more.
This work presents the development of two vanillin-based vitrimer epoxy flax fibre-reinforced composites, with both the VER1-1-FFRC (a vitrimer-to-epoxy ratio of 1:1) and VER1-2-FFRC (a vitrimer-to-epoxy ratio of 1:2), via a vacuum-assisted resin infusion. The thermal and mechanical properties of the resulting vitrimer epoxy flax composites were characterised using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and mechanical four-point bending tests, alongside studies of solvent resistance and chemical recyclability. Both the VER1-1-FFRC (degradation temperature Tdeg of 377.0 °C) and VER1-2-FFRC (Tdeg of 395.9 °C) exhibited relatively high thermal stability, which is comparable to the reference ER-FFRC (Tdeg of 396.7 °C). The VER1-1-FFRC, VER1-2-FFRC, and ER-FFRC demonstrated glass transition temperatures Tg of 54.1 °C, 68.8 °C, and 83.4 °C, respectively. The low Tg of the vitrimer composite is due to the low crosslink density in the vitrimer epoxy resin. Particularly, the crosslinked density of the VER1-1-FFRC was measured to be 319.5 mol·m−3, which is lower than that obtained from the VER1-2-FFRC (434.7 mol·m−3) and ER-FFRC (442.9 mol·m−3). Furthermore, the mechanical properties of these composites are also affected by the low crosslink density. Indeed, the flexural strength of the VER1-1-FFRC was found to be 76.7 MPa, which was significantly lower than the VER1-2-FFRC (116.2 MPa) and the ER-FFRC (138.3 MPa). Despite their lower thermal and mechanical performance, these vitrimer composites offer promising recyclability and contribute to advancing sustainable composite materials. Full article
Show Figures

Graphical abstract

20 pages, 9651 KiB  
Article
Recovery of Vegetable Fibers from Licorice Processing Waste and a Case Study for Their Use in Green Building Products
by Luigi Madeo, Anastasia Macario, Sebastiano Candamano and Pierantonio De Luca
Clean Technol. 2025, 7(3), 55; https://doi.org/10.3390/cleantechnol7030055 - 7 Jul 2025
Viewed by 236
Abstract
The present research is aimed at the recovery of vegetable fibers from licorice root processing waste through simple methods that do not involve the use of chemical reagents to guarantee a complete eco-sustainability approach and for their use in the production of fiber-reinforced [...] Read more.
The present research is aimed at the recovery of vegetable fibers from licorice root processing waste through simple methods that do not involve the use of chemical reagents to guarantee a complete eco-sustainability approach and for their use in the production of fiber-reinforced ecomaterials. The waste was treated through several washing cycles with only water at different temperatures to identify the optimal conditions to obtain clean fibers. The clean fibers and the waste were analyzed and characterized in advance by scanning electron microscopy (SEM), microanalysis (EDS) and thermal analysis (DSC). Subsequently, both the clean fibers and the waste were used to produce fiber-reinforced plaster artifacts. The mechanical properties of the artifacts were measured as a function of % clean fibers or untreated waste. The results obtained showed that it is possible to effectively recover clean vegetable fibers from licorice waste through repeated washing cycles of 30 min with only water. By increasing the temperature, the necessary washing cycles decrease, and a good compromise is five washes at 100 °C. The yield of clean fibers compared to waste is 50%. The creation of prototypes of gypsum matrix panels, which incorporate fibers recovered from licorice processing waste through the methodology tested in this study, has also been successfully realized, representing a significant step forward towards practical applications in the field of eco-friendly construction. Full article
Show Figures

Graphical abstract

Back to TopTop