Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,061)

Search Parameters:
Keywords = adaptive power management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1435 KiB  
Review
Smart Safety Helmets with Integrated Vision Systems for Industrial Infrastructure Inspection: A Comprehensive Review of VSLAM-Enabled Technologies
by Emmanuel A. Merchán-Cruz, Samuel Moveh, Oleksandr Pasha, Reinis Tocelovskis, Alexander Grakovski, Alexander Krainyukov, Nikita Ostrovenecs, Ivans Gercevs and Vladimirs Petrovs
Sensors 2025, 25(15), 4834; https://doi.org/10.3390/s25154834 (registering DOI) - 6 Aug 2025
Abstract
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused [...] Read more.
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused inspection platforms, highlighting how modern helmets leverage real-time visual SLAM algorithms to map environments and assist inspectors. A systematic literature search was conducted targeting high-impact journals, patents, and industry reports. We classify helmet-integrated camera systems into monocular, stereo, and omnidirectional types and compare their capabilities for infrastructure inspection. We examine core VSLAM algorithms (feature-based, direct, hybrid, and deep-learning-enhanced) and discuss their adaptation to wearable platforms. Multi-sensor fusion approaches integrating inertial, LiDAR, and GNSS data are reviewed, along with edge/cloud processing architectures enabling real-time performance. This paper compiles numerous industrial use cases, from bridges and tunnels to plants and power facilities, demonstrating significant improvements in inspection efficiency, data quality, and worker safety. Key challenges are analyzed, including technical hurdles (battery life, processing limits, and harsh environments), human factors (ergonomics, training, and cognitive load), and regulatory issues (safety certification and data privacy). We also identify emerging trends, such as semantic SLAM, AI-driven defect recognition, hardware miniaturization, and collaborative multi-helmet systems. This review finds that VSLAM-equipped smart helmets offer a transformative approach to infrastructure inspection, enabling real-time mapping, augmented awareness, and safer workflows. We conclude by highlighting current research gaps, notably in standardizing systems and integrating with asset management, and provide recommendations for industry adoption and future research directions. Full article
Show Figures

Figure 1

42 pages, 5651 KiB  
Article
Towards a Trustworthy Rental Market: A Blockchain-Based Housing System Architecture
by Ching-Hsi Tseng, Yu-Heng Hsieh, Yen-Yu Chang and Shyan-Ming Yuan
Electronics 2025, 14(15), 3121; https://doi.org/10.3390/electronics14153121 - 5 Aug 2025
Abstract
This study explores the transformative potential of blockchain technology in overhauling conventional housing rental systems. It specifically addresses persistent issues, such as information asymmetry, fraudulent listings, weak Rental Agreements, and data breaches. A comprehensive review of ten academic publications highlights the architectural frameworks, [...] Read more.
This study explores the transformative potential of blockchain technology in overhauling conventional housing rental systems. It specifically addresses persistent issues, such as information asymmetry, fraudulent listings, weak Rental Agreements, and data breaches. A comprehensive review of ten academic publications highlights the architectural frameworks, underlying technologies, and myriad benefits of decentralized rental platforms. The intrinsic characteristics of blockchain—immutability, transparency, and decentralization—are pivotal in enhancing the credibility of rental information and proactively preventing fraudulent activities. Smart contracts emerge as a key innovation, enabling the automated execution of Rental Agreements, thereby significantly boosting efficiency and minimizing reliance on intermediaries. Furthermore, Decentralized Identity (DID) solutions offer a robust mechanism for securely managing identities, effectively mitigating risks associated with data leakage, and fostering a more trustworthy environment. The suitability of platforms such as Hyperledger Fabric for developing such sophisticated rental systems is also critically evaluated. Blockchain-based systems promise to dramatically increase market transparency, bolster transaction security, and enhance fraud prevention. They also offer streamlined processes for dispute resolution. Despite these significant advantages, the widespread adoption of blockchain in the rental sector faces several challenges. These include inherent technological complexity, adoption barriers, the need for extensive legal and regulatory adaptation, and critical privacy concerns (e.g., ensuring compliance with GDPR). Furthermore, blockchain scalability limitations and the intricate balance between data immutability and the necessity for occasional data corrections present considerable hurdles. Future research should focus on developing user-friendly DID solutions, enhancing blockchain performance and cost-efficiency, strengthening smart contract security, optimizing the overall user experience, and exploring seamless integration with emerging technologies. While current challenges are undeniable, blockchain technology offers a powerful suite of tools for fundamentally improving the rental market’s efficiency, transparency, and security, exhibiting significant potential to reshape the entire rental ecosystem. Full article
(This article belongs to the Special Issue Blockchain Technologies: Emerging Trends and Real-World Applications)
Show Figures

Figure 1

22 pages, 2029 KiB  
Article
A Deep Reinforcement Learning Framework for Cascade Reservoir Operations Under Runoff Uncertainty
by Jing Xu, Jiabin Qiao, Qianli Sun and Keyan Shen
Water 2025, 17(15), 2324; https://doi.org/10.3390/w17152324 - 5 Aug 2025
Abstract
Effective management of cascade reservoir systems is essential for balancing hydropower generation, flood control, and ecological sustainability, especially under increasingly uncertain runoff conditions driven by climate change. Traditional optimization methods, while widely used, often struggle with high dimensionality and fail to adequately address [...] Read more.
Effective management of cascade reservoir systems is essential for balancing hydropower generation, flood control, and ecological sustainability, especially under increasingly uncertain runoff conditions driven by climate change. Traditional optimization methods, while widely used, often struggle with high dimensionality and fail to adequately address inflow variability. This study introduces a novel deep reinforcement learning (DRL) framework that tightly couples probabilistic runoff forecasting with adaptive reservoir scheduling. We integrate a Long Short-Term Memory (LSTM) neural network to model runoff uncertainty and generate probabilistic inflow forecasts, which are then embedded into a Proximal Policy Optimization (PPO) algorithm via Monte Carlo sampling. This unified forecast–optimize architecture allows for dynamic policy adjustment in response to stochastic hydrological conditions. A case study on China’s Xiluodu–Xiangjiaba cascade system demonstrates that the proposed LSTM-PPO framework achieves superior performance compared to traditional baselines, notably improving power output, storage utilization, and spillage reduction. The results highlight the method’s robustness and scalability, suggesting strong potential for supporting resilient water–energy nexus management under complex environmental uncertainty. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

22 pages, 3217 KiB  
Article
A Deep Reinforcement Learning Approach for Energy Management in Low Earth Orbit Satellite Electrical Power Systems
by Silvio Baccari, Elisa Mostacciuolo, Massimo Tipaldi and Valerio Mariani
Electronics 2025, 14(15), 3110; https://doi.org/10.3390/electronics14153110 - 5 Aug 2025
Abstract
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement [...] Read more.
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement Learning approach using Deep-Q Network to develop an adaptive energy management framework for Low Earth Orbit satellites. Compared to traditional techniques, the proposed solution autonomously learns from environmental interaction, offering robustness to uncertainty and online adaptability. It adjusts to changing conditions without manual retraining, making it well-suited for handling modeling uncertainties and non-stationary dynamics typical of space operations. Training is conducted using a realistic satellite electric power system model with accurate component parameters and single-orbit power profiles derived from real space missions. Numerical simulations validate the controller performance across diverse scenarios, including multi-orbit settings, demonstrating superior adaptability and efficiency compared to conventional Maximum Power Point Tracking methods. Full article
Show Figures

Figure 1

14 pages, 2532 KiB  
Article
Machine Learning for Spatiotemporal Prediction of River Siltation in Typical Reach in Jiangxi, China
by Yong Fu, Jin Luo, Die Zhang, Lingjia Liu, Gan Luo and Xiaofang Zu
Appl. Sci. 2025, 15(15), 8628; https://doi.org/10.3390/app15158628 (registering DOI) - 4 Aug 2025
Abstract
Accurate forecasting of river siltation is essential for ensuring inland waterway navigability and guiding sustainable sediment management. This study investigates the downstream reach of the Shihutang navigation power hub along the Ganjiang River in Jiangxi Province, China, an area characterized by pronounced seasonal [...] Read more.
Accurate forecasting of river siltation is essential for ensuring inland waterway navigability and guiding sustainable sediment management. This study investigates the downstream reach of the Shihutang navigation power hub along the Ganjiang River in Jiangxi Province, China, an area characterized by pronounced seasonal sedimentation and hydrological variability. To enable fine-scale prediction, we developed a data-driven framework using a random forest regression model that integrates high-resolution bathymetric surveys with hydrological and meteorological observations. Based on the field data from April to July 2024, the model was trained to forecast monthly siltation volumes at a 30 m grid scale over a six-month horizon (July–December 2024). The results revealed a marked increase in siltation from July to September, followed by a decline during the winter months. The accumulation of sediment, combined with falling water levels, was found to significantly reduce the channel depth and width, particularly in the upstream sections, posing a potential risk to navigation safety. This study presents an initial, yet promising attempt to apply machine learning for spatially explicit siltation prediction in data-constrained river systems. The proposed framework provides a practical tool for early warning, targeted dredging, and adaptive channel management. Full article
Show Figures

Figure 1

22 pages, 1566 KiB  
Review
Multi-Objective Evolutionary Algorithms in Waste Disposal Systems: A Comprehensive Review of Applications, Case Studies, and Future Directions
by Saad Talal Alharbi
Computers 2025, 14(8), 316; https://doi.org/10.3390/computers14080316 - 4 Aug 2025
Viewed by 59
Abstract
Multi-objective evolutionary algorithms (MOEAs) have emerged as powerful optimization tools for addressing the complex, often conflicting goals present in modern waste disposal systems. This review explores recent advances and practical applications of MOEAs in key areas, including waste collection routing, waste-to-energy (WTE) systems, [...] Read more.
Multi-objective evolutionary algorithms (MOEAs) have emerged as powerful optimization tools for addressing the complex, often conflicting goals present in modern waste disposal systems. This review explores recent advances and practical applications of MOEAs in key areas, including waste collection routing, waste-to-energy (WTE) systems, and facility location and allocation. Real-world case studies from cities like Braga, Lisbon, Uppsala, and Cyprus demonstrate how MOEAs can enhance operational efficiency, boost energy recovery, and reduce environmental impacts. While these algorithms offer significant advantages, challenges remain in computational complexity, adapting to dynamic environments, and integrating with emerging technologies. Future research directions highlight the potential of combining MOEAs with machine learning and real-time data to create more flexible and responsive waste management strategies. By leveraging these advancements, MOEAs can play a pivotal role in developing sustainable, efficient, and adaptive waste disposal systems capable of meeting the growing demands of urbanization and stricter environmental regulations. Full article
(This article belongs to the Special Issue Operations Research: Trends and Applications)
Show Figures

Graphical abstract

18 pages, 603 KiB  
Article
Leveraging Dynamic Pricing and Real-Time Grid Analysis: A Danish Perspective on Flexible Industry Optimization
by Sreelatha Aihloor Subramanyam, Sina Ghaemi, Hessam Golmohamadi, Amjad Anvari-Moghaddam and Birgitte Bak-Jensen
Energies 2025, 18(15), 4116; https://doi.org/10.3390/en18154116 - 3 Aug 2025
Viewed by 113
Abstract
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming [...] Read more.
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming to minimize operational costs and enhance energy efficiency. The method integrates dynamic pricing and real-time grid analysis, alongside a state estimation model using Extended Kalman Filtering (EKF) that improves the accuracy of system state predictions. Model Predictive Control (MPC) is employed for real-time adjustments. A real-world case studies from aquaculture industries and industrial power grids in Denmark demonstrates the approach. By leveraging dynamic pricing and grid signals, the system enables adaptive pump scheduling, achieving a 27% reduction in energy costs while maintaining voltage stability within 0.95–1.05 p.u. and ensuring operational safety. These results confirm the effectiveness of grid-aware, flexible control in reducing costs and enhancing stability, supporting the transition toward smarter, sustainable industrial energy systems. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

25 pages, 6272 KiB  
Article
Research on Energy-Saving Control of Automotive PEMFC Thermal Management System Based on Optimal Operating Temperature Tracking
by Qi Jiang, Shusheng Xiong, Baoquan Sun, Ping Chen, Huipeng Chen and Shaopeng Zhu
Energies 2025, 18(15), 4100; https://doi.org/10.3390/en18154100 - 1 Aug 2025
Viewed by 216
Abstract
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating [...] Read more.
To further enhance the economic performance of fuel cell vehicles (FCVs), this study develops a model-adaptive model predictive control (MPC) strategy. This strategy leverages the dynamic relationship between proton exchange membrane fuel cell (PEMFC) output characteristics and temperature to track its optimal operating temperature (OOT), addressing challenges of temperature control accuracy and high energy consumption in the PEMFC thermal management system (TMS). First, PEMFC and TMS models were developed and experimentally validated. Subsequently, the PEMFC power–temperature coupling curve was experimentally determined under multiple operating conditions to serve as the reference trajectory for TMS multi-objective optimization. For MPC controller design, the TMS model was linearized and discretized, yielding a predictive model adaptable to different load demands for stack temperature across the full operating range. A multi-constrained quadratic cost function was formulated, aiming to minimize the deviation of the PEMFC operating temperature from the OOT while accounting for TMS parasitic power consumption. Finally, simulations under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) conditions evaluated the OOT tracking performance of both PID and MPC control strategies, as well as their impact on stack efficiency and TMS energy consumption at different ambient temperatures. The results indicate that, compared to PID control, MPC reduces temperature tracking error by 33%, decreases fan and pump speed fluctuations by over 24%, and lowers TMS energy consumption by 10%. These improvements enhance PEMFC operational stability and improve FCV energy efficiency. Full article
Show Figures

Figure 1

25 pages, 953 KiB  
Article
Command Redefined: Neural-Adaptive Leadership in the Age of Autonomous Intelligence
by Raul Ionuț Riti, Claudiu Ioan Abrudan, Laura Bacali and Nicolae Bâlc
AI 2025, 6(8), 176; https://doi.org/10.3390/ai6080176 - 1 Aug 2025
Viewed by 190
Abstract
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will [...] Read more.
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will collaborate with learning algorithms in the Neural Adaptive Artificial Intelligence Leadership Model, which is informed by the transformational literature on leadership and socio-technical systems, as well as the literature on algorithmic governance. We assessed the model with thirty in-depth interviews, system-level traces of behavior, and a verified survey, and we explored six hypotheses that relate to algorithmic delegation and ethical oversight, as well as human judgment versus machine insight in terms of agility and performance. We discovered that decisions are made quicker, change is more effective, and interaction is more vivid where agile practices and good digital understanding exist, and statistical tests propose that human flexibility and definite governance augment those benefits as well. It is single-industry research that contains self-reported measures, which causes research to be limited to other industries that contain more objective measures. Practitioners are provided with a practical playbook on how to make algorithmic jobs meaningful, introduce moral fail-safes, and build learning feedback to ensure people and machines are kept in line. Socially, the practice is capable of minimizing bias and establishing inclusion by visualizing accountability in the code and practice. Filling the gap between the theory of leadership and the reality of algorithms, the study provides a model of intelligent systems leading in organizations that can be reproduced. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
21 pages, 4147 KiB  
Article
OLTEM: Lumped Thermal and Deep Neural Model for PMSM Temperature
by Yuzhong Sheng, Xin Liu, Qi Chen, Zhenghao Zhu, Chuangxin Huang and Qiuliang Wang
AI 2025, 6(8), 173; https://doi.org/10.3390/ai6080173 - 31 Jul 2025
Viewed by 271
Abstract
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines [...] Read more.
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines LPTN with a thermal neural network (TNN) to improve prediction accuracy while keeping physical meaning. Methods: OLTEM embeds LPTN into a recurrent state-space formulation and learns three parameter sets: thermal conductance, inverse thermal capacitance, and power loss. Two additions are introduced: (i) a state-conditioned squeeze-and-excitation (SC-SE) attention that adapts feature weights using the current temperature state, and (ii) an enhanced power-loss sub-network that uses a deep MLP with SC-SE and non-negativity constraints. The model is trained and evaluated on the public Electric Motor Temperature dataset (Paderborn University/Kaggle). Performance is measured by mean squared error (MSE) and maximum absolute error across permanent-magnet, stator-yoke, stator-tooth, and stator-winding temperatures. Results: OLTEM tracks fast thermal transients and yields lower MSE than both the baseline TNN and a CNN–RNN model for all four components. On a held-out generalization set, MSE remains below 4.0 °C2 and the maximum absolute error is about 4.3–8.2 °C. Ablation shows that removing either SC-SE or the enhanced power-loss module degrades accuracy, confirming their complementary roles. Conclusions: By combining physics with learned attention and loss modeling, OLTEM improves PMSM temperature prediction while preserving interpretability. This approach can support motor thermal design and control; future work will study transfer to other machines and further reduce short-term errors during abrupt operating changes. Full article
Show Figures

Figure 1

19 pages, 3963 KiB  
Article
Real-Time Energy Management in Microgrids: Integrating T-Cell Optimization, Droop Control, and HIL Validation with OPAL-RT
by Achraf Boukaibat, Nissrine Krami, Youssef Rochdi, Yassir El Bakkali, Mohamed Laamim and Abdelilah Rochd
Energies 2025, 18(15), 4035; https://doi.org/10.3390/en18154035 - 29 Jul 2025
Viewed by 376
Abstract
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these [...] Read more.
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these challenges. A JADE-based multi-agent system (MAS) orchestrates coordination between the T-Cell optimizer and edge-level controllers, enabling scalable and fault-tolerant decision-making. The T-Cell algorithm, inspired by adaptive immune system dynamics, optimizes global power distribution through the MAS platform, while droop control ensures local voltage stability via autonomous adjustments by distributed energy resources (DERs). The framework is rigorously validated through Hardware-in-the-Loop (HIL) testing using OPAL-RT, which interfaces MATLAB/Simulink models with Raspberry Pi for real-time communication (MQTT/Modbus protocols). Experimental results demonstrate a 91% reduction in grid dependency, 70% mitigation of voltage fluctuations, and a 93% self-consumption rate, significantly enhancing power quality and resilience. By integrating centralized optimization with decentralized control through MAS coordination, the hybrid approach achieves scalable, self-organizing microgrid operation under variable generation and load conditions. This work advances the practical deployment of adaptive energy management systems, offering a robust solution for sustainable and resilient microgrids. Full article
Show Figures

Figure 1

17 pages, 1540 KiB  
Article
Evaluating a Nationally Localized AI Chatbot for Personalized Primary Care Guidance: Insights from the HomeDOCtor Deployment in Slovenia
by Matjaž Gams, Tadej Horvat, Žiga Kolar, Primož Kocuvan, Kostadin Mishev and Monika Simjanoska Misheva
Healthcare 2025, 13(15), 1843; https://doi.org/10.3390/healthcare13151843 - 29 Jul 2025
Viewed by 343
Abstract
Background/Objectives: The demand for accessible and reliable digital health services has increased significantly in recent years, particularly in regions facing physician shortages. HomeDOCtor, a conversational AI platform developed in Slovenia, addresses this need with a nationally adapted architecture that combines retrieval-augmented generation [...] Read more.
Background/Objectives: The demand for accessible and reliable digital health services has increased significantly in recent years, particularly in regions facing physician shortages. HomeDOCtor, a conversational AI platform developed in Slovenia, addresses this need with a nationally adapted architecture that combines retrieval-augmented generation (RAG) and a Redis-based vector database of curated medical guidelines. The objective of this study was to assess the performance and impact of HomeDOCtor in providing AI-powered healthcare assistance. Methods: HomeDOCtor is designed for human-centered communication and clinical relevance, supporting multilingual and multimedia citizen inputs while being available 24/7. It was tested using a set of 100 international clinical vignettes and 150 internal medicine exam questions from the University of Ljubljana to validate its clinical performance. Results: During its six-month nationwide deployment, HomeDOCtor received overwhelmingly positive user feedback with minimal criticism, and exceeded initial expectations, especially in light of widespread media narratives warning about the risks of AI. HomeDOCtor autonomously delivered localized, evidence-based guidance, including self-care instructions and referral suggestions, with average response times under three seconds. On international benchmarks, the system achieved ≥95% Top-1 diagnostic accuracy, comparable to leading medical AI platforms, and significantly outperformed stand-alone ChatGPT-4o in the national context (90.7% vs. 80.7%, p = 0.0135). Conclusions: Practically, HomeDOCtor eases the burden on healthcare professionals by providing citizens with 24/7 autonomous, personalized triage and self-care guidance for less complex medical issues, ensuring that these cases are self-managed efficiently. The system also identifies more serious cases that might otherwise be neglected, directing them to professionals for appropriate care. Theoretically, HomeDOCtor demonstrates that domain-specific, nationally adapted large language models can outperform general-purpose models. Methodologically, it offers a framework for integrating GDPR-compliant AI solutions in healthcare. These findings emphasize the value of localization in conversational AI and telemedicine solutions across diverse national contexts. Full article
(This article belongs to the Special Issue Application of Digital Services to Improve Patient-Centered Care)
Show Figures

Figure 1

20 pages, 1449 KiB  
Article
Deep Reinforcement Learning-Based Resource Allocation for UAV-GAP Downlink Cooperative NOMA in IIoT Systems
by Yuanyan Huang, Jingjing Su, Xuan Lu, Shoulin Huang, Hongyan Zhu and Haiyong Zeng
Entropy 2025, 27(8), 811; https://doi.org/10.3390/e27080811 - 29 Jul 2025
Viewed by 305
Abstract
This paper studies deep reinforcement learning (DRL)-based joint resource allocation and three-dimensional (3D) trajectory optimization for unmanned aerial vehicle (UAV)–ground access point (GAP) cooperative non-orthogonal multiple access (NOMA) communication in Industrial Internet of Things (IIoT) systems. Cooperative and non-cooperative users adopt different signal [...] Read more.
This paper studies deep reinforcement learning (DRL)-based joint resource allocation and three-dimensional (3D) trajectory optimization for unmanned aerial vehicle (UAV)–ground access point (GAP) cooperative non-orthogonal multiple access (NOMA) communication in Industrial Internet of Things (IIoT) systems. Cooperative and non-cooperative users adopt different signal transmission strategies to meet diverse, task-oriented, quality-of-service requirements. Specifically, the DRL framework based on the Soft Actor–Critic algorithm is proposed to jointly optimize user scheduling, power allocation, and UAV trajectory in continuous action spaces. Closed-form power allocation and maximum weight bipartite matching are integrated to enable efficient user pairing and resource management. Simulation results show that the proposed scheme significantly enhances system performance in terms of throughput, spectral efficiency, and interference management, while enabling robustness against channel uncertainties in dynamic IIoT environments. The findings indicate that combining model-free reinforcement learning with conventional optimization provides a viable solution for adaptive resource management in dynamic UAV-GAP cooperative communication scenarios. Full article
Show Figures

Figure 1

24 pages, 2710 KiB  
Article
Spatial and Economic-Based Clustering of Greek Irrigation Water Organizations: A Data-Driven Framework for Sustainable Water Pricing and Policy Reform
by Dimitrios Tsagkoudis, Eleni Zafeiriou and Konstantinos Spinthiropoulos
Water 2025, 17(15), 2242; https://doi.org/10.3390/w17152242 - 28 Jul 2025
Viewed by 324
Abstract
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective [...] Read more.
This study employs k-means clustering to analyze local organizations responsible for land improvement in Greece, identifying four distinct groups with consistent geographic patterns but divergent financial and operational characteristics. By integrating unsupervised machine learning with spatial analysis, the research offers a novel perspective on irrigation water pricing and cost recovery. The findings reveal that organizations located on islands, despite high water costs due to limited rainfall and geographic isolation, tend to achieve relatively strong financial performance, indicating the presence of adaptive mechanisms that could inform broader policy strategies. In contrast, organizations managing extensive irrigable land or large volumes of water frequently show poor cost recovery, challenging assumptions about economies of scale and revealing inefficiencies in pricing or governance structures. The spatial coherence of the clusters underscores the importance of geography in shaping institutional outcomes, reaffirming that environmental and locational factors can offer greater explanatory power than algorithmic models alone. This highlights the need for water management policies that move beyond uniform national strategies and instead reflect regional climatic, infrastructural, and economic variability. The study suggests several policy directions, including targeted infrastructure investment, locally calibrated water pricing models, and performance benchmarking based on successful organizational practices. Although grounded in the Greek context, the methodology and insights are transferable to other European and Mediterranean regions facing similar water governance challenges. Recognizing the limitations of the current analysis—including gaps in data consistency and the exclusion of socio-environmental indicators—the study advocates for future research incorporating broader variables and international comparative approaches. Ultimately, it supports a hybrid policy framework that combines data-driven analysis with spatial intelligence to promote sustainability, equity, and financial viability in agricultural water management. Full article
(This article belongs to the Special Issue Balancing Competing Demands for Sustainable Water Development)
Show Figures

Figure 1

38 pages, 2182 KiB  
Article
Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits
by Joseph Nyangon
Energies 2025, 18(15), 3988; https://doi.org/10.3390/en18153988 - 25 Jul 2025
Viewed by 381
Abstract
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the [...] Read more.
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the U.S. electricity market, triggering significant changes in electricity production, transmission, and consumption. Utilities are embracing digital twins and repurposed Utility 2.0 concepts—distributed energy resources, microgrids, innovative electricity market designs, real-time automated monitoring, smart meters, machine learning, artificial intelligence, and advanced data and predictive analytics—to foster operational flexibility and market efficiency. This analysis qualitatively evaluates how digitalization, Battery Energy Storage Systems (BESSs), and adaptive strategies to mitigate rebound effects collectively advance smart duck curve management. By leveraging digital platforms for real-time monitoring and predictive analytics, utilities can optimize energy flows and make data-driven decisions. BESS technologies capture surplus renewable energy during off-peak periods and discharge it when demand spikes, thereby smoothing grid fluctuations. This review explores the benefits of targeted digital transformation, BESSs, and managed rebound effects in mitigating the duck curve problem, ensuring that energy efficiency gains translate into actual savings. Furthermore, this integrated approach not only reduces energy wastage and lowers operational costs but also enhances grid resilience, establishing a robust framework for sustainable energy management in an evolving market landscape. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Show Figures

Figure 1

Back to TopTop