Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = adaptive motion artifact filtering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7305 KB  
Article
SERail-SLAM: Semantic-Enhanced Railway LiDAR SLAM
by Weiwei Song, Shiqi Zheng, Xinye Dai, Xiao Wang, Yusheng Wang, Zihao Wang, Shujie Zhou, Wenlei Liu and Yidong Lou
Machines 2026, 14(1), 72; https://doi.org/10.3390/machines14010072 - 7 Jan 2026
Viewed by 302
Abstract
Reliable state estimation in railway environments presents significant challenges due to geometric degeneracy resulting from repetitive structural layouts and point cloud sparsity caused by high-speed motion. Conventional LiDAR-based SLAM systems frequently suffer from longitudinal drift and mapping artifacts when operating in such feature-scarce [...] Read more.
Reliable state estimation in railway environments presents significant challenges due to geometric degeneracy resulting from repetitive structural layouts and point cloud sparsity caused by high-speed motion. Conventional LiDAR-based SLAM systems frequently suffer from longitudinal drift and mapping artifacts when operating in such feature-scarce and dynamically complex scenarios. To address these limitations, this paper proposes SERail-SLAM, a robust semantic-enhanced multi-sensor fusion framework that tightly couples LiDAR odometry, inertial pre-integration, and GNSS constraints. Unlike traditional approaches that rely on rigid voxel grids or binary semantic masking, we introduce a Semantic-Enhanced Adaptive Voxel Map. By leveraging eigen-decomposition of local point distributions, this mapping strategy dynamically preserves fine-grained stable structures while compressing redundant planar surfaces, thereby enhancing spatial descriptiveness. Furthermore, to mitigate the impact of environmental noise and segmentation uncertainty, a confidence-aware filtering mechanism is developed. This method utilizes raw segmentation probabilities to adaptively weight input measurements, effectively distinguishing reliable landmarks from clutter. Finally, a category-weighted joint optimization scheme is implemented, where feature associations are constrained by semantic stability priors, ensuring globally consistent localization. Extensive experiments in real-world railway datasets demonstrate that the proposed system achieves superior accuracy and robustness compared to state-of-the-art geometric and semantic SLAM methods. Full article
(This article belongs to the Special Issue Dynamic Analysis and Condition Monitoring of High-Speed Trains)
Show Figures

Figure 1

17 pages, 3854 KB  
Article
Research on Signal Processing Algorithms Based on Wearable Laser Doppler Devices
by Yonglong Zhu, Yinpeng Fang, Jinjiang Cui, Jiangen Xu, Minghang Lv, Tongqing Tang, Jinlong Ma and Chengyao Cai
Electronics 2025, 14(14), 2761; https://doi.org/10.3390/electronics14142761 - 9 Jul 2025
Viewed by 929
Abstract
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise [...] Read more.
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise information, modal decomposition techniques that depend on empirical parameter optimization and are prone to modal aliasing, wavelet threshold functions that struggle to balance signal preservation with smoothness, and the high computational complexity of deep learning approaches—this paper proposes an ISSA-VMD-AWPTD denoising algorithm. This innovative approach integrates an improved sparrow search algorithm (ISSA), variational mode decomposition (VMD), and adaptive wavelet packet threshold denoising (AWPTD). The ISSA is enhanced through cubic chaotic mapping, butterfly optimization, and sine–cosine search strategies, targeting the minimization of the envelope entropy of modal components for adaptive optimization of VMD’s decomposition levels and penalty factors. A correlation coefficient-based selection mechanism is employed to separate target and mixed modes effectively, allowing for the efficient removal of noise components. Additionally, an exponential adaptive threshold function is introduced, combining wavelet packet node energy proportion analysis to achieve efficient signal reconstruction. By leveraging the rapid convergence property of ISSA (completing parameter optimization within five iterations), the computational load of traditional VMD is reduced while maintaining the denoising accuracy. Experimental results demonstrate that for a 200 Hz test signal, the proposed algorithm achieves a signal-to-noise ratio (SNR) of 24.47 dB, an improvement of 18.8% over the VMD method (20.63 dB), and a root-mean-square-error (RMSE) of 0.0023, a reduction of 69.3% compared to the VMD method (0.0075). The processing results for measured human blood flow signals achieve an SNR of 24.11 dB, a RMSE of 0.0023, and a correlation coefficient (R) of 0.92, all outperforming other algorithms, such as VMD and WPTD. This study effectively addresses issues related to parameter sensitivity and incomplete noise separation in traditional methods, providing a high-precision and low-complexity real-time signal processing solution for wearable devices. However, the parameter optimization still needs improvement when dealing with large datasets. Full article
Show Figures

Figure 1

31 pages, 3621 KB  
Review
Electromyography Signal Acquisition, Filtering, and Data Analysis for Exoskeleton Development
by Jung-Hoon Sul, Lasitha Piyathilaka, Diluka Moratuwage, Sanura Dunu Arachchige, Amal Jayawardena, Gayan Kahandawa and D. M. G. Preethichandra
Sensors 2025, 25(13), 4004; https://doi.org/10.3390/s25134004 - 27 Jun 2025
Cited by 5 | Viewed by 6160
Abstract
Electromyography (EMG) has emerged as a vital tool in the development of wearable robotic exoskeletons, enabling intuitive and responsive control by capturing neuromuscular signals. This review presents a comprehensive analysis of the EMG signal processing pipeline tailored to exoskeleton applications, spanning signal acquisition, [...] Read more.
Electromyography (EMG) has emerged as a vital tool in the development of wearable robotic exoskeletons, enabling intuitive and responsive control by capturing neuromuscular signals. This review presents a comprehensive analysis of the EMG signal processing pipeline tailored to exoskeleton applications, spanning signal acquisition, noise mitigation, data preprocessing, feature extraction, and control strategies. Various EMG acquisition methods, including surface, intramuscular, and high-density surface EMG, are evaluated for their applicability in real-time control. The review addresses prevalent signal quality challenges, such as motion artifacts, power-line interference, and crosstalk. It also highlights both traditional filtering techniques and advanced methods, such as wavelet transforms, empirical mode decomposition, and adaptive filtering. Feature extraction techniques are explored to support pattern recognition and motion classification. Machine learning approaches are examined for their roles in pattern recognition-based and hybrid control architectures. This article emphasizes muscle synergy analysis and adaptive control algorithms to enhance personalization and fatigue compensation, followed by the benefits of multimodal sensing and edge computing in addressing the limitations of EMG-only systems. By focusing on EMG-driven strategies through signal processing, machine learning, and sensor fusion innovations, this review bridges gaps in human–machine interaction, offering insights into improving the precision, adaptability, and robustness of next generation exoskeletons. Full article
(This article belongs to the Special Issue Sensors-Based Healthcare Diagnostics, Monitoring and Medical Devices)
Show Figures

Figure 1

23 pages, 6966 KB  
Article
Structural Vibration Detection Using the Optimized Optical Flow Technique and UAV After Removing UAV’s Motions
by Xin Bai, Rongliang Xie, Ning Liu and Zi Zhang
Appl. Sci. 2025, 15(11), 5821; https://doi.org/10.3390/app15115821 - 22 May 2025
Viewed by 1713
Abstract
Traditional structural damage detection relies on multi-sensor arrays (e.g., total stations, accelerometers, and GNSS). However, these sensors have some inherent limitations such as high cost, limited accuracy, and environmental sensitivity. Advances in computer vision technology have driven the research on vision-based structural vibration [...] Read more.
Traditional structural damage detection relies on multi-sensor arrays (e.g., total stations, accelerometers, and GNSS). However, these sensors have some inherent limitations such as high cost, limited accuracy, and environmental sensitivity. Advances in computer vision technology have driven the research on vision-based structural vibration analysis and damage identification. In this study, an optimized Lucas–Kanade optical flow algorithm is proposed, and it integrates feature point trajectory analysis with an adaptive thresholding mechanism, and improves the accuracy of the measurements through an innovative error vector filtering strategy. Comprehensive experimental validation demonstrates the performance of the algorithm in a variety of test scenarios. The method tracked MTS vibrations with 97% accuracy in a laboratory environment, and the robustness of the environment was confirmed by successful noise reduction using a dedicated noise-suppression algorithm under camera-induced interference conditions. UAV field tests show that it effectively compensates for UAV-induced motion artifacts and maintains over 90% measurement accuracy in both indoor and outdoor environments. Comparative analyses show that the proposed UAV-based method has significantly improved accuracy compared to the traditional optical flow method, providing a highly robust visual monitoring solution for structural durability assessment in complex environments. Full article
Show Figures

Figure 1

20 pages, 5426 KB  
Article
Artificial Intelligence-Based Atrial Fibrillation Recognition Method for Motion Artifact-Contaminated Electrocardiogram Signals Preprocessed by Adaptive Filtering Algorithm
by Huanqian Zhang, Hantao Zhao and Zhang Guo
Sensors 2024, 24(12), 3789; https://doi.org/10.3390/s24123789 - 11 Jun 2024
Cited by 4 | Viewed by 2874
Abstract
Atrial fibrillation (AF) is a common arrhythmia, and out-of-hospital, wearable, long-term electrocardiogram (ECG) monitoring can help with the early detection of AF. The presence of a motion artifact (MA) in ECG can significantly affect the characteristics of the ECG signal and hinder early [...] Read more.
Atrial fibrillation (AF) is a common arrhythmia, and out-of-hospital, wearable, long-term electrocardiogram (ECG) monitoring can help with the early detection of AF. The presence of a motion artifact (MA) in ECG can significantly affect the characteristics of the ECG signal and hinder early detection of AF. Studies have shown that (a) using reference signals with a strong correlation with MAs in adaptive filtering (ADF) can eliminate MAs from the ECG, and (b) artificial intelligence (AI) algorithms can recognize AF when there is no presence of MAs. However, no literature has been reported on whether ADF can improve the accuracy of AI for recognizing AF in the presence of MAs. Therefore, this paper investigates the accuracy of AI recognition for AF when ECGs are artificially introduced with MAs and processed by ADF. In this study, 13 types of MA signals with different signal-to-noise ratios ranging from +8 dB to −16 dB were artificially added to the AF ECG dataset. Firstly, the accuracy of AF recognition using AI was obtained for a signal with MAs. Secondly, after removing the MAs by ADF, the signal was further identified using AI to obtain the accuracy of the AF recognition. We found that after undergoing ADF, the accuracy of AI recognition for AF improved under all MA intensities, with a maximum improvement of 60%. Full article
(This article belongs to the Special Issue Novel Wearable Sensors and Digital Applications)
Show Figures

Figure 1

21 pages, 12671 KB  
Article
Random Body Movement Removal Using Adaptive Motion Artifact Filtering in mmWave Radar-Based Neonatal Heartbeat Sensing
by Shiguang Yang, Xuerui Liang, Xiangwei Dang, Nanyi Jiang, Jiasheng Cao, Zhiyuan Zeng and Yanlei Li
Electronics 2024, 13(8), 1471; https://doi.org/10.3390/electronics13081471 - 12 Apr 2024
Cited by 4 | Viewed by 2606
Abstract
In response to the pressing requirement for prompt and precise heart rate acquisition during neonatal resuscitation, an adaptive motion artifact filter (AMF) is proposed in this study, which is based on the continuous wavelet transform (CWT) approach and takes advantage of the gradual, [...] Read more.
In response to the pressing requirement for prompt and precise heart rate acquisition during neonatal resuscitation, an adaptive motion artifact filter (AMF) is proposed in this study, which is based on the continuous wavelet transform (CWT) approach and takes advantage of the gradual, time-based changes in heart rate. This method is intended to alleviate the pronounced interference induced by random body movement (RBM) on radar detection in neonates. The AMF analyzes the frequency components at different time points in the CWT results. It extracts spectral peaks from each time slice of the frequency spectrum and correlates them with neighboring peaks to identify the existing components in the signal, thereby reducing the impact of RBM and ultimately extracting the heartbeat component. The results demonstrate a reliable estimation of heart rates. In practical clinical settings, we performed measurements on multiple neonatal patients within a hospital environment. The results demonstrate that even with limited data, its accuracy in estimating the resting heart rate of newborns surpasses 97%, and during infant movement, its accuracy exceeds 96%. Full article
Show Figures

Figure 1

24 pages, 8318 KB  
Article
iCanClean Removes Motion, Muscle, Eye, and Line-Noise Artifacts from Phantom EEG
by Ryan J. Downey and Daniel P. Ferris
Sensors 2023, 23(19), 8214; https://doi.org/10.3390/s23198214 - 1 Oct 2023
Cited by 11 | Viewed by 5149
Abstract
The goal of this study was to test a novel approach (iCanClean) to remove non-brain sources from scalp EEG data recorded in mobile conditions. We created an electrically conductive phantom head with 10 brain sources, 10 contaminating sources, scalp, and hair. We tested [...] Read more.
The goal of this study was to test a novel approach (iCanClean) to remove non-brain sources from scalp EEG data recorded in mobile conditions. We created an electrically conductive phantom head with 10 brain sources, 10 contaminating sources, scalp, and hair. We tested the ability of iCanClean to remove artifacts while preserving brain activity under six conditions: Brain, Brain + Eyes, Brain + Neck Muscles, Brain + Facial Muscles, Brain + Walking Motion, and Brain + All Artifacts. We compared iCanClean to three other methods: Artifact Subspace Reconstruction (ASR), Auto-CCA, and Adaptive Filtering. Before and after cleaning, we calculated a Data Quality Score (0–100%), based on the average correlation between brain sources and EEG channels. iCanClean consistently outperformed the other three methods, regardless of the type or number of artifacts present. The most striking result was for the condition with all artifacts simultaneously present. Starting from a Data Quality Score of 15.7% (before cleaning), the Brain + All Artifacts condition improved to 55.9% after iCanClean. Meanwhile, it only improved to 27.6%, 27.2%, and 32.9% after ASR, Auto-CCA, and Adaptive Filtering. For context, the Brain condition scored 57.2% without cleaning (reasonable target). We conclude that iCanClean offers the ability to clear multiple artifact sources in real time and could facilitate human mobile brain-imaging studies with EEG. Full article
(This article belongs to the Special Issue Sensors in Neuroimaging and Neurorehabilitation)
Show Figures

Figure 1

11 pages, 4304 KB  
Article
Reduction in the Motion Artifacts in Noncontact ECG Measurements Using a Novel Designed Electrode Structure
by Jianwen Ding, Yue Tang, Ronghui Chang, Yu Li, Limin Zhang and Feng Yan
Sensors 2023, 23(2), 956; https://doi.org/10.3390/s23020956 - 14 Jan 2023
Cited by 18 | Viewed by 5540
Abstract
A noncontact ECG is applicable to wearable bioelectricity acquisition because it can provide more comfort to the patient for long-term monitoring. However, the motion artifact is a significant source of noise in an ECG recording. Adaptive noise reduction is highly effective in suppressing [...] Read more.
A noncontact ECG is applicable to wearable bioelectricity acquisition because it can provide more comfort to the patient for long-term monitoring. However, the motion artifact is a significant source of noise in an ECG recording. Adaptive noise reduction is highly effective in suppressing motion artifact, usually through the use of external sensors, thus increasing the design complexity and cost. In this paper, a novel ECG electrode structure is designed to collect ECG data and reference data simultaneously. Combined with the adaptive filter, it effectively suppresses the motion artifact in the ECG acquisition. This method adds one more signal acquisition channel based on the single-channel ECG acquisition system to acquire the reference signal without introducing other sensors. Firstly, the design of the novel ECG electrode structure is introduced based on the principle of noise reduction. Secondly, a multichannel signal acquisition circuit system and ECG electrodes are implemented. Finally, experiments under normal walking conditions are carried out, and the performance is verified by the experiment results, which shows that the proposed design effectively suppresses motion artifacts and maintains the stability of the signal quality during the noncontact ECG acquisition. The signal-to-noise ratio of the ECG signal after noise reduction is 14 dB higher than that of the original ECG signal with the motion artifact. Full article
Show Figures

Figure 1

14 pages, 5066 KB  
Article
Adaptive Motion Artifact Reduction in Wearable ECG Measurements Using Impedance Pneumography Signal
by Xiang An, Yanzhong Liu, Yixin Zhao, Sichao Lu, George K. Stylios and Qiang Liu
Sensors 2022, 22(15), 5493; https://doi.org/10.3390/s22155493 - 23 Jul 2022
Cited by 23 | Viewed by 6712
Abstract
Noise is a common problem in wearable electrocardiogram (ECG) monitoring systems because the presence of noise can corrupt the ECG waveform causing inaccurate signal interpretation. By comparison with electromagnetic interference and its minimization, the reduction of motion artifact is more difficult and challenging [...] Read more.
Noise is a common problem in wearable electrocardiogram (ECG) monitoring systems because the presence of noise can corrupt the ECG waveform causing inaccurate signal interpretation. By comparison with electromagnetic interference and its minimization, the reduction of motion artifact is more difficult and challenging because its time-frequency characteristics are unpredictable. Based on the characteristics of motion artifacts, this work uses adaptive filtering, a specially designed ECG device, and an Impedance Pneumography (IP) data acquisition system to combat motion artifacts. The newly designed ECG-IP acquisition system maximizes signal correlation by measuring both ECG and IP signals simultaneously using the same pair of electrodes. Signal comparison investigations between ECG and IP signals under five different body motions were carried out, and the Pearson Correlation Coefficient |r| was higher than 0.6 in all cases, indicating a good correlation. To optimize the performance of adaptive motion artifact reduction, the IP signal was filtered to a 5 Hz low-pass filter and then fed into a Recursive Least Squares (RLS) adaptive filter as a reference input signal. The performance of the proposed motion artifact reduction method was evaluated subjectively and objectively, and the results proved that the method could suppress the motion artifacts and achieve minimal distortion to the denoised ECG signal. Full article
(This article belongs to the Special Issue Advanced Wearable Sensors Technologies for Healthcare Monitoring)
Show Figures

Figure 1

14 pages, 305 KB  
Proceeding Paper
An Overview of Wearable Photoplethysmographic Sensors and Various Algorithms for Tracking of Heart Rates
by Amarachukwu Ikechukwu Obi
Eng. Proc. 2021, 10(1), 77; https://doi.org/10.3390/engproc2021010077 - 27 Jan 2022
Cited by 5 | Viewed by 4101
Abstract
It is very challenging to estimate the accurate heart rate/beat during intense physical activities due to corruption of motion artifacts (MAs). However, it is difficult to reconstruct a clean signal and extract heart rate/beat from contaminated photoplethysmography (PPG) signals. It was also observed [...] Read more.
It is very challenging to estimate the accurate heart rate/beat during intense physical activities due to corruption of motion artifacts (MAs). However, it is difficult to reconstruct a clean signal and extract heart rate/beat from contaminated photoplethysmography (PPG) signals. It was also observed that various algorithms have been developed for use in the detection of heart rates during physical activities by reconstructing the contaminated PPG signals to clean PPG signals. Against this backdrop, an overview of the various algorithms was conducted with their results from various works. These results are such that the motion-tolerant adaptive algorithm indicated high agreement and high correlation of more than 0.98 for heart rate (HR) and 0.7 for pulse oxygen saturation (SpO2) extraction between measurements by reference sensors and the algorithm. In addition, the distortion rates were reduced from 52.3% to 3.53%, at frequencies between 1 Hz and 2.5 Hz, when the two-dimensional active noise cancellation algorithm was applied representing daily motion such as walking and jogging. The correlation coefficient between the power spectral densities of the reference and reconstructed heart-rate time series was found to be 0.98, which showed that the spectral filter algorithm for motion artifacts and heart-rate reconstruction (SpaMA) method has a potential for PPG-based HR monitoring in wearable devices for fitness tracking and health monitoring during intense physical activities. The experimental result of the single-notch filter and ensemble empirical mode decomposition (NFEEMD) algorithm using the Pearson correlation was 0.992 which illustrated that the NFEEMD algorithm is not only suitable for HR estimation during continuous activities but also for intense physical activities with acceleration. Other algorithms suitable for HR estimation during physical activities include the time–frequency spectrum for the detection of motion artifacts (TifMA) algorithm, novel time-varying spectral filtering algorithm, noise-robust heart-rate estimation algorithm, real-time QRS detection algorithm, and many other algorithms in this regard. Full article
17 pages, 4160 KB  
Article
Driver Identification System Using Normalized Electrocardiogram Based on Adaptive Threshold Filter for Intelligent Vehicles
by Gyu Ho Choi, Kiho Lim and Sung Bum Pan
Sensors 2021, 21(1), 202; https://doi.org/10.3390/s21010202 - 30 Dec 2020
Cited by 15 | Viewed by 4110
Abstract
Driver-centered infotainment and telematics services are provided for intelligent vehicles that improve driver convenience. Driver-centered services are performed after identification, and a biometrics system using bio-signals is applied. The electrocardiogram (ECG) signal acquired in the driving environment needs to be normalized because the [...] Read more.
Driver-centered infotainment and telematics services are provided for intelligent vehicles that improve driver convenience. Driver-centered services are performed after identification, and a biometrics system using bio-signals is applied. The electrocardiogram (ECG) signal acquired in the driving environment needs to be normalized because the intensity of noise is strong because the driver’s motion artifact is included. Existing time, frequency, and phase normalization methods have a problem of distorting P, QRS Complexes, and T waves, which are morphological features of an ECG, or normalizing to signals containing noise. In this paper, we propose an adaptive threshold filter-based driver identification system to solve the problem of distortion of the ECG morphological features when normalized and the motion artifact noise of the ECG that causes the identification performance deterioration in the driving environment. The experimental results show that the proposed method improved the average similarity compared to the results without normalization. The identification performance was also improved compared to the results before normalization. Full article
(This article belongs to the Special Issue Computational Intelligence and Intelligent Contents (CIIC))
Show Figures

Figure 1

14 pages, 5159 KB  
Article
A Novel Adaptive Recursive Least Squares Filter to Remove the Motion Artifact in Seismocardiography
by Shuai Yu and Sheng Liu
Sensors 2020, 20(6), 1596; https://doi.org/10.3390/s20061596 - 13 Mar 2020
Cited by 27 | Viewed by 4781
Abstract
This paper presents a novel adaptive recursive least squares filter (ARLSF) for motion artifact removal in the field of seismocardiography (SCG). This algorithm was tested with a consumer-grade accelerometer. This accelerometer was placed on the chest wall of 16 subjects whose ages ranged [...] Read more.
This paper presents a novel adaptive recursive least squares filter (ARLSF) for motion artifact removal in the field of seismocardiography (SCG). This algorithm was tested with a consumer-grade accelerometer. This accelerometer was placed on the chest wall of 16 subjects whose ages ranged from 24 to 35 years. We recorded the SCG signal and the standard electrocardiogram (ECG) lead I signal by placing one electrode on the right arm (RA) and another on the left arm (LA) of the subjects. These subjects were asked to perform standing and walking movements on a treadmill. ARLSF was developed in MATLAB to process the collected SCG and ECG signals simultaneously. The SCG peaks and heart rate signals were extracted from the output of ARLSF. The results indicate a heartbeat detection accuracy of up to 98%. The heart rates estimated from SCG and ECG are similar under both standing and walking conditions. This observation shows that the proposed ARLSF could be an effective method to remove motion artifact from recorded SCG signals. Full article
(This article belongs to the Special Issue Wearable and Nearable Biosensors and Systems for Healthcare)
Show Figures

Figure 1

14 pages, 2066 KB  
Article
Removal of Motion Artifacts in Photoplethysmograph Sensors during Intensive Exercise for Accurate Heart Rate Calculation Based on Frequency Estimation and Notch Filtering
by Min Wang, Zhe Li, Qirui Zhang and Guoxing Wang
Sensors 2019, 19(15), 3312; https://doi.org/10.3390/s19153312 - 28 Jul 2019
Cited by 33 | Viewed by 8273
Abstract
With photoplethysmograph (PPG) sensors showing increasing potential in wearable health monitoring, the challenging problem of motion artifact (MA) removal during intensive exercise has become a popular research topic. In this study, a novel method that combines heart rate frequency (HRF) estimation and notch [...] Read more.
With photoplethysmograph (PPG) sensors showing increasing potential in wearable health monitoring, the challenging problem of motion artifact (MA) removal during intensive exercise has become a popular research topic. In this study, a novel method that combines heart rate frequency (HRF) estimation and notch filtering is proposed. The proposed method applies a cascaded adaptive noise cancellation (ANC) based on the least mean squares (LMS)-Newton algorithm for preliminary motion artifacts reduction, and further adopts special heart rate frequency tracking and correction schemes for accurate HRF estimation. Finally, notch filters are employed to restore the PPG signal with estimated HRF based on its quasi-periodicity. On an open source data set that features intensive running exercise, the proposed method achieves a competitive mean average absolute error (AAE) result of 0.92 bpm for HR estimation. The practical experiments are carried out with the PPG evaluation platform developed by ourselves. Under three different intensive motion patterns, a 0.89 bpm average AAE result is achieved with the average correlation coefficient between recovered PPG signal and reference PPG signal reaching 0.86. The experimental results demonstrate the effectiveness of the proposed method for accurate HR estimation and robust MA removal in PPG during intensive exercise. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

19 pages, 7250 KB  
Article
Heart Rate Estimated from Body Movements at Six Degrees of Freedom by Convolutional Neural Networks
by Hyunwoo Lee and Mincheol Whang
Sensors 2018, 18(5), 1392; https://doi.org/10.3390/s18051392 - 1 May 2018
Cited by 16 | Viewed by 5211
Abstract
Cardiac activity has been monitored continuously in daily life by virtue of advanced medical instruments with microelectromechanical system (MEMS) technology. Seismocardiography (SCG) has been considered to be free from the burden of measurement for cardiac activity, but it has been limited in its [...] Read more.
Cardiac activity has been monitored continuously in daily life by virtue of advanced medical instruments with microelectromechanical system (MEMS) technology. Seismocardiography (SCG) has been considered to be free from the burden of measurement for cardiac activity, but it has been limited in its application in daily life. The most important issues regarding SCG are to overcome the limitations of motion artifacts due to the sensitivity of motion sensor. Although novel adaptive filters for noise cancellation have been developed, they depend on the researcher’s subjective decision. Convolutional neural networks (CNNs) can extract significant features from data automatically without a researcher’s subjective decision, so that signal processing has been recently replaced as CNNs. Thus, this study aimed to develop a novel method to enhance heart rate estimation from thoracic movement by CNNs. Thoracic movement was measured by six-axis accelerometer and gyroscope signals using a wearable sensor that can be worn by simply clipping on clothes. The dataset was collected from 30 participants (15 males, 15 females) using 12 measurement conditions according to two physical conditions (i.e., relaxed and aroused conditions), three body postures (i.e., sitting, standing, and supine), and six movement speeds (i.e., 3.2, 4.5, 5.8, 6.4, 8.5, and 10.3 km/h). The motion data (i.e., six-axis accelerometer and gyroscope) and heart rate (i.e., electrocardiogram (ECG)) were determined as the input data and labels in the dataset, respectively. The CNN model was developed based on VGG Net and optimized by testing according to network depth and data augmentation. The ensemble network of the VGG-16 without data augmentation and the VGG-19 with data augmentation was determined as optimal architecture for generalization. As a result, the proposed method showed higher accuracy than the previous SCG method using signal processing in most measurement conditions. The three main contributions are as follows: (1) the CNN model enhanced heart rate estimation with the benefits of automatic feature extraction from the data; (2) the proposed method was compared with the previous SCG method using signal processing; (3) the method was tested in 12 measurement conditions related to daily motion for a more practical application. Full article
Show Figures

Figure 1

20 pages, 3856 KB  
Article
Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System
by Karina De O. A. De Moura and Alexandre Balbinot
Sensors 2018, 18(5), 1388; https://doi.org/10.3390/s18051388 - 1 May 2018
Cited by 21 | Viewed by 4744
Abstract
A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses [...] Read more.
A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior. Full article
(This article belongs to the Special Issue Assistance Robotics and Biosensors)
Show Figures

Figure 1

Back to TopTop