Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = adjacent pile foundation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4091 KiB  
Article
Research on the Deformation Laws of Adjacent Structures Induced by the Shield Construction Parameters
by Jinhua Wang, Nengzhong Lei, Xiaolin Tang and Yulin Wang
Buildings 2025, 15(14), 2426; https://doi.org/10.3390/buildings15142426 - 10 Jul 2025
Viewed by 212
Abstract
Taking the shield construction of Xiamen Metro Line 2 tunnel side-crossing the Tianzhushan overpass and under-crossing the Shen-Hai Expressway as the engineering background, FLAC3D 6.0 software was used to examine the deformation of adjacent structures based on shield construction parameters in upper-soft and [...] Read more.
Taking the shield construction of Xiamen Metro Line 2 tunnel side-crossing the Tianzhushan overpass and under-crossing the Shen-Hai Expressway as the engineering background, FLAC3D 6.0 software was used to examine the deformation of adjacent structures based on shield construction parameters in upper-soft and lower-hard strata. The reliability of the numerical simulation results was verified by comparing measured and predicted deformations. The study results indicate that deformation of the pile will occur during the construction of the tunnel shield next to the pile foundation. The shape of the pile deformation curve in the horizontal direction is significantly influenced by the distance from the pile foundation to the adjacent tunnel’s centerline, as well as by soil bin pressure, grouting layer thickness, and stress release coefficient. During the tunnel shield construction beneath the expressway, increasing the soil bin pressure, the grouting layer thickness, and reducing the stress release coefficient can effectively minimize surface deformation and differential settlement on both sides of the deformation joints between the bridge and the roadbed. The practice shows that, by optimizing shield construction parameters in upper-soft and lower-hard strata, the deformation of nearby bridges and pavements can be kept within allowable limits. This is significant for reducing construction time and costs. The findings offer useful references for similar projects. Full article
(This article belongs to the Special Issue Urban Renewal: Protection and Restoration of Existing Buildings)
Show Figures

Figure 1

18 pages, 2925 KiB  
Article
Study on the Effect of Pile Spacing on the Bearing Performance of Low-Capping Concrete Expanded-Plate Group Pile Foundations Under Composite Stress
by Yongmei Qian, Yawen Yu, Miao Ma, Yu Mu, Zhongwei Ma and Tingting Zhou
Buildings 2025, 15(14), 2412; https://doi.org/10.3390/buildings15142412 - 9 Jul 2025
Viewed by 243
Abstract
The spacing between piles plays a crucial role in determining the load-bearing capacity of CEP group pile foundations equipped with a bearing platform. In this research, five sets of six-pile models with different pile spacings were created using ANSYS finite element analysis. To [...] Read more.
The spacing between piles plays a crucial role in determining the load-bearing capacity of CEP group pile foundations equipped with a bearing platform. In this research, five sets of six-pile models with different pile spacings were created using ANSYS finite element analysis. To understand how damage impacts the system, this study examined displacement patterns and stress distribution within both the piles and the adjacent soil. Additionally, the force interaction between the piles and soil was explored to uncover the underlying failure mechanisms. The results shed light on how varying pile spacing affects the overall bearing capacity of the foundations. Based on our thorough analysis, we pinpoint the most effective pile spacing configuration. The findings reveal that, generally speaking, increasing the distance between piles tends to boost the load-bearing capacity of the entire group foundation. However, this relationship is not linear; once the spacing surpasses four times the cantilever’s diameter, further widening does not yield noticeable gains in performance. In real-world scenarios, it is advisable to keep the spacing between 3.5 to 4 times the cantilever diameter for optimal results. Moreover, the stability of the bearing platform and the plate plays a vital role in resisting sideways forces. Ensuring that the shear strength of the surrounding soil aligns with established standards is essential for maintaining the overall durability and safety of the group pile system. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 3967 KiB  
Article
Upper Shallow Foundation Pit Engineering: Utilization and Evaluation of Portal Frame Anti-Heave Structures
by Jun He, Jinping Ou, Xiangsheng Chen, Shuya Liu, Kewen Huang and Xu Zhang
Buildings 2025, 15(11), 1943; https://doi.org/10.3390/buildings15111943 - 4 Jun 2025
Viewed by 371
Abstract
The excavation of upper shallow foundation pits may cause the uneven deformation of existing tunnels buried below a shallow depth. Improper control measures may lead to a series of diseases, such as local cracking or breakage of the tunnel lining, which threaten the [...] Read more.
The excavation of upper shallow foundation pits may cause the uneven deformation of existing tunnels buried below a shallow depth. Improper control measures may lead to a series of diseases, such as local cracking or breakage of the tunnel lining, which threaten the safety of tunnel operations. Regarding the safety of the existing tunnel affected by the construction of the foundation pit, cases of the application of portal frame anti-heave structures in upper foundation pit projects of existing tunnels in Shenzhen have been documented, and the main influencing factors have been analyzed and summarized. Taking the Qianhai Ring Water Corridor Project as an example, numerical orthogonal experiments were conducted to analyze the deformation response patterns in the depth of existing tunnels and the effectiveness of control measures in the upper shallow of foundation pit engineering. The roles of portal frame anti-heave structures are analyzed in detail using measured data. Studies indicate that the deformation of the existing tunnels mainly occurs during the top and immediately adjacent block excavation stages, and stabilizes after the uplift-resisting piles and anti-floating slabs form an effective frame structure. The portal frame anti-heave structures, combined with measures such as block excavation, jet grouting interlocking reinforcement, backfilling, and surcharge loading, have extremely strong deformation control capabilities. However, the construction costs are relatively high, leaving room for optimization. Full article
(This article belongs to the Special Issue Design, Construction and Maintenance of Underground Structures)
Show Figures

Figure 1

22 pages, 9023 KiB  
Article
Lateral Deformation Mechanisms of Piles in Coastal Regions Under Seawall Surcharge Loading and Mitigation Using Deep Cement Mixing (DCM) Piles
by Fei Huang, Zhiwei Chen, Huiyuan Deng and Wenbo Zhu
Buildings 2025, 15(11), 1936; https://doi.org/10.3390/buildings15111936 - 3 Jun 2025
Cited by 1 | Viewed by 393
Abstract
In coastal regions with thick, soft soil deposits, bridge pile foundations are susceptible to lateral displacements induced by the construction of adjacent seawalls. This study employs a three-dimensional nonlinear finite element framework to investigate the lateral deformation mechanisms of rock-socketed bridge piles under [...] Read more.
In coastal regions with thick, soft soil deposits, bridge pile foundations are susceptible to lateral displacements induced by the construction of adjacent seawalls. This study employs a three-dimensional nonlinear finite element framework to investigate the lateral deformation mechanisms of rock-socketed bridge piles under seawall surcharge loading in soft soils, considering the effects of both immediate construction and long-term consolidation. A parametric analysis is performed to evaluate the effectiveness of deep cement mixing (DCM) piles in mitigating pile displacements, focusing on key design parameters, including DCM pile length, area replacement ratio, and elastic modulus. The results reveal that horizontal pile displacements peak at the pile head post-construction (25 days: 25 mm) and progressively decrease during consolidation, shifting the critical displacement zone to mid-pile depths (20 years: 12 mm). Bending moment analysis identifies persistent positive moments at the rock-socketed interface. Increasing pile stiffness marginally reduces displacements (a < 1 mm reduction for a 22% diameter increase), while expanding the seawall–pile distance to 110 m decreases displacements by 72–84%. DCM pile implementation significantly mitigates short-term (48% reduction) and long-term (54% reduction) displacements, with optimal thresholds at a 30% area replacement ratio and a 40.5 MPa elastic modulus. This study provides critical insights into time-dependent soil–pile interaction mechanisms and practical guidelines for optimizing coastal infrastructure design to minimize surcharge-induced impacts on adjacent pile foundations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 4929 KiB  
Article
Safety Evaluation of the Influence of Mountain Blasting on Piles Under Construction
by Wengang Cai, Lin Liu, Jiuhuan Cheng, Qiankun Yang, Xiaolei Zhao, Yong Wu and Yu Tian
Buildings 2025, 15(11), 1882; https://doi.org/10.3390/buildings15111882 - 29 May 2025
Viewed by 355
Abstract
Blasting excavation can pose significant risks to adjacent structures, particularly during concrete pouring. Therefore, evaluating their safety is crucial. In addition, the influence of blasting vibration on the vibration of the foundation and the superstructure is different. Currently, there are only allowable vibration [...] Read more.
Blasting excavation can pose significant risks to adjacent structures, particularly during concrete pouring. Therefore, evaluating their safety is crucial. In addition, the influence of blasting vibration on the vibration of the foundation and the superstructure is different. Currently, there are only allowable vibration values in the time domain range affected by blasting construction on the foundation structure at vibration frequencies of 1–10 Hz and 50 Hz. There is a lack of allowable vibration values in the range of 10–50 Hz. Based on a liquefied natural gas (LNG) project in Zhejiang, China, this paper studies the safety evaluation index for the vibration of piles under the storage tank through in situ blasting tests and numerical simulations. The vibration velocity attenuation curve of the site, which can accurately predict the pile vibration velocity induced by blasting, is obtained by fitting the experimental results using Sodev’s formula. It is found that the vibration velocity gradually increases from the pile toe to the pile top. As the distance to the blasting source increases, the maximum vibration velocity of the pile top gradually decreases. The peak vibration velocity at the pile top is different from that at the ground surface around the pile. Their ratio, which can reach up to 1.33, gradually increases with the decreasing distance to the blasting source and the increasing concrete strength. The predominant frequency is greater than 10 Hz. For the pile whose concrete strength is lower than 50% of the design strength, blasting has little impact when the vibration velocity is less than 10.16 mm/s. The experimental results supplement the relevant experimental data within the range of 10–50 Hz. This study can provide references for similar projects. Full article
(This article belongs to the Special Issue Advances in Soil-Structure Interaction for Building Structures)
Show Figures

Figure 1

37 pages, 7855 KiB  
Article
Disturbance Sensitivity of Proximity Construction in Subway Protection Zone
by Zhi-Qun Gong, Yong-Zhi Wang, Wei-Ke Zhou, Shao-Ming Liao, Yan-Qing Men and Song-Chao Lin
CivilEng 2025, 6(2), 28; https://doi.org/10.3390/civileng6020028 - 21 May 2025
Viewed by 1262
Abstract
The analysis of the impact of the construction of the subway protection zone on the adjacent subway tunnel has become the premise on which to ensure the safe operation of the tunnel. The need for expert members to carry out safety assessments based [...] Read more.
The analysis of the impact of the construction of the subway protection zone on the adjacent subway tunnel has become the premise on which to ensure the safe operation of the tunnel. The need for expert members to carry out safety assessments based on specific calculations to determine the impact of construction on the safety of protected tunnels is extremely inconvenient for safety management and significantly reduces management efficiency. This paper analyzes and qualitatively judges the influence range and disturbance size of pile foundation construction, shallow foundation engineering, and foundation pit excavation. Based on relevant research results from scholars and numerical simulation methods, quantitative analysis and comparison are performed on the parameter sensitivity of pile foundation engineering, shallow foundation engineering, and foundation pit engineering along the subway line, and the influence of multi-factor combination is studied and discussed to obtain the influence sensitivity of each factor. The results show that the increase in pile spacing can effectively reduce the pile group effect. The sensitivity of subway tunnel settlement displacement is mainly controlled by the settlement displacement value. The larger the settlement displacement is, the stronger the sensitivity is. The loaded pile foundation arranged along the direction of the subway tunnel has more obvious disturbance to the subway tunnel than that arranged perpendicular to the direction of the subway tunnel. Full article
(This article belongs to the Section Construction and Material Engineering)
Show Figures

Figure 1

17 pages, 6958 KiB  
Article
Effect of Combined Wave and Current Loading on the Hydrodynamic Characteristics of Double-Pile Structures in Offshore Wind Turbine Foundations
by Yongqing Lai, Li Cai, Xinyun Wu, Bin Wang, Yiyang Hu, Yuwei Liang, Haisheng Zhao and Wei Shi
Energies 2025, 18(10), 2573; https://doi.org/10.3390/en18102573 - 15 May 2025
Viewed by 447
Abstract
The multi-pile structure is a common and reliable foundation form used in offshore wind turbines (such as jacket-type structures, etc.), which can withstand hydrodynamic loads dominated by waves and water flow, providing a stable operating environment. However, the hydrodynamic responses between adjacent monopiles [...] Read more.
The multi-pile structure is a common and reliable foundation form used in offshore wind turbines (such as jacket-type structures, etc.), which can withstand hydrodynamic loads dominated by waves and water flow, providing a stable operating environment. However, the hydrodynamic responses between adjacent monopiles affected by combined wave and current loadings are seldom revealed. In this study, a generation module for wave–current combined loading is developed in waves2Foam by considering the wave theory coupled current effect. Subsequently, a numerical flume model of the double-pile structure is established in OpenFOAM based on computational fluid dynamics (CFD) and SST k-ω turbulence theory, and the hydrodynamic characteristics of the double-pile structure are investigated. It can be found that, under the combined wave–current loading, the maximum wave run-up at the leeward side of the upstream monopile is significantly reduced by about 24% on average compared with that of the individual monopile when the spacing is 1.25 and 1.75 times the wave length. At the free water surface height, the maximum discrepancy between the maximum surface pressure on the downstream monopile and the corresponding result of the individual monopile is significantly reduced from 37% to 19%. Compared to the case applying the wave loading condition, the wave–current loading reduces the influence of spacing on the wave run-up along the downstream monopile surface, the maximum surface pressure at specific positions on both upstream and downstream monopile, and the overall maximum horizontal force acting on the double-pile structure. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

21 pages, 5472 KiB  
Article
Mitigating Settlement and Enhancing Bearing Capacity of Adjacent Strip Footings Using Sheet Pile Walls: An Experimental Approach
by Ali M. Basha, Ahmed Yousry Akal and Mohamed H. Zakaria
Infrastructures 2025, 10(4), 83; https://doi.org/10.3390/infrastructures10040083 - 2 Apr 2025
Viewed by 658
Abstract
In construction, closely spaced footings cause stress interactions that impact bearing capacity, settlement, and stability. This study experimentally evaluates the role of sheet pile walls (SPWs) in improving the performance of two adjacent strip footings—an existing footing and a newly placed footing—on sandy [...] Read more.
In construction, closely spaced footings cause stress interactions that impact bearing capacity, settlement, and stability. This study experimentally evaluates the role of sheet pile walls (SPWs) in improving the performance of two adjacent strip footings—an existing footing and a newly placed footing—on sandy soil. The influence of SPW penetration depth (Ls) and center-to-center spacing between footings (X) on settlement and bearing resistance under vertical loads was investigated. Experiments were conducted in a large-scale soil tank (330 × 30 cm, depth 210 cm), with X ranging from 300 mm to 1000 mm and SPW lengths varying from 0 mm to 1500 mm. The results show that SPWs significantly enhance foundation performance by reducing settlement and increasing bearing capacity. When Ls/B = 6, the settlement of the new footing (F1) decreases by 48%, while the existing footing (F2) sees reductions of 47%, 67%, and 77% at Ls/B = 3, 4, and 5, respectively, under 500 kN/m2 stress. The bearing capacity of F1 increases by 53% when X = 300 mm, demonstrating strong interference effects. Conversely, the F2 settlement increases as X decreases, with a 96% rise at X = 300 mm, but it stabilizes at Ls/B = 5. SPWs also shift failure from general shear to punching shear, modifying soil–structure interaction. These findings highlight the effectiveness of SPWs in mitigating settlement, enhancing load-bearing capacity, and optimizing foundation design in closely spaced footing systems. The results suggest that an SPW length-to-footing width ratio (Ls/B) between 4 and 5 is optimal for minimizing settlement and improving stability, with only a slight difference in effectiveness between these two ratios. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

18 pages, 8814 KiB  
Article
Interaction Analysis of the Synchronous Excavations of Deep Foundation Pit and Adjacent Underground Channel
by Hai Zhong, Liqun Zheng, Bo Liu, Tao Li and Bo Cao
Buildings 2025, 15(7), 1110; https://doi.org/10.3390/buildings15071110 - 29 Mar 2025
Viewed by 369
Abstract
Based on FLAC3D finite element analysis and field measurements, this paper studies the synchronous excavation of the deep foundation pit and the adjacent underground channel in the 17th section of the Beijing Metro Line 10 Phase II project. Due to the very tight [...] Read more.
Based on FLAC3D finite element analysis and field measurements, this paper studies the synchronous excavation of the deep foundation pit and the adjacent underground channel in the 17th section of the Beijing Metro Line 10 Phase II project. Due to the very tight schedule and deadline, an underground channel has been added between the double-arch tunnel and the deep foundation pit and excavated synchronously with the deep foundation pit. The minimum distance between the two excavations is 5 m. It was found that (1) the underground channel excavation destroys the intact structure of the soil around the channel and foundation pit on a larger scale, which affects the formation of soil arch behind the retaining pile and thus increases the lateral pile displacement, and the addition of anchor cables at the north and south sides of the foundation pit is not necessary; (2) if conditions permit, it is the safest to excavate the underground channel first and then the foundation pit; (3) the primary interaction spacing between the two adjacent excavations is the same depth as that of the foundation pit, and when the spacing increases to twice the depth of the foundation pit, there is basically no interaction; (4) compared with the solid and heavy soil, the adjacent existing underground channel is like a “hollow, elastic, light” tube and more sensitive to the foundation pit excavation, whose uplift and deformation rebound could exert a force on the surrounding soil and then enlarge the lateral displacement of the retaining pile. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 5650 KiB  
Article
The Influence of the Construction of the Bridge Pile Foundation on the Adjacent Operating Subway Tunnel Considering the Creep Characteristics of the Stratum
by Dandan Wu and Wentian Cui
Buildings 2025, 15(7), 1001; https://doi.org/10.3390/buildings15071001 - 21 Mar 2025
Viewed by 449
Abstract
The pile foundation construction adjacent to an operational subway tunnel can induce the creep effects of the surrounding soil of the tunnel, resulting in the deformation of the existing tunnel lining and potentially compromising the safe operation of the tunnel. Therefore, the Mindlin [...] Read more.
The pile foundation construction adjacent to an operational subway tunnel can induce the creep effects of the surrounding soil of the tunnel, resulting in the deformation of the existing tunnel lining and potentially compromising the safe operation of the tunnel. Therefore, the Mindlin solution and the generalized Kelvin viscoelasticity constitutive model were employed to establish the theoretical calculation model for the deformation of the adjacent subway tunnel caused by the pile construction. Then, the effect of pile construction on the deformation of adjacent tunnels under different pile–tunnel spacing was analyzed via three-dimensional numerical simulation and theoretical calculation methods and compared with the field monitoring data. The results showed that the theoretical and numerical data are in agreement with the field monitoring data. The theoretical model provides closer predictions to the field-measured values than the numerical simulation. As the distance between the pile and the tunnel increases, both the vertical settlement and the horizontal displacement of the subway tunnel lining exhibit a gradual reduction. In the hard plastic clay region of Hefei City (China), pile foundation construction near an operational subway tunnel can be classified into three distinct zones based on proximity to the tunnel: the high-impact zone (<1.0 D), the moderate-impact zone (1.0 D–3.0 D), and the low-impact zone (>3.0 D). The pile foundation in high-, moderate-, and low-impact zones should be monitored for 7 days, 3 days, and 1 day, respectively, to ensure the stable deformation of the lining. Full article
Show Figures

Figure 1

15 pages, 2347 KiB  
Article
Study on the Optimal Construction Time of Adjacent Pile Foundation Considering the Thermal Stability of the Existing Pile Foundation
by Xiangyang Shi, Yunxing Wang, Ziqiang Zhou and Long Huang
Buildings 2025, 15(5), 684; https://doi.org/10.3390/buildings15050684 - 21 Feb 2025
Viewed by 627
Abstract
To control settlement deformation in permafrost regions, new piles are constructed for remediation. However, the construction of new piles inevitably causes thermal disturbance to the existing pile foundations. A three-dimensional quarter-model of a rectangularly arranged pile group was established to analyze temperature field [...] Read more.
To control settlement deformation in permafrost regions, new piles are constructed for remediation. However, the construction of new piles inevitably causes thermal disturbance to the existing pile foundations. A three-dimensional quarter-model of a rectangularly arranged pile group was established to analyze temperature field changes under construction time in odd-numbered months. In addition, a refreezing rate formula based on the effective freezing temperature was developed to examine the annual changes. The results indicate that the thermal disturbance from the new pile foundation construction gradually weakens over time but does not subside within a year, which significantly affects 75% of the existing pile length, and that the refreezing rate continues to increase after construction in November, i.e., the initial month of the cold season, and is maximized in approximately 60 days. This result suggests that November is the optimal time for such construction activities. The findings of this study provide valuable insights for pile engineering practices to mitigate issues caused by permafrost degradation. Full article
(This article belongs to the Special Issue Structural Mechanics Analysis of Soil-Structure Interaction)
Show Figures

Figure 1

22 pages, 7744 KiB  
Study Protocol
Field Monitoring and Analysis of Factors Influencing Existing Tunnels Laterally Adjacent to Foundation Pit Excavations
by Huan Chen, Zhanming Wang, Jian Zhang, Zuocai Wang, Peng Peng and Tugen Feng
Appl. Sci. 2025, 15(3), 1074; https://doi.org/10.3390/app15031074 - 22 Jan 2025
Cited by 1 | Viewed by 713
Abstract
To investigate the factors influencing existing tunnels adjacent to foundation pit excavations, this paper focuses on a case of excavation of MTR station foundation pits near an existing tunnel. Monitoring data are collected and analyzed, and a two-dimensional numerical model of the pit–tunnel [...] Read more.
To investigate the factors influencing existing tunnels adjacent to foundation pit excavations, this paper focuses on a case of excavation of MTR station foundation pits near an existing tunnel. Monitoring data are collected and analyzed, and a two-dimensional numerical model of the pit–tunnel system is established using ABAQUS (2022) software. This study examines the effect of excavation factors on the tunnel, including excavation depth, horizontal spacing between pit and tunnel, support pile wall dimensions, support structure insertion ratio, horizontal support stiffness, and geological conditions. The research results indicate that for tunnels in silty clay formations, the depth of pit excavation should be limited to 20 m. When the horizontal spacing between a foundation pit and tunnel in a silty clay formation is within 1.5 times the depth of excavation, the tunnel is more significantly affected by tunnel excavation works in the adjacent pits. Increasing the horizontal support stiffness has the greatest effect on controlling deformation and stress in the tunnel structure. The degree of influence on deformation and stress in the tunnel due to laterally adjacent excavation of a foundation pit varies with geological conditions. Among them, tunnels in muddy-silty clay and silty soils are the most affected, and it is recommended that reinforcement measures be optimized and monitoring be strengthened. The conclusions of the present study can provide a reference point and guidance for the optimal design of similar pit projects. Full article
Show Figures

Figure 1

14 pages, 3606 KiB  
Article
Numerical Analysis of Grouting Reinforcement Effects on Deep Foundation Pits Adjacent to Elevated Railways
by Guofei Zhu, Xianlong Wu, Xuhui Li, Le Chang, Yongjie Li, Chuang Lv, Rui Wang and Yingpeng Li
Sustainability 2024, 16(22), 9984; https://doi.org/10.3390/su16229984 - 15 Nov 2024
Viewed by 990
Abstract
To mitigate the impact of foundation pit construction on adjacent existing structures, grouting reinforcement techniques are often employed to enhance the deformation strength of the soil. This study focuses on the expansion project of the Dayun Comprehensive Hub in Shenzhen, conducting full-scale numerical [...] Read more.
To mitigate the impact of foundation pit construction on adjacent existing structures, grouting reinforcement techniques are often employed to enhance the deformation strength of the soil. This study focuses on the expansion project of the Dayun Comprehensive Hub in Shenzhen, conducting full-scale numerical simulations of the excavation of deep foundation pits adjacent to existing elevated railways and examining the effects of different grouting reinforcement schemes. The results indicate that the single-row and double-row grouting schemes increased the bearing capacity of the foundation piles by 23.7% and 31.9%, respectively, significantly enhancing the structural bearing performance. After reinforcement, the maximum deformation position of the elevated bridge foundation piles shifted upward, and the settlement distribution of the cap beam became more concentrated, indicating that grouting reinforcement effectively controlled the ground settlement and the deformation of the foundation piles. Furthermore, compared to controlling the deformation of the retaining structures, grouting reinforcement was more effective in controlling ground settlement and pile deformation, highlighting its advantages in complex environments. Although the double-row grouting scheme demonstrated superior technical performance, the single-row scheme remains the preferred option considering reinforcement efficiency and economic factors. Full article
(This article belongs to the Special Issue Sustainable Development and Analysis of Tunnels and Underground Works)
Show Figures

Figure 1

22 pages, 8871 KiB  
Article
Performance of Monotonic Pile Penetration in Sand: Model Test and DEM Simulation
by Jianxue Feng, Ruiqi Luo, Xiaoyu Dong, Xiaoyong Zhang and Quan Shen
Buildings 2024, 14(10), 3327; https://doi.org/10.3390/buildings14103327 - 21 Oct 2024
Cited by 2 | Viewed by 1122
Abstract
By integrating laboratory tests and three-dimensional discrete element methods, this research extensively explores the macroscopic and microscopic mechanisms of static pile penetration in standard sand. Initially, the mesoscopic parameters of standard sand were established via flexible triaxial compression tests, and a three-dimensional discrete [...] Read more.
By integrating laboratory tests and three-dimensional discrete element methods, this research extensively explores the macroscopic and microscopic mechanisms of static pile penetration in standard sand. Initially, the mesoscopic parameters of standard sand were established via flexible triaxial compression tests, and a three-dimensional discrete element model was created using the particle size magnification technique. The study results confirm the rationality of parameter selection and numerical modeling by comparing penetration resistance and displacement obtained from laboratory model tests and discrete element simulations. Initially, penetration resistance swiftly increases, then stabilizes progressively with increasing depth. The lateral friction resistance grows with penetration depth, especially peaking near the cone tip. Moreover, horizontal stress quickly rises during pile penetration, mainly caused by the pile foundation compressing the adjacent soil particles. Displacement of the foundation particles is primarily focused around the pile side and cone tip, affecting an area roughly twice the pile diameter. Soil particle displacement exhibits a pronounced vertical downward movement, primarily driven by lateral friction. The distribution of force chains among foundation particles indicates that the primary stressed areas are at the pile ends, highlighting stress concentration features. This research offers significant insights into the mechanical behaviors and soil responses during pile foundation penetration. Full article
Show Figures

Figure 1

19 pages, 5656 KiB  
Article
Barrier Effect of Existing Building Pile on the Responses of Groundwater and Soil During Foundation Pit Dewatering
by Dongyang He, Chaofeng Zeng, Changjie Xu, Xiuli Xue, Youwu Zhao, Lei Han and Haiyu Sun
Water 2024, 16(20), 2977; https://doi.org/10.3390/w16202977 - 18 Oct 2024
Cited by 6 | Viewed by 1154
Abstract
In regions with abundant groundwater resources, pre-excavation dewatering on deep foundation pits often leads to the deformation of the enclosure wall and settlement of the surrounding ground. Based on a series of engineering measurements, we conducted a series of numerical simulations to investigate [...] Read more.
In regions with abundant groundwater resources, pre-excavation dewatering on deep foundation pits often leads to the deformation of the enclosure wall and settlement of the surrounding ground. Based on a series of engineering measurements, we conducted a series of numerical simulations to investigate the behaviors of wall and soil during pre-excavation dewatering with and without the existing pile foundations and under different distances between the existing pile foundations and foundation pits (D). Numerical results indicated that when the foundation pit is adjacent to existing building pile foundations, the soil was restricted by the pile foundations (i.e., soil-blocking effect). When D ≤ 40 m, the soil-blocking effect grows stronger as D gets smaller; while when D > 40 m, the soil-blocking effect is significantly weakened and the water-blocking effect (i.e., the blockage of groundwater seepage by the building pile foundation) gradually appears, which intensifies the ground surface settlement. The maximum settlement position of the soil behind the pile foundation of the existing building is farther away from the foundation pit as the soil-blocking effect becomes stronger. The coupling effect of soil-blocking and water-blocking on the ground deformation should be considered in the design of the foundation pit project to get a more reasonable support and dewatering scheme. Full article
Show Figures

Figure 1

Back to TopTop