Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = adjustable stiffness actuator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7687 KiB  
Article
A Piezoelectric-Actuated Variable Stiffness Miniature Rotary Joint
by Yifan Lu, Yifei Yang, Xiangyu Ma, Ce Chen, Tong Qin, Honghao Yue and Siqi Ma
Materials 2025, 18(14), 3289; https://doi.org/10.3390/ma18143289 - 11 Jul 2025
Viewed by 425
Abstract
With the acceleration of industrialization, deformable mechanisms that can adapt to complex environments have gained widespread applications. Joints serve as carriers for transmitting forces and motions between components, and their stiffness significantly influences the static and dynamic characteristics of deformable mechanisms. A variable [...] Read more.
With the acceleration of industrialization, deformable mechanisms that can adapt to complex environments have gained widespread applications. Joints serve as carriers for transmitting forces and motions between components, and their stiffness significantly influences the static and dynamic characteristics of deformable mechanisms. A variable stiffness joint is crucial for ensuring the safety and reliability of the system, as well as for enhancing environmental adaptability. However, existing variable stiffness joints fail to meet the requirements for miniaturization, lightweight construction, and fast response. This paper proposes a piezoelectric-actuated variable stiffness miniature rotary joint featuring a compact structure, monitorable loading state, and rapid response. Given that the piezoelectric stack expands and contracts when energized, this paper proposes a transmission principle for stiffness adjustment by varying the pressure and friction between active and passive components. This joint utilizes a flexible hinge mechanism for displacement amplification and incorporates a torque sensor based on strain monitoring. A static model is developed based on piezoelectric equations and displacement amplification characteristics, and simulations confirm the feasibility of the stiffness adjustment scheme. The mechanical characteristics of various flexible hinge structures are analyzed, and the effects of piezoelectric actuation capability and external load on stiffness adjustment are examined. The experimental results demonstrate that the joint can adjust stiffness, and the sensor is calibrated using the least squares algorithm to monitor the stress state of the joint in real time. Full article
(This article belongs to the Special Issue Advanced Design and Synthesis in Piezoelectric Smart Materials)
Show Figures

Figure 1

23 pages, 888 KiB  
Article
Active Feedback-Driven Defect-Band Steering in Phononic Crystals with Piezoelectric Defects: A Mathematical Approach
by Soo-Ho Jo
Mathematics 2025, 13(13), 2126; https://doi.org/10.3390/math13132126 - 29 Jun 2025
Viewed by 327
Abstract
Defective phononic crystals (PnCs) have garnered significant attention for their ability to localize and amplify elastic wave energy within defect sites or to perform narrowband filtering at defect-band frequencies. The necessity for continuously tunable defect characteristics is driven by the variable excitation frequencies [...] Read more.
Defective phononic crystals (PnCs) have garnered significant attention for their ability to localize and amplify elastic wave energy within defect sites or to perform narrowband filtering at defect-band frequencies. The necessity for continuously tunable defect characteristics is driven by the variable excitation frequencies encountered in rotating machinery. Conventional tuning methodologies, including synthetic negative capacitors or inductors integrated with piezoelectric defects, are constrained to fixed, offline, and incremental adjustments. To address these limitations, the present study proposes an active feedback approach that facilitates online, wide-range steering of defect bands in a one-dimensional PnC. Each defect is equipped with a pair of piezoelectric sensors and actuators, governed by three independently tunable feedback gains: displacement, velocity, and acceleration. Real-time sensor signals are transmitted to a multivariable proportional controller, which dynamically modulates local electroelastic stiffness via the actuators. This results in continuous defect-band frequency shifts across the entire band gap, along with on-demand sensitivity modulation. The analytical model that incorporates these feedback gains has been demonstrated to achieve a level of agreement with COMSOL benchmarks that exceeds 99%, while concurrently reducing computation time from hours to seconds. Displacement- and acceleration-controlled gains yield predictable, monotonic up- or down-shifts in defect-band frequency, whereas the velocity-controlled gain permits sensitivity adjustment without frequency drifts. Furthermore, the combined-gain operation enables the concurrent tuning of both the center frequency and the filtering sensitivity, thereby facilitating an instantaneous remote reconfiguration of bandpass filters. This framework establishes a new class of agile, adaptive ultrasonic devices with applications in ultrasonic imaging, structural health monitoring, and prognostics and health management. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

30 pages, 4288 KiB  
Article
Adaptive Control of the Aerodynamic Flaps of the Savonius Rotor Under Variable Wind Loads
by Alina Fazylova, Kuanysh Alipbayev, Teodor Iliev and Nazgul Kaliyeva
Appl. Sci. 2025, 15(11), 6096; https://doi.org/10.3390/app15116096 - 28 May 2025
Viewed by 416
Abstract
This study presents the development of an adaptive control system for aerodynamic flaps of a two-tier vertical-axis Savonius wind rotor to improve performance under variable wind loads. The approach includes detailed kinematic and dynamic modeling of the flap actuation mechanism, accounting for real-world [...] Read more.
This study presents the development of an adaptive control system for aerodynamic flaps of a two-tier vertical-axis Savonius wind rotor to improve performance under variable wind loads. The approach includes detailed kinematic and dynamic modeling of the flap actuation mechanism, accounting for real-world nonlinearities such as backlash, friction, and impact loads. The mechanical transmission system is analyzed to evaluate the influence of design parameters on system dynamics and control accuracy. A mathematical model of an adaptive PID controller is proposed, capable of real-time adjustment of gain parameters based on external wind torque. Numerical simulations under various wind conditions demonstrate that adaptive tuning significantly enhances system stability, reduces overshoot, and ensures faster response compared to fixed-parameter controllers. Sensitivity analysis confirms the importance of mass distribution, mechanical stiffness, and damping in minimizing vibrations and ensuring durability. The developed system provides a reliable solution for efficient wind energy conversion in dynamic environments, including urban and coastal applications. Full article
Show Figures

Figure 1

24 pages, 3512 KiB  
Article
Stiffness Regulation of Cable-Driven Redundant Manipulators Through Combined Optimization of Configuration and Cable Tension
by Zhuo Liang, Pengkun Quan and Shichun Di
Mathematics 2025, 13(11), 1714; https://doi.org/10.3390/math13111714 - 23 May 2025
Viewed by 307
Abstract
Cable-driven redundant manipulators (CDRMs) are widely applied in various fields due to their notable advantages. Stiffness regulation capability is essential for CDRMs, as it enhances their adaptability and stability in diverse task scenarios. However, their stiffness regulation still faces two main challenges. First, [...] Read more.
Cable-driven redundant manipulators (CDRMs) are widely applied in various fields due to their notable advantages. Stiffness regulation capability is essential for CDRMs, as it enhances their adaptability and stability in diverse task scenarios. However, their stiffness regulation still faces two main challenges. First, stiffness regulation methods that involve physical structural modifications increase system complexity and reduce flexibility. Second, methods that rely solely on cable tension are constrained by the inherent stiffness of the cables, limiting the achievable regulation range. To address these challenges, this paper proposes a novel stiffness regulation method for CDRMs through the combined optimization of configuration and cable tension. A stiffness model is established to analyze the influence of the configuration and cable tension on stiffness. Due to the redundancy in degrees of freedom (DOFs) and actuation cables, there exist infinitely many configuration solutions for a specific pose and infinitely many cable tension solutions for a specific configuration. This paper proposes a dual-level stiffness regulation strategy that combines configuration and cable tension optimization. Motion-level and tension-level factors are introduced as control variables into the respective optimization models, enabling effective manipulation of configuration and tension solutions for stiffness regulation. An improved differential evolution algorithm is employed to generate adjustable configuration solutions based on motion-level factors, while a modified gradient projection method is adopted to derive adjustable cable tension solutions based on tension-level factors. Finally, a planar CDRM is used to validate the feasibility and effectiveness of the proposed method. Simulation results demonstrate that stiffness can be flexibly regulated by modifying motion-level and tension-level factors. The combined optimization method achieves a maximum RSR of 17.78 and an average RSR of 12.60 compared to configuration optimization, and a maximum RSR of 1.37 and an average RSR of 1.10 compared to tension optimization, demonstrating a broader stiffness regulation range. Full article
Show Figures

Figure 1

24 pages, 13076 KiB  
Article
Three-Chamber Actuated Humanoid Joint-Inspired Soft Gripper: Design, Modeling, and Experimental Validation
by Yinlong Zhu, Qin Bao, Hu Zhao and Xu Wang
Sensors 2025, 25(8), 2363; https://doi.org/10.3390/s25082363 - 8 Apr 2025
Viewed by 453
Abstract
To address the limitations of single-chamber soft grippers, such as constant curvature, insufficient motion flexibility, and restricted fingertip movement, this study proposes a soft gripper inspired by the structure of the human hand. The designed soft gripper consists of three fingers, each comprising [...] Read more.
To address the limitations of single-chamber soft grippers, such as constant curvature, insufficient motion flexibility, and restricted fingertip movement, this study proposes a soft gripper inspired by the structure of the human hand. The designed soft gripper consists of three fingers, each comprising three soft joints and four phalanges. The air chambers in each joint are independently actuated, enabling flexible grasping by adjusting the joint air pressure. The constraint layer is composed of a composite material with a mass ratio of 5:1:0.75 of PDMS base, PDMS curing agent, and PTFE, which enhances the overall finger stiffness and fingertip load capacity. A nonlinear mathematical model is established to describe the relationship between the joint bending angle and actuation pressure based on the constant curvature assumption. Additionally, the kinematic model of the finger is developed using the D–H parameter method. Finite element simulations using ABAQUS analyze the effects of different joint pressures and phalange lengths on the grasping range, as well as the fingertip force under varying actuation pressures. Bending performance and fingertip force tests were conducted on the soft finger actuator, with the maximum fingertip force reaching 2.21 N. The experimental results show good agreement with theoretical and simulation results. Grasping experiments with variously sized fruits and everyday objects demonstrate that, compared to traditional single-chamber soft grippers, the proposed humanoid joint-inspired soft gripper significantly expands the grasping range and improves grasping force by four times, achieving a maximum grasp weight of 0.92 kg. These findings validate its superior grasping performance and potential for practical applications. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

31 pages, 21628 KiB  
Article
Dynamic Modelling and Experimental Investigation of an Active–Passive Variable Stiffness Actuator
by Caidong Wang, Zhou Zhang, Yanqiu Xiao, Pengfei Gao and Xiaoli Liu
Actuators 2025, 14(4), 169; https://doi.org/10.3390/act14040169 - 29 Mar 2025
Cited by 1 | Viewed by 568
Abstract
To overcome the limitations imposed by the low flexible angle of conventional robots, an active–passive variable stiffness elastic actuator (APVSA) is investigated and a nonlinear dynamic model for the APVSA is established, considering the factors of the moment of inertia, stiffness and damping [...] Read more.
To overcome the limitations imposed by the low flexible angle of conventional robots, an active–passive variable stiffness elastic actuator (APVSA) is investigated and a nonlinear dynamic model for the APVSA is established, considering the factors of the moment of inertia, stiffness and damping of elastic elements, meshing stiffness of gear systems, nonlinear backlash, nonlinear meshing damping, and comprehensive transmission error. The established dynamic model is discretized by the forward Euler method, and the variable stiffness performance and the influence of nonlinear factors on the APVSA are analysed by Adams and Simulink simulations, respectively. A physical prototype and an experimental platform were assembled, and the dynamic and static variable stiffness experiments were conducted. The experimental results realized the expected stiffness adjustment target and provided the foundation for the next step of control. Full article
(This article belongs to the Section Actuator Materials)
Show Figures

Figure 1

27 pages, 41978 KiB  
Article
Integrating Temperature History into Inherent Strain Methodology for Improved Distortion Prediction in Laser Powder Bed Fusion
by Iñaki Setien, Michele Chiumenti, Maria San Sebastian, Carlos A. Moreira and Manuel A. Caicedo
Metals 2025, 15(2), 143; https://doi.org/10.3390/met15020143 - 30 Jan 2025
Viewed by 1060
Abstract
Powder bed fusion–laser beam (PBF-LB) additive manufacturing enables the production of intricate, lightweight metal components aligned with Industry 4.0 and sustainable principles. However, residual stresses and distortions challenge the dimensional accuracy and reliability of parts. Inherent strain methods (ISMs) provide a computationally efficient [...] Read more.
Powder bed fusion–laser beam (PBF-LB) additive manufacturing enables the production of intricate, lightweight metal components aligned with Industry 4.0 and sustainable principles. However, residual stresses and distortions challenge the dimensional accuracy and reliability of parts. Inherent strain methods (ISMs) provide a computationally efficient approach to predicting these issues but often overlook transient thermal histories, limiting their accuracy. This paper introduces an enhanced inherent strain method (EISM) for PBF-LB, integrating macro-scale temperature histories into the inherent strain framework. By incorporating temperature-dependent adjustments to the precomputed inherent strain tensor, EISM improves the prediction of residual stresses and distortions, addressing the limitations of the original ISM. Validation was conducted on two Ti-6Al-4V geometries—a non-symmetric bridge and a complex structure (steady blowing actuator)—through comparisons with experimental measurements of temperature, distortion, and residual stress. Results demonstrate improved accuracy, particularly in capturing localized thermal and mechanical effects. Sensitivity analyses emphasize the need for adaptive layer lumping and mesh refinement in regions with abrupt stiffness changes, such as shrink lines. While EISM slightly increases computational cost, it remains feasible for industrial-scale applications. This work bridges the gap between simplified inherent strain models and high-fidelity simulations, offering a robust tool for simulation-driven optimisation. Full article
(This article belongs to the Special Issue Advances in 3D Printing Technologies of Metals—2nd Edition)
Show Figures

Figure 1

19 pages, 5783 KiB  
Article
Three-Dimensional Printable Magnetic Hydrogels with Adjustable Stiffness and Adhesion for Magnetic Actuation and Magnetic Hyperthermia Applications
by Xueting Xuan, Yi Li, Xing Xu, Zhouyi Pan, Yu Li, Yonghao Luo and Li Sun
Gels 2025, 11(1), 67; https://doi.org/10.3390/gels11010067 - 15 Jan 2025
Cited by 3 | Viewed by 1506
Abstract
Stimuli-responsive hydrogels hold immense promise for biomedical applications, but conventional gelation processes often struggle to achieve the precision and complexity required for advanced functionalities such as soft robotics, targeted drug delivery, and tissue engineering. This study introduces a class of 3D-printable magnetic hydrogels [...] Read more.
Stimuli-responsive hydrogels hold immense promise for biomedical applications, but conventional gelation processes often struggle to achieve the precision and complexity required for advanced functionalities such as soft robotics, targeted drug delivery, and tissue engineering. This study introduces a class of 3D-printable magnetic hydrogels with tunable stiffness, adhesion, and magnetic responsiveness, prepared through a simple and efficient “one-pot” method. This approach enables precise control over the hydrogel’s mechanical properties, with an elastic modulus ranging from 43 kPa to 277 kPa, tensile strength from 93 kPa to 421 kPa, and toughness from 243 kJ/m3 to 1400 kJ/m3, achieved by modulating the concentrations of acrylamide (AM) and Fe3O4 nanoparticles. These hydrogels exhibit rapid heating under an alternating magnetic field, reaching 44.4 °C within 600 s at 15 wt%, demonstrating the potential for use in mild magnetic hyperthermia. Furthermore, the integration of Fe3O4 nanoparticles and nanoclay into the AM precursor optimizes the rheological properties and ensures high printability, enabling the fabrication of complex, high-fidelity structures through extrusion-based 3D printing. Compared to existing magnetic hydrogels, our 3D-printable platform uniquely combines adjustable mechanical properties, strong adhesion, and multifunctionality, offering enhanced capabilities for use in magnetic actuation and hyperthermia in biomedical applications. This advancement marks a significant step toward the scalable production of next-generation intelligent hydrogels for precision medicine and bioengineering. Full article
(This article belongs to the Special Issue Hydrogel-Based Scaffolds with a Focus on Medical Use (2nd Edition))
Show Figures

Graphical abstract

16 pages, 4421 KiB  
Article
A Novel Spring-Actuated Low-Velocity Impact Testing Setup
by Mesut Kucuk, Moheldeen Hejazi and Ali Sari
Appl. Syst. Innov. 2024, 7(6), 108; https://doi.org/10.3390/asi7060108 - 31 Oct 2024
Viewed by 1337
Abstract
Evaluating the behavior of materials and their response under low-velocity dynamic impact (less than 30 m/s) is a challenging task in various industries. It requires customized test methods to replicate real-world impact scenarios and capture important material responses accurately. This study introduces a [...] Read more.
Evaluating the behavior of materials and their response under low-velocity dynamic impact (less than 30 m/s) is a challenging task in various industries. It requires customized test methods to replicate real-world impact scenarios and capture important material responses accurately. This study introduces a novel spring-actuated testing setup for low-velocity impact (LVI) scenarios, addressing the limitations of existing methods. The setup provides tunable parameters, including adjustable impactor mass (1 to 250 kg), velocity (0.1 to 32 m/s), and spring stiffness (100 N/m to 100 kN/m), allowing for flexible simulation of dynamic impact conditions. Validation experiments on steel plates with a support span of 800 mm and thickness of 5 mm demonstrated the system’s satisfactory accuracy in measuring impact forces (up to 714.2 N), displacements (up to 40.5 mm), and velocities. A calibration procedure is also explored to estimate energy loss using numerical modeling, further enhancing the test setup’s precision and utility. The results underline the effectiveness of the proposed experimental setup in capturing material responses during low-velocity impact events. Full article
Show Figures

Figure 1

23 pages, 7112 KiB  
Article
Design and Evaluation of a Novel Variable Stiffness Hip Joint Exoskeleton
by Tao Yang, Chifu Yang, Feng Jiang and Bowen Tian
Sensors 2024, 24(20), 6693; https://doi.org/10.3390/s24206693 - 17 Oct 2024
Viewed by 1732
Abstract
An exoskeleton is a wearable device with human–machine interaction characteristics. An ideal exoskeleton should have kinematic and kinetic characteristics similar to those of the wearer. Most traditional exoskeletons are driven by rigid actuators based on joint torque or position control algorithms. In order [...] Read more.
An exoskeleton is a wearable device with human–machine interaction characteristics. An ideal exoskeleton should have kinematic and kinetic characteristics similar to those of the wearer. Most traditional exoskeletons are driven by rigid actuators based on joint torque or position control algorithms. In order to achieve better human–robot interaction, flexible actuators have been introduced into exoskeletons. However, exoskeletons with fixed stiffness cannot adapt to changing stiffness requirements during assistance. In order to achieve collaborative control of stiffness and torque, a bionic variable stiffness hip joint exoskeleton (BVS-HJE) is designed in this article. The exoskeleton proposed in this article is inspired by the muscles that come in agonist–antagonist pairs, whose actuators are arranged in an antagonistic form on both sides of the hip joint. Compared with other exoskeletons, it has antagonistic actuators with variable stiffness mechanisms, which allow the stiffness control of the exoskeleton joint independent of force (or position) control. A BVS-HJE model was established to study its variable stiffness and static characteristics. Based on the characteristics of the BVS-HJE, a control strategy is proposed that can achieve independent adjustment of joint torque and joint stiffness. In addition, the variable stiffness mechanism can estimate the output force based on the established mathematical model through an encoder, thus eliminating the additional force sensors in the control process. Finally, the variable stiffness properties of the actuator and the controllability of joint stiffness and joint torque were verified through experiments. Full article
Show Figures

Figure 1

15 pages, 8087 KiB  
Article
A Novel Caterpillar-Inspired Vascular Interventional Robot Navigated by Magnetic Sinusoidal Mechanism
by Xinping Zhu, Hanwei Zhou, Xiaoxiao Zhu and Kundong Wang
Actuators 2024, 13(10), 412; https://doi.org/10.3390/act13100412 - 13 Oct 2024
Cited by 1 | Viewed by 4149
Abstract
Magnetic soft continuum robots (MSCRs) hold significant potential in fulfilling the requirements of vascular interventional robots, enabling safe access to difficult-to-reach areas with enhanced active maneuverability, shape morphing capabilities, and stiffness variability. Their primary advantage lies in their tether-less actuation mechanism that can [...] Read more.
Magnetic soft continuum robots (MSCRs) hold significant potential in fulfilling the requirements of vascular interventional robots, enabling safe access to difficult-to-reach areas with enhanced active maneuverability, shape morphing capabilities, and stiffness variability. Their primary advantage lies in their tether-less actuation mechanism that can safely adapt to complex vessel structures. Existing commercial MSCRs primarily employ a magnetic-pull strategy, which suffers from insufficient driving force and a single actuation strategy, limiting their clinical applicability. Inspired by the inchworm crawling locomotion gait, we herein present a novel MSCR that integrates a magnetic sinusoidal actuation mechanism with adjustable frequency and kirigami structures. The developed MSCRs consist of two permanent magnets connected by a micro-spring, which is coated with a silicone membrane featuring a specific notch array. This design enables bio-inspired crawling with controllable velocity and active maneuverability. An analytical model of the magnetic torque and finite element analysis (FEA) simulations of the MSCRs has been constructed. Additionally, the prototype has been validated through two-dimensional in-vitro tracking experiments with actuation frequencies ranging from 1 to 10 Hz. Its stride efficiency has also been verified in a three-dimensional (3D) coronary artery phantom. Diametrically magnetized spherical chain tip enhances active steerability. Kirigami skin is coated over the novel guidewire and catheter, not only providing proximal anchorage for improved stride efficiency but also serving similar function as a cutting balloon. Under the actuation of an external magnetic field, the proposed MSCRs demonstrate the ability to traverse bifurcations and tortuous paths, indicating their potential for dexterous flexibility in pathological vessels. Full article
(This article belongs to the Special Issue Design of Smart Endorobots: Actuators, Sensors and Control Strategies)
Show Figures

Figure 1

14 pages, 2468 KiB  
Article
Design and Analysis of a Symmetric Joint Module for a Modular Wire-Actuated Robotic Arm with Symmetric Variable-Stiffness Units
by Can Qian, Kaisheng Yang, Yangfei Ruan, Junhao Hu, Zixuan Shao, Chongchong Wang and Chuanqi Xie
Symmetry 2024, 16(7), 829; https://doi.org/10.3390/sym16070829 - 2 Jul 2024
Viewed by 1615
Abstract
Collaborative robots are used in scenarios requiring interaction with humans. In order to improve the safety and adaptability of collaborative robots during human–robot interaction, this paper proposes a modular wire-actuated robotic arm with symmetric variable-stiffness units. The variable-stiffness unit is employed to extend [...] Read more.
Collaborative robots are used in scenarios requiring interaction with humans. In order to improve the safety and adaptability of collaborative robots during human–robot interaction, this paper proposes a modular wire-actuated robotic arm with symmetric variable-stiffness units. The variable-stiffness unit is employed to extend the stiffness-adjustment range of the robotic arm. The variable-stiffness unit is designed based on flexure, featuring a compact and simple structure. The stiffness–force relationship of the variable-stiffness unit can be fitted by a quadratic function with an R-squared value of 0.99981, indicating weak nonlinearity. Based on the kinematics and stiffness analysis of the symmetric joint module of the robotic arm, the orientation of the joint module can be adjusted by regulating the length of the wires and the stiffness of the joint module can be adjusted by regulating the tension of the wires. Because of the actuation redundancy, the orientation and stiffness of the joint module can be adjusted synchronously. Furthermore, a direct method is proposed for the stiffness-oriented wire-tension-distribution problem of the 1-DOF joint module. A simulation is carried out to verify the proposed method. The simulation result shows that the deviation between the calculated stiffness and the desired stiffness was less than 0.005%. Full article
(This article belongs to the Special Issue Symmetry in Robot Design and Application)
Show Figures

Figure 1

24 pages, 9181 KiB  
Article
Active Compliance Smart Control Strategy of Hybrid Mechanism for Bonnet Polishing
by Ze Li, Chi Fai Cheung, Kin Man Lam and Daniel Pak Kong Lun
Sensors 2024, 24(2), 421; https://doi.org/10.3390/s24020421 - 10 Jan 2024
Cited by 3 | Viewed by 1727
Abstract
Compliance control strategies have been utilised for the ultraprecision polishing process for many years. Most researchers execute active compliance control strategies by employing impedance control law on a robot development platform. However, these methods are limited by the load capacity, positioning accuracy, and [...] Read more.
Compliance control strategies have been utilised for the ultraprecision polishing process for many years. Most researchers execute active compliance control strategies by employing impedance control law on a robot development platform. However, these methods are limited by the load capacity, positioning accuracy, and repeatability of polishing mechanisms. Moreover, a sophisticated actuator mounted at the end of the end-effector of robots is difficult to maintain in the polishing scenario. In contrast, a hybrid mechanism for polishing that possesses the advantages of serial and parallel mechanisms can mitigate the above problems, especially when an active compliance control strategy is employed. In this research, a high-frequency-impedance robust force control strategy is proposed. It outputs a position adjustment value directly according to a contact pressure adjustment value. An open architecture control system with customised software is developed to respond to external interrupts during the polishing procedure, implementing the active compliance control strategy on a hybrid mechanism. Through this method, the hybrid mechanism can adapt to the external environment with a given contact pressure automatically instead of relying on estimating the environment stiffness. Experimental results show that the proposed strategy adapts the unknown freeform surface without overshooting and improves the surface quality. The average surface roughness value decreases from 0.057 um to 0.027 um. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

19 pages, 14989 KiB  
Article
Design and Experiment Investigation on Soft Grippers with Modular Variable Stiffness Structure
by Pengbing Zhao, Chuan Xiong, Zheng Gao, Xiang Liu and Yanbin Zeng
Micromachines 2024, 15(1), 88; https://doi.org/10.3390/mi15010088 - 30 Dec 2023
Cited by 4 | Viewed by 1959
Abstract
Soft grippers have good adaptability and flexibility for grasping irregular or fragile objects, and to further enhance their stiffness, soft grippers with variable stiffness have been developed. However, existing soft grippers with variable stiffness have the disadvantages of complex structure and poor interchangeability. [...] Read more.
Soft grippers have good adaptability and flexibility for grasping irregular or fragile objects, and to further enhance their stiffness, soft grippers with variable stiffness have been developed. However, existing soft grippers with variable stiffness have the disadvantages of complex structure and poor interchangeability. Here, a soft gripper with modular variable stiffness is proposed that has flexible Velcro embedded in the bottom layer of the soft actuator and one side of the variable stiffness cavity respectively, and both the general and variable stiffness grasping modes are achieved by separation or combination. First of all, according to the neo-Hookean model and the assumption of constant curvature, a free bending model of the soft actuator is established and optimal structural parameters of the soft actuator are obtained by the Genetic Algorithm. Then, influence of the driving pressure on the soft actuator stiffness is investigated, and a mathematical model of the variable stiffness is established. Finally, correctness of the statics model and the stiffness model were verified by experiments. Experimental results indicate that the proposed soft gripper with modular variable stiffness structure has excellent adaptability and stability to different objects, outstanding load bearing capacity, and stiffness adjustment capability. Full article
Show Figures

Figure 1

19 pages, 6535 KiB  
Article
Microgravity Decoupling in Torsion Pendulum for Enhanced Micro-Newton Thrust Measurement
by Linxiao Cong, Jiabin Wang, Jianfei Long, Jianchao Mu, Haoye Deng and Congfeng Qiao
Appl. Sci. 2024, 14(1), 91; https://doi.org/10.3390/app14010091 - 21 Dec 2023
Cited by 1 | Viewed by 2005
Abstract
To enhance the accuracy of micro-Newton thrust measurements via a torsion pendulum, addressing microgravity coupling effects caused by platform tilt and pendulum mass eccentricity is crucial. This study focuses on analyzing and minimizing these effects by alleviating reference surface tilt and calibrating the [...] Read more.
To enhance the accuracy of micro-Newton thrust measurements via a torsion pendulum, addressing microgravity coupling effects caused by platform tilt and pendulum mass eccentricity is crucial. This study focuses on analyzing and minimizing these effects by alleviating reference surface tilt and calibrating the center of mass during thrust measurements. The study introduced analysis techniques and compensation measures. It first examined the impact of reference tilt and center of mass eccentricity on the stiffness and compliance of the torsion pendulum by reconstructing its dynamic model. Simscape Multibody was initially employed for numerical analysis to assess the dynamic coupling effects of the tilted pendulum. The results showed the influence of reference tilt on the stiffness and compliance of the torsion pendulum through simulation. An inverted pendulum was developed to amplify the platform’s tilt angle for microgravity drag-free control. Center of mass calibration can identify the gravity coupling caused by the center of mass position. Based on the displacement signal from the capacitive sensor located at the end of the inverted pendulum, which represents the platform’s tilt angle, the pendulum’s vibration at 0.1 mHz was reduced from 5.7 μm/Hz1/2 to 0.28 μm/Hz1/2 by adjusting the voltage of piezoelectric actuator. Finally, a new two-stage torsion pendulum structure was proposed to decouple the tilt coupling buried in both pitch and roll angle. The study utilized theoretical models, numerical analysis, and experimental testing to validate the analysis methods and compensation measures for microgravity coupling effects in torsion pendulums. This led to a reduction in low-frequency noise caused by ground vibrations and thermal strains, ultimately improving the micro-Newton thrust measurement accuracy of the torsion pendulum through the platform’s drag-free control. Full article
Show Figures

Figure 1

Back to TopTop