Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,172)

Search Parameters:
Keywords = adhesive capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 16823 KiB  
Article
Simulation Analysis and Research on the Separation and Screening of Adherent Foreign Substances in Raisins Based on Discrete Elements
by Rui Zhang, Meng Ning, Hongrui Ma and Ziheng Zhan
Appl. Sci. 2025, 15(15), 8695; https://doi.org/10.3390/app15158695 (registering DOI) - 6 Aug 2025
Abstract
To address the issue that existing raisin foreign object removal equipment cannot eliminate surface contaminants adhered to raisins through non-washing methods, this paper proposes an adhesive foreign object removal method based on “rapid freezing–rolling extrusion separation-airflow screening”. A raisin adhesive foreign object removal [...] Read more.
To address the issue that existing raisin foreign object removal equipment cannot eliminate surface contaminants adhered to raisins through non-washing methods, this paper proposes an adhesive foreign object removal method based on “rapid freezing–rolling extrusion separation-airflow screening”. A raisin adhesive foreign object removal device was designed based on this method. The separation and removal processes of adhesive foreign objects were analyzed and optimized through simulation, followed by device fabrication and performance testing. Starting from the separation process of raisins and adhesive foreign objects, we conducted experimental studies on quick-freezing separation, determined the most suitable separation method based on experimental results, and performed structural design of the equipment accordingly. To conduct simulation analysis and optimization, material parameters were calibrated. The working process of foreign object separation was simulated and optimized using discrete element method (DEM) simulation, verifying the equipment’s separation capability for different adhesive foreign objects while determining the optimal rotational speed of 600 r/min. Through EDEM-Fluent coupled simulation, the working process of foreign object removal was analyzed and optimized, validating the influence of flow field on foreign object removal and determining the optimal air velocity of 11 m/s. The equipment was ultimately fabricated, with further parameter optimization and comprehensive performance testing conducted. The final optimal rotational speed and air velocity were determined as 650 r/min and 11 m/s, respectively. In terms of comprehensive performance, the equipment achieved a separation rate of 93.76%, damage rate of 3.05%, residue rate of 4.28%, removal rate of 94.52%, carry-over ratio of 71:1, and processing capacity of 120 kg/h. Full article
Show Figures

Figure 1

17 pages, 5354 KiB  
Article
Carboxymethyl Polysaccharides/Montmorillonite Biocomposite Films and Their Sorption Properties
by Adrian Krzysztof Antosik, Marcin Bartkowiak, Magdalena Zdanowicz and Katarzyna Wilpiszewska
Polymers 2025, 17(15), 2130; https://doi.org/10.3390/polym17152130 - 1 Aug 2025
Viewed by 266
Abstract
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result [...] Read more.
The production of bionanocomposite films based on carboxymethyl derivatives of starch and cellulose with sodium montmorillonite (MMT-Na) as a filler was described. The developed films with high absorbency can be used in the preparation of adhesive dressings for wounds oozing as a result of abrasions or tattoos. Carboxymethyl cellulose (CMC), carboxymethyl starch (CMS), and potato starch were used as the raw materials for film manufacturing. Citric acid was used as a crosslinking agent and glycerol as a plasticizer. The following parameters were evaluated for the obtained films: solubility in water, swelling behavior, moisture absorption, and mechanical durability (tensile strength, elongation at break, and Young’s modulus). This study revealed that filler concentration has a significant influence on the stability, durability, and moisture absorption parameters of films. The best nanocomposite with a high absorption capacity was a two-component film CMS/CMC containing 5 pph of sodium montmorillonite and can be used as a base material for wound dressing, among other applications. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

18 pages, 1625 KiB  
Review
The Potential of Functional Hydrogels in Burns Treatment
by Nathalie S. Ringrose, Ricardo W. J. Balk, Susan Gibbs, Paul P. M. van Zuijlen and H. Ibrahim Korkmaz
Gels 2025, 11(8), 595; https://doi.org/10.3390/gels11080595 - 31 Jul 2025
Viewed by 136
Abstract
Burn injuries are complex and require effective wound management strategies. Traditional treatments, such as dermal templates, are limited by simplified extracellular matrix (ECM) composition (e.g., collagen-elastin or collagen-glycosaminoglycan), sheet-based formats, and frequent use of animal-derived materials. These limitations can reduce wound conformity, biocompatibility, [...] Read more.
Burn injuries are complex and require effective wound management strategies. Traditional treatments, such as dermal templates, are limited by simplified extracellular matrix (ECM) composition (e.g., collagen-elastin or collagen-glycosaminoglycan), sheet-based formats, and frequent use of animal-derived materials. These limitations can reduce wound conformity, biocompatibility, and integration with host tissue. Functional hydrogels are being explored as alternatives due to properties such as high water content, biodegradability, adhesiveness, antimicrobial activity, and support for angiogenesis. Unlike standard templates, hydrogels can adapt to irregular wound shapes as in burn wounds and reach deeper tissue layers, supporting moisture retention, cell migration, and controlled drug delivery. These features may improve the wound environment and support healing in burns of varying severity. This review outlines recent developments in functional hydrogel technologies and compares them to current clinical treatments for burn care. Emphasis is placed on the structural and biological features that influence performance, including material composition, bioactivity, and integration capacity. Through an exploration of key mechanisms of action and clinical applications, this review highlights the benefits and challenges associated with hydrogel technology, providing insights into its future role in burn care. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Engineering and Biomedical Therapeutics)
Show Figures

Figure 1

16 pages, 2259 KiB  
Article
Probiotic Potential and Characterization of Enterococcus faecium Strains Isolated from Camel Milk: Implications for Animal Health and Dairy Products
by Imen Fguiri, Manel Ziadi, Samira Arroum, Touhami Khorchani and Hammadi Mohamed
Fermentation 2025, 11(8), 444; https://doi.org/10.3390/fermentation11080444 - 31 Jul 2025
Viewed by 235
Abstract
In this study, 62 lactic acid bacteria (LAB) strains were isolated from raw camel milk and evaluated for their probiotic potential. The strains exhibited significant variability in their ability to withstand simulated gastrointestinal conditions. Of the isolates, only 26 survived exposure to pH [...] Read more.
In this study, 62 lactic acid bacteria (LAB) strains were isolated from raw camel milk and evaluated for their probiotic potential. The strains exhibited significant variability in their ability to withstand simulated gastrointestinal conditions. Of the isolates, only 26 survived exposure to pH 2, and just 10 were tolerant to 0.3% bile salts. Partial sequencing of the 16S rRNA gene identified all the strains as belonging to the species Enterococcus faecium. Several probiotic traits were assessed, including adhesion to gastric mucin and STC-1 intestinal epithelial cells, as well as auto-aggregation and co-aggregation capacities. Although adhesion to hydrophobic solvents such as chloroform and ethyl acetate was generally low to moderate, all the strains demonstrated strong adhesion to gastric mucin, exceeding 60% at all the growth stages. Notably, two strains—SCC1-33 and SLch6—showed particularly high adhesion to STC-1 cells, with values of 7.8 × 103 and 4.2 × 103 CFU/mL, respectively. The strains also exhibited promising aggregation properties, with auto-aggregation and co-aggregation ranging between 33.10% and 63.10%. Furthermore, all the isolates displayed antagonistic activity against Listeria innocua, Micrococcus luteus, and Escherichia coli. Cytotoxicity assays confirmed that none of the tested strains had harmful effects on STC-1 cells, indicating their safety and supporting their potential application as probiotics. Full article
Show Figures

Figure 1

21 pages, 879 KiB  
Article
Multiblock Metabolomics Responses of the Diatom Phaeodactylum tricornutum Under Benthic and Planktonic Culture Conditions
by Andrea Castaldi, Mohamed Nawfal Triba, Laurence Le Moyec, Cédric Hubas, Gaël Le Pennec and Marie-Lise Bourguet-Kondracki
Mar. Drugs 2025, 23(8), 314; https://doi.org/10.3390/md23080314 - 31 Jul 2025
Viewed by 320
Abstract
This study investigates the metabolic responses of the model diatom Phaeodactylum tricornutum under different growth conditions, comparing benthic (adherent) and planktonic states. Using a multiblock metabolomics approach combining LC-HRMS2, NMR, and GC-MS techniques, we compared the metabolome of P. tricornutum cultivated [...] Read more.
This study investigates the metabolic responses of the model diatom Phaeodactylum tricornutum under different growth conditions, comparing benthic (adherent) and planktonic states. Using a multiblock metabolomics approach combining LC-HRMS2, NMR, and GC-MS techniques, we compared the metabolome of P. tricornutum cultivated on three laboratory substrates (glass, polystyrene, and polydimethylsiloxane) and under planktonic conditions. Our results revealed metabolic differences between adherent and planktonic cultures, particularly concerning the lipid and carbohydrate contents. Adherent cultures showed a metabolic profile with an increase in betaine lipids (DGTA/S), fatty acids (tetradecanoic and octadecenoic acids), and sugars (myo-inositol and ribose), suggesting modifications in membrane composition and lipid remodeling, which play a potential role in adhesion. In contrast, planktonic cultures displayed a higher content of cellobiose, specialized metabolites such as dihydroactinidiolide, quinic acid, catechol, and terpenes like phytol, confirming different membrane composition, energy storage capacity, osmoregulation, and stress adaptation. The adaptative strategies do not only concern adherent and planktonic states, but also different adherent culture conditions, with variations in lipid, amino acid, terpene, and carbohydrate contents depending on the physical properties of the support. Our results highlight the importance of metabolic adaptation in adhesion, which could explain the fouling process. Full article
(This article belongs to the Special Issue Marine Omics for Drug Discovery and Development, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 15023 KiB  
Article
Surface-Localized Crosslinked MEW PCL–Hydrogel Scaffolds with Tunable Porosity for Enhanced Cell Adhesion and Viability
by Yixin Li, Le Kang and Kai Cao
Polymers 2025, 17(15), 2086; https://doi.org/10.3390/polym17152086 - 30 Jul 2025
Viewed by 269
Abstract
Hydrogel is widely used as a scaffolding material for tissue engineering due to its excellent cytocompatibility and potential for biofunctionalization. However, its poor mechanical property limits its further application. Fabrication of fiber-reinforced hydrogel composite scaffolds has emerged as a solution to overcome this [...] Read more.
Hydrogel is widely used as a scaffolding material for tissue engineering due to its excellent cytocompatibility and potential for biofunctionalization. However, its poor mechanical property limits its further application. Fabrication of fiber-reinforced hydrogel composite scaffolds has emerged as a solution to overcome this problem. However, existing strategies usually produce nonporous composite scaffolds, where the interfiber pores are completely filled with hydrogel. This design can hinder oxygen and nutrient exchange between seeded cells and the culture medium, thereby limiting cell invasion and colonization within the scaffold. In this study, sodium alginate (SA) hydrogel was exclusively grafted onto the surface of the constituent fibers of the melt electrowritten scaffold while preserving the porous structure. The grafted hydrogel amount and pore size were precisely controlled by adjusting the SA concentration and the crosslinking ratio (SA: CaCl2). Experimental results demonstrated that the porous composite scaffolds exhibited superior swelling capacity, degradation ratio, mechanical properties, and biocompatibility. Notably, at an SA concentration of 0.5% and a crosslinking ratio of 2:1, the porous composite scaffold achieved optimal cell adhesion and viability. This study highlights the critical importance of preserving porous structures in composite scaffolds for tissue-engineering applications. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

18 pages, 5066 KiB  
Article
Influence of Pulse Duration on Cutting-Edge Quality and Electrochemical Performance of Lithium Metal Anodes
by Lars O. Schmidt, Houssin Wehbe, Sven Hartwig and Maja W. Kandula
Batteries 2025, 11(8), 286; https://doi.org/10.3390/batteries11080286 - 26 Jul 2025
Viewed by 302
Abstract
Lithium metal is a promising anode material for next-generation batteries due to its high specific capacity and low density. However, conventional mechanical processing methods are unsuitable due to lithium’s high reactivity and adhesion. Laser cutting offers a non-contact alternative, but photothermal effects can [...] Read more.
Lithium metal is a promising anode material for next-generation batteries due to its high specific capacity and low density. However, conventional mechanical processing methods are unsuitable due to lithium’s high reactivity and adhesion. Laser cutting offers a non-contact alternative, but photothermal effects can negatively impact the cutting quality and electrochemical performance. This study investigates the influence of pulse duration on the cutting-edge characteristics and electrochemical behavior of laser-cut 20 µm lithium metal on 10 µm copper foils using nanosecond and picosecond laser systems. It was demonstrated that shorter pulse durations significantly reduce the heat-affected zone (HAZ), resulting in improved cutting quality. Electrochemical tests in symmetric Li|Li cells revealed that laser-cut electrodes exhibit enhanced cycling stability compared with mechanically separated anodes, despite the presence of localized dead lithium “reservoirs”. While the overall pulse duration did not show a direct impact on ionic resistance, the characteristics of the cutting edge, particularly the extent of the HAZ, were found to influence the electrochemical performance. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

17 pages, 8715 KiB  
Article
Experimental Investigation of Failure Behaviors of CFRP–Al Lap Joints with Various Configurations Under High- and Low-Temperature Conditions
by Mingzhen Wang, Qiaosheng Huang, Qingfeng Duan, Wentao Yang, Yue Cui and Hongqiang Lyu
Materials 2025, 18(15), 3467; https://doi.org/10.3390/ma18153467 - 24 Jul 2025
Viewed by 303
Abstract
The failure behaviors of CFR–aluminum lap joints with diverse configurations through quasi-static tensile tests were conducted at −40 °C, 25 °C, and 80 °C. Four specimen types were examined: CFRP–aluminum alloy two-bolt single-lap joints (TBSL), two-bolt double-lap joints (TBDL), two-bolt bonded–bolted hybrid single-lap [...] Read more.
The failure behaviors of CFR–aluminum lap joints with diverse configurations through quasi-static tensile tests were conducted at −40 °C, 25 °C, and 80 °C. Four specimen types were examined: CFRP–aluminum alloy two-bolt single-lap joints (TBSL), two-bolt double-lap joints (TBDL), two-bolt bonded–bolted hybrid single-lap joints (BBSL), and two-bolt bonded–bolted hybrid double-lap joints (BBDL). The analysis reveals that double-lap joints possess a markedly higher strength than single-lap joints. The ultimate loads of the TBSL (single-lap joints) at temperatures of −40 °C and 25 °C are 29.5% and 26.20% lower, respectively, than those of the TBDL (double-lap joints). Similarly, the ultimate loads of the BBSL (hybrid single-lap joints) at −40 °C, 25 °C, and 80 °C are 19.8%, 31.66%, and 40.05% lower, respectively, compared to the corresponding data of the TBDL. In bolted–bonded hybrid connections, the adhesive layer enhances the joint’s overall stiffness but exhibits significant temperature dependence. At room and low temperatures, the ultimate loads of the BBDL are 46.97 kN at −40 °C and 50.30 kN at 25 °C, which are significantly higher than those of the TBDL (42.24 kN and 44.63 kN, respectively). However, at high temperatures, the load–displacement curves of the BBDL and TBDL are nearly identical. This suggests that the adhesive layers are unable to provide a sufficient shear-bearing capacity due to their low modulus at elevated temperatures. This research provides valuable insights for designing composite–metal connections in aircraft structures, highlighting the impacts of different joint configurations and temperature conditions on failure modes and load-bearing capacities. Full article
Show Figures

Figure 1

24 pages, 4254 KiB  
Review
Zein-Based Nanocarriers: Advances in Oral Drug Delivery
by Yuxin Liu, Dongyu An, Xiangjian Meng, Shiming Deng and Guijin Liu
Pharmaceutics 2025, 17(7), 944; https://doi.org/10.3390/pharmaceutics17070944 - 21 Jul 2025
Viewed by 510
Abstract
Oral administration remains the preferred drug delivery route but faces formidable gastrointestinal barriers, including enzymatic degradation, solubility limitations, and poor epithelial absorption. Zein-based nanocarriers (ZBNs), derived from maize prolamin, provide a transformative platform to address these challenges. This review synthesizes recent advances in [...] Read more.
Oral administration remains the preferred drug delivery route but faces formidable gastrointestinal barriers, including enzymatic degradation, solubility limitations, and poor epithelial absorption. Zein-based nanocarriers (ZBNs), derived from maize prolamin, provide a transformative platform to address these challenges. This review synthesizes recent advances in ZBNs’ design, highlighting their intrinsic advantages: structural stability across pH gradients, self-assembly versatility, and a surface functionalization capacity. Critically, we detail how engineered ZBNs overcome key barriers, such as enzymatic/chemical protection via hydrophobic encapsulation, the enhanced mucus penetration or adhesion through surface engineering, and improved epithelial transport via ligand conjugation. Applications demonstrate their efficacy in stabilizing labile therapeutics, enhancing the solubility of BCS Class II/IV drugs, enabling pH-responsive release, and significantly boosting oral bioavailability. Remaining challenges in scalability and translational predictability warrant future efforts toward multifunctional systems, bio-interfacial modeling, and continuous manufacturing. This work positions ZBNs as a potential platform for the oral delivery of BCS Class II–IV drugs’ in the biopharmaceutics classification system. Full article
(This article belongs to the Special Issue Recent Advances in Peptide and Protein-Based Drug Delivery Systems)
Show Figures

Figure 1

19 pages, 5242 KiB  
Article
Polydextrose Addition Improves the Chewiness and Extended Shelf-Life of Chinese Steamed Bread Through the Formation of a Sticky, Elastic Network Structure
by Chang Liu, Bing Dai, Xiaohong Luo, Hongdong Song and Xingjun Li
Gels 2025, 11(7), 545; https://doi.org/10.3390/gels11070545 - 14 Jul 2025
Viewed by 342
Abstract
This study explored the effects of adding a newly developed type of polydextrose on the appearance, sensory score, and textural parameters of steamed bread and the microstructure of dough, as well as the pasting, thermal, and thermal mechanical properties of high-gluten wheat flours. [...] Read more.
This study explored the effects of adding a newly developed type of polydextrose on the appearance, sensory score, and textural parameters of steamed bread and the microstructure of dough, as well as the pasting, thermal, and thermal mechanical properties of high-gluten wheat flours. The results revealed that, compared with a control sample, 3–10% of polydextrose addition significantly increased the hardness, adhesiveness, gumminess, and chewiness of steamed bread, but other textural parameters like springiness, cohesiveness, and resilience remained basically the same. Further, in contrast to the control sample, 3–10% polydextrose addition significantly reduced the specific volume and width/height ratio of steamed bread but increased the brightness index, yellowish color, and color difference; improved the internal structure; and maintained the other sensory parameters and total score. Polydextrose addition decreased the peak, trough, final, breakdown, and setback viscosity of the pasting of wheat flour suspension solutions but increased the pasting temperature. Polydextrose additions significantly reduced the enthalpy of gelatinization and the aging rate of flour paste but increased the peak temperature of gelatinization. A Mixolab revealed that, with increases in the amount of added polydextrose, the dough’s development time and heating rate increased, but the proteins weakened, and the peak torque of gelatinization, starch breakdown, and starch setback torque all decreased. Polydextrose additions increased the crystalline regions of starch, the interaction between proteins and starch, and the β-sheet percentage of wheat dough without yeast and of steamed bread. The amorphous regions of starch were increased in dough through adding polydextrose, but they were decreased in steamed bread. Further, 3–10%of polydextrose addition decreased the random coils, α-helixes, and β-turns in dough, but the 3–7% polydextrose addition maintained or increased these conformations in steamed bread, while 10% polydextrose decreased them. In unfermented dough, as a hydrogel, the 5–7% polydextrose addition resulted in the formation of a continuous three-dimensional network structure with certain adhesiveness and elasticity, with increases in the porosity and gas-holding capacity of the product. Moreover, the 10% polydextrose addition further increased the viscosity, freshness, and looseness of the dough, with smaller and more numerous holes and indistinct boundaries between starch granules. These results indicate that the 3–10% polydextrose addition increases the chewiness and freshness of steamed bread by improving the gluten network structure. This study will promote the addition of polydextrose in steamed bread to improve shelf-life and dietary fiber contents. Full article
Show Figures

Figure 1

16 pages, 10651 KiB  
Article
Impact of Amelogenesis Imperfecta on Junctional Epithelium Structure and Function
by Kevin Lin, Jake Ngu, Susu Uyen Le and Yan Zhang
Biology 2025, 14(7), 853; https://doi.org/10.3390/biology14070853 - 14 Jul 2025
Viewed by 306
Abstract
The junctional epithelium, which lines the inner gingival surface, seals the gingival sulcus to block the infiltration of food debris and pathogens. The junctional epithelium is derived from the reduced enamel epithelium, consisting of late developmental stage ameloblasts and accessory cells. No prior [...] Read more.
The junctional epithelium, which lines the inner gingival surface, seals the gingival sulcus to block the infiltration of food debris and pathogens. The junctional epithelium is derived from the reduced enamel epithelium, consisting of late developmental stage ameloblasts and accessory cells. No prior studies have investigated whether defective ameloblast differentiation or enamel matrix formation affects junctional epithelium anatomy or function. Here, we examined the junctional epithelium in mice exhibiting amelogenesis imperfecta due to loss-of-function mutations in the major enamel matrix protein amelogenin (Amelx−/−) or the critical enamel matrix protease KLK4 (Klk4−/−). Histological analyses demonstrated altered morphology and cell layer thickness of the junctional epithelium in Amelx−/− and Klk4−/− mice as compared to wt. Immunohistochemistry revealed reduced ODAM, laminin 5, and integrin α6, all of which are critical for the adhesion of the junctional epithelium to the enamel in Amelx−/− and Klk4−/− mice. Furthermore, we observed altered cell–cell adhesion and increased permeability of Dextran-GFP through the mutants’ junctional epithelium, indicating defective barrier function. Reduced β-catenin and Ki67 at the base of the junctional epithelium in mutants suggest impaired mitotic activity and reduced capacity to replenish continuously desquamated epithelium. These findings highlight the essential role of normal amelogenesis in maintaining junctional epithelium homeostasis. Full article
(This article belongs to the Special Issue Understanding the Molecular Basis of Genetic Dental Diseases)
Show Figures

Figure 1

19 pages, 2510 KiB  
Article
In Vitro Evaluation of the Probiotic Properties and Whole Genome Sequencing of Lacticaseibacillus rhamnosus J3205 Isolated from Home-Made Fermented Sauce
by Yiming Chen, Lingchao Ma, Weiye Chen, Yiwen Chen, Zile Cheng, Yongzhang Zhu, Min Li, Yan Zhang, Xiaokui Guo and Chang Liu
Microorganisms 2025, 13(7), 1643; https://doi.org/10.3390/microorganisms13071643 - 11 Jul 2025
Viewed by 412
Abstract
Lacticaseibacillus rhamnosus J3205 was isolated from traditional fermented sauces and demonstrated potential probiotic properties. The strain exhibited high tolerance to simulated saliva (93.24% survival) and gastrointestinal conditions (69.95% gastric and 50.44% intestinal survival), along with strong adhesion capacity (58.25%) to intestinal epithelial cells. [...] Read more.
Lacticaseibacillus rhamnosus J3205 was isolated from traditional fermented sauces and demonstrated potential probiotic properties. The strain exhibited high tolerance to simulated saliva (93.24% survival) and gastrointestinal conditions (69.95% gastric and 50.44% intestinal survival), along with strong adhesion capacity (58.25%) to intestinal epithelial cells. Safety assessments confirmed the absence of virulence and antibiotic resistance genes. Genomic analysis revealed stress-response genes and 34 insertion sequence (IS) elements, while proteomic profiling identified Pgk as a key enzyme in lactic acid production and SecY in oxidative stress resistance. Functionally, J3205 significantly reduces pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) and enhances antioxidant markers (SOD, GSH) in vitro. These results position L. rhamnosus J3205 as a promising candidate for gut-health foods, anti-inflammatory nutraceuticals, and oxidative-stress therapeutics, warranting further in vivo validation. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

32 pages, 11521 KiB  
Article
Ultimate Capacity of a GFRP-Reinforced Concrete Bridge Barrier–Deck Anchorage Subjected to Transverse Loading
by Gledis Dervishhasani, Khaled Sennah, Hamdy M. Afefy and Ahmed Diab
Appl. Sci. 2025, 15(14), 7771; https://doi.org/10.3390/app15147771 - 10 Jul 2025
Viewed by 409
Abstract
This paper outlines a structural qualification process to assess the use of newly developed high-modulus (HM) glass fiber-reinforced polymer (GFRP) bars with headed ends in the joint between concrete bridge barriers and decks. The main goals of the study are to evaluate the [...] Read more.
This paper outlines a structural qualification process to assess the use of newly developed high-modulus (HM) glass fiber-reinforced polymer (GFRP) bars with headed ends in the joint between concrete bridge barriers and decks. The main goals of the study are to evaluate the structural performance of GFRP-reinforced TL-5 barrier–deck systems under transverse loading and to determine the pullout capacity of GFRP anchorage systems for both new construction and retrofit applications. The research is divided into two phases. In the first phase, six full-scale Test-Level 5 (TL-5) barrier wall–deck specimens, divided into three systems, were constructed and tested up to failure. The first system used headed-end GFRP bars to connect the barrier wall to a non-deformable thick deck slab. The second system was similar to the first but had a deck slab overhang for improved anchorage. The third system utilized postinstalled GFRP bars in a non-deformable thick deck slab, bonded with a commercial epoxy adhesive as a solution for deteriorated barrier replacement. The second phase involves an experimental program to evaluate the pullout strength of the GFRP bar anchorage in normal-strength concrete. The experimental results from the tested specimens were then compared to the factored applied moments in existing literature based on traffic loads in the Canadian Highway Bridge Design Code. Experimental results confirmed that GFRP-reinforced TL-5 barrier–deck systems exceeded factored design moments, with capacity-to-demand ratios above 1.38 (above 1.17 with the inclusion of an environmental reduction factor of 0.85). A 195 mm embedment length proved sufficient for both pre- and postinstalled bars. Headed-end GFRP bars improved pullout strength compared to straight-end bars, especially when bonded. Failure modes occurred at high loads, demonstrating structural integrity. Postinstalled bars bonded with epoxy performed comparably to preinstalled bars. A design equation for the barrier resistance due to a diagonal concrete crack at the barrier–deck corner was developed and validated using experimental findings. This equation offers a conservative and safe design approach for evaluating barrier–deck anchorage. Full article
Show Figures

Figure 1

37 pages, 2784 KiB  
Review
A Recent Insight into Research Pertaining to Collagen-Based Hydrogels as Dressings for Chronic Skin Wounds
by Andreea Mariana Negrescu and Anisoara Cimpean
Gels 2025, 11(7), 527; https://doi.org/10.3390/gels11070527 - 8 Jul 2025
Viewed by 651
Abstract
Affecting millions of individuals each year, chronic wounds place a substantial strain on both the healthcare system and healthcare providers, becoming a global health issue that requires a rapid and efficient solution. Unlike acute wounds that heal naturally without any external intervention, chronic [...] Read more.
Affecting millions of individuals each year, chronic wounds place a substantial strain on both the healthcare system and healthcare providers, becoming a global health issue that requires a rapid and efficient solution. Unlike acute wounds that heal naturally without any external intervention, chronic wounds necessitate proper medical treatment in order to promote the wound-healing process and avoid any arising complications. However, the traditional therapeutic strategies are often limited when it comes to treating chronic wounds, which is why new approaches that facilitate the timely and effective healing of skin have been explored. Due to their unique properties, collagen-based hydrogels have been widely investigated as potential candidates for the management of chronic skin wounds, owing to their good biocompatibility, high water retention capacity, which provides a moist microenvironment, and capacity to promote cell adhesion, proliferation, migration, and differentiation for optimal tissue repair. In this context, the current paper discusses the recent advancements in collagen-based hydrogels as wound dressings, thus highlighting their potential as a future therapeutic approach for skin chronic wound care. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Applications of Collagen-Based Gels)
Show Figures

Figure 1

17 pages, 3221 KiB  
Article
An mRNA Vaccine Targeting the C-Terminal Region of P1 Protein Induces an Immune Response and Protects Against Mycoplasma pneumoniae
by Fenglian Zhang, Chengwei Li, Yanan Wu, Hongyun Chuan, Shaohui Song, Yun Xie, Qi Zhu, Qianqian Chen, Fei Tong, Runfang Zhang, Guangbo Yuan, Xiaoyan Wu, Jian Zhou and Guoyang Liao
Int. J. Mol. Sci. 2025, 26(13), 6536; https://doi.org/10.3390/ijms26136536 - 7 Jul 2025
Viewed by 526
Abstract
Mycoplasma pneumoniae, a cell wall-deficient pathogen, primarily affects children and adolescents, causing Mycoplasma pneumoniae pneumonia (MPP). Following the relaxation of non-pharmaceutical interventions (NPIs) post COVID-19, there has been a global increase in MPP cases and macrolide-resistant strains. Vaccination against M. pneumoniae is [...] Read more.
Mycoplasma pneumoniae, a cell wall-deficient pathogen, primarily affects children and adolescents, causing Mycoplasma pneumoniae pneumonia (MPP). Following the relaxation of non-pharmaceutical interventions (NPIs) post COVID-19, there has been a global increase in MPP cases and macrolide-resistant strains. Vaccination against M. pneumoniae is being explored as a promising approach to reduce infections, limit antibiotic misuse, and prevent the emergence of drug-resistant variants. We developed an mRNA vaccine, mRNA-SP+P1, incorporating a eukaryotic signal peptide (tissue-type plasminogen activator signal peptide) fused to the C-terminal region of the P1 protein. Targeting amino acids 1288 to 1518 of the P1 protein, the vaccine was administered intramuscularly to BALB/c mice in a three-dose regimen. To evaluate immunogenicity, we quantified anti-P1 IgG antibody titers using enzyme-linked immunosorbent assays (ELISAs) and assessed cellular immune responses by analyzing effector memory T cell populations using flow cytometry. We also tested the functional activity of vaccine-induced sera for their ability to inhibit adhesion of the ATCC M129 strain to KMB17 cells. The vaccine’s protective efficacy was assessed against the ATCC M129 strain and its cross-protection against the ST3-resistant strain. Transcriptomic analysis was conducted to investigate gene expression changes in peripheral blood, aiming to uncover mechanisms of immune modulation. The mRNA-SP+P1 vaccine induces P1 protein-specific IgG antibodies and an effector memory T-cell response in BALB/c mice. Adhesion inhibition assays demonstrated that serum from vaccinated mice attenuatesthe adhesion ability of ATCC M129 to KMB17 cells. Furthermore, three doses of the vaccine confer significant and long-lasting, though partial, protection against the ATCC M129 strain and partial cross-protection against the ST3 drug-resistant strain. Transcriptome analysis revealed significant gene expression changes in peripheral blood, confirming the vaccine’s capacity to elicit an immune response from the molecular level. Our results indicate that the mRNA-SP+P1 vaccine appears to be an effective vaccine candidate against the prevalence of Mycoplasma pneumoniae. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

Back to TopTop