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Abstract: In response to the pressing requirement for prompt and precise heart rate acquisition during
neonatal resuscitation, an adaptive motion artifact filter (AMF) is proposed in this study, which is
based on the continuous wavelet transform (CWT) approach and takes advantage of the gradual,
time-based changes in heart rate. This method is intended to alleviate the pronounced interference
induced by random body movement (RBM) on radar detection in neonates. The AMF analyzes the
frequency components at different time points in the CWT results. It extracts spectral peaks from
each time slice of the frequency spectrum and correlates them with neighboring peaks to identify the
existing components in the signal, thereby reducing the impact of RBM and ultimately extracting the
heartbeat component. The results demonstrate a reliable estimation of heart rates. In practical clinical
settings, we performed measurements on multiple neonatal patients within a hospital environment.
The results demonstrate that even with limited data, its accuracy in estimating the resting heart rate
of newborns surpasses 97%, and during infant movement, its accuracy exceeds 96%.

Keywords: MIMO mmWave radar; contactless sensing; vital signs; random body movement removal;
adaptive motion artifact filtering

1. Introduction

In different countries, approximately 3% to 27% of newborn deaths occur each year,
with about three-quarters of these deaths happening within the first week after birth [1].
The leading causes of neonatal mortality are prematurity, birth asphyxia, and failure to
initiate breathing at birth. Reducing neonatal mortality holds significant importance for
global development. Neonatal resuscitation plays a crucial role in lowering newborn
mortality rates, and heart rate serves as a vital indicator for medical interventions during
neonatal resuscitation. Slow or inaccurate detection of heart rate may lead to delayed
essential interventions or inappropriate measures, potentially resulting in severe outcomes,
the inadequate management of the neonate’s condition, unsuccessful resuscitation, and
ultimately neonatal mortality [2–4]. For premature infants, their organs and systems are
not fully developed, and their immune system function is compromised. Most newborns
experience pulmonary complications, such as neonatal respiratory distress syndrome,
recurrent episodes of apnea, and chronic lung injury. Consequently, these newborns require
necessary respiratory and heart rate monitoring in the neonatal ward [5].
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Existing contact-based methods for measuring heart rate in newborns primarily in-
clude auscultation, palpation, pulse oximetry, and electrocardiogram estimation. Pulse
oximeters and electrocardiograms have a higher accuracy, but it takes 1–2 min from the
birth of the newborn to obtain data using these instruments, which may surpass the optimal
resuscitation time [6]. Auscultation and palpation are convenient and relatively fast but lack
accuracy in measurement. Non-contact detection methods mainly include optical cameras,
WiFi, and radar detection [7,8]. In optical detection, using visible light for sensing is suscep-
tible to interference from ambient light and is affected by dark environments, which can
impact detection performance. Moreover, most optical flow calculation methods have poor
noise resistance and require corresponding hardware support. Infrared-based detection
is susceptible to environmental temperature influences [9,10]. WiFi-based detection faces
the challenge of having multiple signals in the same frequency band in the environment,
making it susceptible to interference and affecting its measurement accuracy [11–13]. In
order to compensate for the limitations of the aforementioned sensors, radar technology has
been widely adopted for vital sign detection in recent years due to its superior penetration
capabilities and anti-interference features, enabling continuous monitoring throughout the
day [14–17].

The detection principle of life signals based on radar primarily involves detecting
displacement changes caused by respiration and heartbeat. The shorter the wavelength of
the electromagnetic wave, the larger the phase shift caused by small movements, making
the system more sensitive. Using high-frequency MIMO mmWave radar enables a more
accurate detection of cardiac motion [18,19]. MIMO technology enhances the spatial
resolution of the radar and allows for beamforming, which enables the precise targeting of
the heart and spatial filtering to eliminate interference in the environment. The use of MIMO
mmWave radar in vital sign monitoring systems has significant practical significance in
medical diagnosis, nursing home supervision, driver fatigue detection, and other fields [20].
However, even though previous proposed solutions based on mmWave radar have been
tested in ideal conditions, there are still some research gaps and limitations. For example,
the current methods have not considered special scenarios, such as non-healthy newborns
in hospitals, whose heartbeat amplitudes are relatively weak and whose frequencies are
much higher than those of adults [21–23]. During detection, RBM in newborns has a
substantial impact on the system’s detection performance. Newborns have small bodies,
and the movements of their limbs and head will impact the radar echo, resulting in an
insufficient signal-to-noise ratio and a significant amount of interference in the phase
information. Traditional methods struggle to accurately determine the respiratory rate and
heart rate in such cases.

Currently, scholars primarily employ two categories of methods to mitigate the influ-
ence of body motion on the extraction of vital signs. One approach is based on a physical
model, utilizing multiple radar sensors to retrieve physiological signals through the cor-
relation of signals between sensors. Gu et al. proposed a multi-sensor fusion system that
employs a camera-assisted radar for random body motion cancellation (RBMC) [24]. A
regular camera is used to measure body motion by tracking white dots on a small piece of
black paper attached to the subject’s shoulder. The phase information of the RBM, in the
opposite phase, is added to the radar’s demodulated signal to eliminate the effects of the
RBM. This method has certain limitations, such as the complexity of camera deployment.
Li and Lin suggested using two Doppler radars to simultaneously measure the subject on
the front and back to counteract the effects of RBM. With the successful calibration of the
DC offset, the system can successfully recover the respiratory and cardiac components [25].
Wang et al. proposed using wireless mutual injection locking (MIL) of two radars to coun-
teract the influence of RBM on a subject [26]. Yu et al. developed a Doppler radar array
for two-dimensional non-contact vital sign detection using four radar sensors. It achieved
the elimination of random body motion noise in the human plane [27]. Zhang proposed
a novel chest–abdomen joint cardiorespiratory signal method using two IR-UWB radars
simultaneously to detect respiration and heart rate. Considering the signal overlap between
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vital signs and motion artifacts, the received radar signals are processed with the empirical
wavelet transform (EWT) to eliminate clutter and mitigate motion interference [28]. This
enabled non-contact heart rate estimations.

Another approach is the data-driven method, which utilizes a single radar to predict
physiological signals under motion interference through data analyses and inference. This
method typically processes the raw signals by filtering, decomposing, fitting, and matching
them to obtain physiological signals. However, it cannot capture the true measurement
values at each moment, resulting in potentially significant variations in accuracy across
different subjects or conditions. Lv et al. introduced a matched filter to invert the respiratory
and cardiac spectra completely hidden under broadband background noise caused by large-
scale body motion. However, this method requires accurate heartbeat and respiration
templates, which are impractical in real-world applications [29]. Tariq et al. employed
wavelet algorithms for detecting heart rate in phase-modulated Doppler radar signals.
The ability of the wavelet transform to preserve both time and frequency information is
utilized to analyze the phase-modulated Doppler radar signal, giving information about
changes in heartbeat over very small intervals of time. This method performs well in ideal
environments [30]. Mercuri et al. used CWT to identify the locations of artifacts and then
applied a moving average filter to smooth these identified artifacts. They also utilized a
discrete wavelet transform (DWT) to separate the heartbeat signal from the respiratory
signal, thereby achieving accurate detection [31]. However, this method encounters issues
whereby successful detection is not achieved even after smoothing.

In the current research, detecting heart rate signals in the presence of RBM remains
a challenge. Existing studies indicate that the displacement changes on the chest surface
caused by the motion of the heart and respiration are different from those caused by RBM,
resulting in different radar echoes. The frequencies of respiration and heartbeats change
continuously over time, while the frequency of RBM changes discontinuously over time.
This fundamental distinction has inspired us to employ time–frequency analysis methods
to process radar echoes and filter out the influence of RBM on heart rate detection.

In this paper, the heartbeat signals were detected using MIMO mmWave radar, and an
adaptive motion artifact filtering method based on the continuous slow temporal variations
in heartbeat frequency was proposed, building upon the wavelet transform for separating
vital signs. This method combines cardiovascular motion models, data knowledge, and
graphical algorithms to explore RBM removal techniques. The contributions of this article
are as follows:

(1) A novel method is proposed to enhance the quality of heartbeat measurements using
MIMO mmWave radar in the presence of RBM;

(2) The non-continuous nature of RBM is leveraged to mitigate its impact on the calcula-
tion of respiration and heart rates;

(3) By analyzing the time–frequency information on the chest surface, the spectra of
RBM and heartbeat are separated in the temporal domain, the continuously changing
heartbeat spectra are extracted, and the influence of RBM is reduced.

This paper is organized as follows: Section 2 provides a comprehensive overview of the
principles behind non-contact heartbeat perception using MIMO mmWave radar. It includes
a detailed analysis of the performance of other wavelet-based vital sign detection methods
and an elaborate exposition of the proposed AMF method for calculating respiratory and
heartbeat frequencies under non-stationary body states. In Section 3, vital sign detection
experiments were conducted on three subjects to evaluate the performance of the proposed
method. The experimental results are used to assess the effectiveness of our approach.
Finally, a discussion and conclusion are presented to summarize our findings.

2. Methodology

In this study, MIMO mmWave radar was employed for neonatal vital sign detection.
MIMO mmWave radar offers high resolution in range, azimuth, and elevation angles,
facilitating precise localization of the participant’s chest and accurate sensing of chest
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movements. Figure 1 illustrates the fundamental principle of vital sign detection using
mmWave radar. The surface movements of the chest caused by neonatal cardiopulmonary
activity modulate the radar echo signals, resulting in a micro-Doppler effect that can be
further processed to extract heartbeat information.
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Figure 1. The principle of non-contact vital sign detection using mmWave radar.

During this research, we encountered the challenge of imprecise frequency measure-
ment of heartbeat signals due to RBM. In practical detection scenarios, RBM in newborns
overlaps with radar echoes generated by cardiac and pulmonary activities, thereby severely
compromising the accuracy of heart rate detection. In response to this challenge, a signal
processing architecture was formulated in this study to leverage the distinct features of RBM
and cardiac–pulmonary activities. Our overarching aim was to mitigate the interference
stemming from RBM.

The adaptive RBM filtering method based on wavelet transform is depicted in Figure 2.
It depicts the key steps of the method proposed in this article. After acquiring echo data
from the MIMO mmWave radar, multi-channel data are subjected to beamforming, and
static clutter is removed to perceive the motion signal of the chest surface. The specific
data processing method for Figure 2a is detailed in Section 2.1. After the raw data of
the chest surface are obtained, the phase is calculated, and the influences of respiration
and RBM are preliminarily filtered out. The result is a micro-motion signal mixed with
respiration, heartbeat, and RBM; Figure 2b,c demonstrate the corresponding outcomes,
which are elaborated in Section 2.2. CWT is applied to the micro-motion signals in Figure 2d
to analyze the frequency components at each moment and the trends of each frequency
component. Subsequently, the RBM is removed through the AMF method, and the heart
rate variation curve is fitted, as shown in Figure 2e, with an explanation of the AMF method
in Section 2.3. Figure 2f presents the final heart rate results.
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2.1. MIMO Millimeter Wave Radar Induction Technology

The principle of non-contact heart rate signal sensing using radar is based on the detec-
tion of subtle movements on the chest surface caused by cardiac and pulmonary activities.
In normal conditions, the heartbeat frequency of neonates ranges from 120 to 180 beats
per minute (bpm). When the heartbeat falls below 100 bpm, medical professionals need to
closely observe the condition of the newborn to ensure timely resuscitation if necessary.

It is generally accepted that the amplitude of body surface vibrations caused by heart-
beat motion is approximately 0.1–4 mm, while the amplitude of body surface fluctuations
caused by respiratory motion ranges from around 1 mm to 12 mm. RBM, on the other hand,
can cause body surface activity, with an amplitude ranging from 0 to 50 mm. Radar echoes
also contain various types of noise, including but not limited to static interference and
external dynamic interference. Therefore, the key to successful vital sign detection using
radar lies in effectively filtering out noise. Over a certain period of time, the frequencies
of respiratory and heartbeat signals fluctuate around fixed values, while the amplitude of
these vital signs remains relatively stable. Vital signs exhibit quasi-periodic characteristics.
It can be said that the detection of vital signs is akin to detecting a slow-moving target
undergoing reciprocal motion at a fixed position.

We consider respiratory and heartbeat signals as sinusoidal oscillations, distinguishing
them based on their amplitude and frequency characteristics. Assuming the subject is
relatively stationary with respect to the radar, we establish the following model:

R(t) = R0 + r1 sin(2π f1t) + r2 sin(2π f2t) (1)

where R0 is the distance between the radar and the target subject, r1sin(2π f1t) is the
respiratory signal, r2sin(2π f2t) is the heartbeat signal, r1 and r2 are the amplitudes of the
respiratory and heartbeat signals, and f1 and f2 are the frequencies of the respiratory and
heartbeat oscillation.

The stepped-frequency continuous wave (SFCW) signal is emitted by an MIMO
millimeter wave radar to monitor micro-movements on the chest surface and torso. The
radar transmits signals in frames, and according to [32], the transmission frequency starts
from the initial frequency f0 and increases over time with intervals of pulse duration ∆t.
The frequency increment ∆ f is added K − 1 times until reaching the cutoff frequency
fe = f0 + (K− 1)∆ f . The transmitted signal within a frame can be represented as follows:

sT(t) =
K−1

∑
k=0

exp[j2π( f0 + k∆ f )t]rect
(

t− k∆t− ∆t/2
∆t

)
(2)

where t represents the fast time, and K represents the number of pulses.
The received signal relative to the target, assuming the distance between the target

and the radar is R(τ), can be represented as follows:

sR(t) = A·s
(

t− 2R(τ)
c

)
(3)

where A denotes the amplitude of the received signal, c is the speed of light, τ is the slow
time, and R(τ) represents the distance between the target and the radar, as well as the
target’s relative motion.

R(τ) = R0 + ∆R(τ) (4)

The radar echo is mixed with its corresponding carrier and down-converted to base-
band. The down-converted signal for each frame is then subjected to inverse Fourier
transform to achieve pulse compression [33], as shown in the following equation:
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Sb( f ) =
A

KT
· exp

(
j4π f0R(τ)

c

)
· exp

(
j2π(K− 1)

K

(
f − 2K∆ f R(τ)

c

))
·sinc

(
T
(

f − 2K∆ f R(τ)
c

))
(5)

where T represents the repetition time of the pulse.
In an MIMO mmWave radar system, assuming the presence of M transmitting anten-

nas and N receiving antennas, the system can be treated as an M× N matrix called the
channel matrix H. Each antenna has the capability to independently transmit and receive
signals. Considering the transmitting signal as sT = [sT1 , sT2 , · · · , sTM ]T and the receiving
signal as sR = [sR1 , sR2 , · · · , sRN ]

T , the following channel model can be formulated:

sR = HsT + n (6)

where n = [n1, n2, · · · , nN ]
T denotes the noise component.

An MIMO mmWave system utilizes a combination of a 2D antenna array and SFCW
signal to scan the RF reflections in 3D space. The target’s distance relative to the radar is
determined using Equation (5), and digital beamforming (DBF) is employed to steer the
antenna beams towards the target [34]. θ and ϕ represent the target’s elevation angle and
azimuth angle, respectively. The DBF results are presented as follows:

S(θ, ϕ) =
M

∑
m=1

wmej 2π
λ mdT cos θ ·

N

∑
n=1

wnej 2π
λ ndR sin θ cos ϕ (7)

2.2. The Impact of RBM

In current research, a prominent class of methods for RBM removal focuses on wavelet
transform at the algorithmic level. These methods primarily encompass CWT for vital
sign sensing using various wavelet bases, signal noise separation through wavelet decom-
position (WD) for signals contaminated with interference, and adaptive noise filtering
employing EWT.

The vibrations caused by cardiac and respiratory activities, as well as RBM, are
reflected in the phase variations in radar echoes [35].

∆φb =
4π

λ
∆R (8)

By substituting Equation (1) into the previous equation, we can establish the relation-
ship between the surface variations in the chest and the phase variations in radar echoes
as follows:

∆φb =
4π

λ
[r1 sin(2π f1t) + r2 sin(2π f2t)] (9)

During the simulation, ideal respiratory and heartbeat signals are modeled using sinu-
soidal functions, while RBM is based on actual measurement results. Therefore, when RBM
occurs in the human body, the micro-movements on the chest surface can be considered as
the superposition of RBM and the ideal respiratory and heartbeat signals.

Sinusoidal waves combined with Gaussian noise were employed to simulate respira-
tory and heartbeat signals in the ideal posture of the human body. The respiratory rate was
set at 40 bpm with an amplitude of 10 mm, while the heart rate was set at 128 bpm with an
amplitude of 3 mm. The signal-to-noise ratio (SNR) between the respiratory and heartbeat
signals and the Gaussian noise was 30 dB, as shown in Figure 3a. Figure 3b illustrates the
resulting micro-movements on the chest surface after adding RBM to the respiratory and
heartbeat signals.
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Figure 3. The simulated signal. (a) The respiratory and heartbeat signal. (b) The mixed signal
comprising respiratory, heartbeat, and RBM components.

The wavelet transform, as a multi-resolution analysis method, provides different
resolutions at various positions in the time–frequency plane for linear time–frequency
analysis of non-stationary signals [36]. The CWT of a square-integrable function s(t) is
defined as follows:

WTs(a, b) = 1√
a

∫ ∞
−∞ s(t)ψ ∗ ( t−b

a )dt
=
〈
s(t), ψa,b(t)

〉
s.t. a > 0

(10)

ψa,b(t) =
1√
a

ψ(
t− a

b
) (11)

Equation (11) represents the wavelet basis function, where a is the scale factor and b
is the translation factor. The mother wavelet undergoes scaling and shifting to generate
the daughter wavelets. The scaling factor controls the frequency of the daughter wavelets;
higher scales correspond to lower frequencies and vice versa. The wavelet coefficients are
obtained by convolving the daughter wavelets with the signal. To preserve energy at each
scale, the convolution is multiplied by a factor of 1√

a [37]. The wavelet transform has the
capability to accurately localize both the time and frequency dimensions, thus offering
superior time resolution for fast events, such as cardiac activities, and significant frequency
resolution for slower events, such as respiratory actions.

According to [38], the analysis of the phase difference signal is performed using the
Morlet wavelet basis. The Morlet wavelet basis excels in time and frequency localization,
making it suitable for time–frequency analysis of oscillatory signals [39]. The following
equation represents the time-domain mathematical expression of the Morlet wavelet:

ψ(t) =
1√
π fb

ej2π fcte
− t2

fb (12)

where fb represents the bandwidth of the Morlet wavelet, and fc denotes the central frequency.
The phase difference signal is analyzed using a Morlet wavelet with a bandwidth

of 3 and a central frequency of 3. The phase signal comprises components attributed to
respiration, heartbeat, and RBM, with the amplitude of RBM progressively increasing from
0. The objective of the analysis is to investigate the influence of RBM on respiratory and
heartbeat signals. The analysis results are depicted in Figure 4. For 2D time–frequency plot
of the CWT, peak detection is obtained via spectral slices of each time point. The frequency
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with the maximum spectral peak within the newborn heart rate range (80–180 bpm) is
taken as the heart rate value. Finally, the results are smoothed for further analysis.
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The magnitude of variation in RBM significantly affects the detection of respiratory
and heartbeat signals using CWT. Figure 4a illustrates changes in motion on the chest
surface when the amplitude of RBM is twice the amplitude of the simulated respiratory and
heartbeat signals. The corresponding wavelet transform results are shown in Figure 4c, indi-
cating a stable and accurate estimation of heart rate without any abrupt changes. Figure 4b
represents changes in motion on the chest surface when the amplitude of RBM is four
times the amplitude of the simulated respiratory and heartbeat signals. The corresponding
wavelet transform results are depicted in Figure 4d, demonstrating a significant impact of
RBM on the results. The heart rate exhibits a sudden jump at 3 s, and the maximum peak
does not correspond to the true heart rate, resulting in inaccurate estimations. Through
multiple experimental comparisons, it has been observed that the heart rate signal cannot
be accurately identified when the magnitude of the RBM signal exceeds three times that of
the respiratory and heartbeat signals.

After the increase in noise magnitude, direct analysis using CWT and employing
the strategy of extracting the maximum value can no longer effectively remove the RBM.
According to [31], the fact that there is a higher time resolution in high-frequency compo-
nents and better frequency resolution in low-frequency components in wavelet transform is
utilized to localize motion artifacts. The motion artifacts at the identified locations are then
smoothed to attenuate the motion signal. Furthermore, the Meyer wavelet is employed for
further signal decomposition. The decomposition level is 5. Upon obtaining the decom-
posed signals, the frequency of the heartbeat signal is ascertained through the application
of the fast Fourier transform (FFT). The mathematical expression for the Meyer wavelet is
as follows:

ψj,k(x) = 2−j/2ψ(2−jx− k) (13)

where j and k are arbitrary integers, and ψ(x) represents a smooth real bandlimited function.
The simulated signal is processed using wavelet decomposition, and the effect of

wavelet decomposition on RBM is evaluated. The phase signal and the processing results
after wavelet decomposition are depicted in Figure 5. After performing wavelet decompo-
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sition on the phase signal, the FFT spectrum is calculated. The frequency corresponding to
the peak with the highest intensity in the spectrum is considered as the heart rate.
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The impact of RBM on the EWT analysis method varies with different magnitudes.
Figure 5a illustrates the changes in motion on the chest surface when the amplitude of the
RBM is equal to the amplitude of the simulated respiratory and heartbeat signals. The
processing results are shown in Figure 5c, in which the heart rate corresponds to the peak
with the highest intensity in the frequency spectrum. Figure 5b represents changes in
motion on the chest surface when the amplitude of RBM is four times that of the simulated
respiratory and heartbeat signals. The processing results are depicted in Figure 5d, in which
the heart rate peak is overshadowed by interference from other components, leading to
inaccurate estimations. Through multiple experimental comparisons, it has been observed
that the heart rate signal cannot be accurately identified when the magnitude of the RBM
signal exceeds three times that of the respiratory and heartbeat signals.

Identifying and attenuating RBM through the CWT and subsequent wavelet decompo-
sition can be somewhat effective. However, using a fixed number of decomposition levels
still fails to resolve RBM issues in more complex scenarios. EWT presents an adaptive
wavelet construction method. It decomposes the signal into different modes by designing
appropriate wavelet filters, allowing for finer-grained analysis [40]. The EWT begins by
dividing the signal spectrum and decomposing the input signal into multiple subband sig-
nals through the use of various filters. For a given signal s(t), FFT analysis is performed to
normalize its frequencies and map them to the range [0 ∼ 2π]. According to the Shannon
criterion, the discussion focuses only on the signal within the support interval [0 ∼ π].
The support interval is divided into K segments based on the number of components
constituting the signal.

Λk = [ωk−1, ωk], k = 1, 2, · · · , K (14)

where ωk is the boundary of each segment, ω0 = 0, and ωK = π.
According to the number of local maxima M and parameter K in the spectrum of the

signal s(t), the top min(M, K) extreme points are selected for boundary segmentation. The
boundary frequencies are calculated based on the angular frequencies of these extreme
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points. The empirical wavelet function and empirical scale function are represented by
Equation (15) and Equation (16), respectively.

ψ̂k(ω) =


1 , (1 + γ)ωk ≤|ω|≤ (1− γ)ωk+1

cos
[

π
2 β
(

1
2γωk+1

(|ω|−(1− γ)ωk+1 )
)]

, (1− γ)ωk+1 ≤|ω|≤ (1 + γ)ωk+1

sin
[

π
2 β
(

1
2γωk

(|ω|−(1− γ)ωk )
)]

, (1− γ)ωk ≤|ω|≤ (1 + γ)ωk

0 , otherwise

(15)

φ̂k(ω) =


1 , |ω|≤ (1− γ)ωk

cos
[

π
2 β
(

1
2γωk

(|ω| − (1− γ)ωn)
)]

, (1− γ)ωk ≤|ω|≤ (1 + γ)ωk

0 , otherwise

(16)

According to [28], the simulated signal is processed using EWT, and the impact of
EWT on RBM is evaluated. After removing the influence of static interference in the signal,
the signal is subjected to FFT processing. The strategy of local maxima and minima is
employed to determine the number of segments for the support interval, thereby identifying
the frequency boundaries. Based on the obtained frequency boundaries, empirical wavelets
are constructed to decompose the simulated signal. The decomposed signals are then
subjected to FFT transformation to determine the heart rate.

In the analysis of the impact of the RBM on respiratory and heartbeat signals em-
ploying the EWT method, the RBM amplitude increases from zero. The phase signal and
processing results are illustrated in Figure 6. After performing EWT decomposition on
the signal, the segment containing the heart rate undergoes the FFT operation. The fre-
quency corresponding to the peak with the highest intensity in the spectrum represents the
heart rate.
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The impact of RBM on the EWT analysis method varies with different magnitudes.
Figure 6a illustrates the changes in motion on the chest surface when the amplitude of the
RBM is equal to the amplitude of the simulated respiratory and heartbeat signals. The
processing results are shown in Figure 6c, in which the heart rate corresponds to the peak
with the highest intensity in the frequency spectrum. Figure 6b represents changes in



Electronics 2024, 13, 1471 11 of 20

motion on the chest surface when the amplitude of the RBM is three times the simulated
respiratory and heartbeat signals. The processing results are depicted in Figure 6d, in which
the heart rate peak is overshadowed by interference from other components, leading to
inaccurate estimations. Through multiple experimental comparisons, it has been observed
that when the magnitude of the RBM signal exceeds twice the magnitude of the respiratory
and heartbeat signal, the heart rate signal cannot be accurately identified.

Based on the analysis above, it is evident that decomposing and denoising the entire
signal is susceptible to strong amount of interference from noise. Additionally, using spec-
tral analysis to obtain the heart rate results in the loss of temporal information provided by
the CWT, thereby decreasing its correlation with the variations in heartbeats. Recognizing
the characteristics of heartbeat variations and considering the time information within the
CWT, this article proposes a novel method based on previous experiences.

2.3. Adaptive Motion Artifact Filtering

In terms of micro-motion signals, respiration and heartbeat frequencies are continu-
ously changing over time, and RBM frequency is non-continuously changing over time.
Compared to single-spectrum analysis methods, time–frequency analysis methods utilize
joint time–frequency distribution to describe the transient characteristics of time series sig-
nals and estimate the instantaneous frequency to capture the trends of frequency changes
for different signal components over time. The instantaneous frequencies of heartbeat
and RBM signals differ at different moments. The energy of the heartbeat signal remains
relatively constant, while the energy of RBM randomly fluctuates with the magnitude of
motion. Therefore, during moments of high-energy RBM, the components of heartbeat
frequency can be overshadowed. The objective of this research is to separate the frequency
components of the heartbeat signal from other sources, such as respiratory motion, RBM,
and noise. Therefore, we propose the AMF method.

When analyzing the signal using CWT, multiple components may be present in the
resulting spectrum. To address interference from other components, a detection process
is employed to identify spectral peaks within each time–frequency slice. These peaks are
then compared with the peaks from adjacent time slices. Subsequently, the components
are divided, and the constituent components within the signal are determined. Based on
the characteristics of heart rate frequency variations, the component corresponding to the
heartbeat signal is identified.

In the obtained spectrum peaks, it is not possible to solely differentiate clutter signal
components from heartbeat signal components based on the intensity of the peaks due to
the influence of clutter components’ strength. To address this issue, a method is proposed
to distinguish different signal components based on the frequency variation relationship
among the components. Consequently, a signal component segmentation approach utiliz-
ing image processing techniques is employed [41]. The specific algorithmic procedure is
outlined as follows:

(a) Determine the position of each spectral peak at every time point;
(b) The spectral peaks within the time at t are selected as the starting points for component

fitting;
(c) Along the temporal axis, the frequency of the spectral peak corresponding to tk and

the differences in spectral peak frequencies between [tk+1, tk+2, tk+3] are calculated,
respectively. The spectral peak with the smallest difference is se-lected for fitting;

(d) The process described in (c) is repeated until all time points have been traversed;
(e) The peak-to-peak value of the fitted curve is calculated, and the signal component

with the smallest peak-to-peak value is selected as the heart rate curve.
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The impact of different intensities of the RBM on the algorithm performance varies.
Figure 7a illustrates the motion variation on the chest surface when the simulated respi-
ratory and heartbeat signals overlap with the RBM signal with an amplitude of 1. The
processing result is shown in Figure 7c, in which the heart rate continuously changes over
time and can be accurately extracted. In Figure 7b, the chest surface motion is depicted
when the simulated respiratory and heartbeat signals overlap with the RBM signal with
an amplitude of 6. The processing result is shown in Figure 7d, in which the spectral
peak corresponding to the heartbeat signal is completely submerged after 6 s, making
it impossible to extract the peak information and obtain accurate estimations. Through
multiple experimental comparisons, it was observed that when the amplitude of the RBM
signal exceeds five times the amplitude of the respiratory and heartbeat signals, the heart
rate signal cannot be accurately identified.
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The impact of low-amplitude RBM on the algorithm is relatively small. However,
as the RBM amplitude increases, the relative strength of the heartbeat signal decreases
compared to that of the RBM, leading to the submergence of the heartbeat signal and
inaccurate detection. Figure 8a illustrates the computational results of different algorithms
when the amplitude of the RBM is equal to the amplitude of the simulated respiratory
and heartbeat signals. The simulation results indicate that the influence of lower RBM
amplitudes on the class of algorithms based on the CWT can be mostly ignored. Figure 8b
presents the computational results of different algorithms when the RBM amplitude is
five times the simulated signal amplitude. The simulation results indicate that a key issue
affecting the accurate detection of heart rate by the algorithms is the submergence of the
heartbeat signal due to the increased RBM amplitude. The proposed AMF algorithm utilizes
the temporal information of each component, reducing the impact of high-amplitude RBM
on the heartbeat signal. However, other methods struggle to effectively mitigate the impact
of high-amplitude RBM, leading to erroneous detection outcomes.
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(a) The computational results of different algorithms under the RBM with an amplitude of one are
presented. (b) The computational results of different algorithms under the RBM with an amplitude
of five are presented.

3. Results

The algorithm’s performance was evaluated through experimental assessments using
an MIMO mmWave radar. The results were compared with those obtained from a contact-
based sensor electrocardiogram (ECG) monitor and other recent techniques to verify the
efficacy of the proposed approach.

The experiments were conducted in a neonatal intensive care unit, as depicted in
Figure 9, which illustrates the experimental setup including the radar sensors and electro-
cardiogram (ECG) monitor. The participants consisted of three infants with specific health
conditions, as outlined in Table 1. One participant was a mid-term premature infant, who
may have various risks due to the incomplete development of his or her organ systems
compared to those of full-term infants. These risks include respiratory complications such
as apnea and respiratory distress syndrome, resulting from an underdeveloped respiratory
system. Additionally, the incomplete development of the circulatory system may lead
to complications such as persistent pulmonary hypertension and heart failure. Another
participant was a term infant diagnosed with neonatal wet lung, a condition characterized
by respiratory difficulties caused by the inadequate clearance of fluid from the lungs. Symp-
toms may include grunting, froth, and inspiratory indrawing. The last participant was also
a term infant diagnosed with meconium aspiration and mild asphyxia. Asphyxia-induced
hypoxia may lead to oxygen deprivation in various systems, resulting in complications
such as feeding intolerance and necrotizing enterocolitis in the digestive system, as well as
hypoxic-ischemic encephalopathy in the nervous system.

Table 1. The specific characteristics of the study participants.

Study Participants Gestational Age Weight Age Symptoms

Baby1 39 weeks and 5 days 3180 g 4 days Newborn wet lung

Baby2 33 weeks and 5 days 1840 g 14 days Premature birth

Baby3 39 weeks and 2 days 3710 g 4 days
Amniotic fluid

inhalation, mild
suffocation

The MIMO mmWave radar used for evaluation was the vTrig mmWave sensor evalu-
ation kit produced by Vayyar. The radar system was equipped with 20 transmitting (Tx)
and 20 receiving (Rx) onboard antennas, enabling the transmission of SFCW waveforms
in the frequency range of 62–69 GHz. The radio signal power emitted by the radar was
below−10 dBm, significantly lower than the radio power of mobile phones or WiFi devices.
The structure of the radar system is illustrated in Figure 10a. The MIMO architecture
allowed for an effective array of 400 virtual elements, as shown in Figure 10b. This radar
system had a large effective aperture, resulting in a high resolution in both the azimuth
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and elevation directions. Table 2 presents the important parameters related to the radar
signal. For subsequent experiments, a bandwidth of 1.6 GHz was set to balance the data
rate and image resolution. The frame rate was set at 30 Hz.
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Table 2. Radar parameters.

Parameters Value

Frequency Band 62–69 GHz
ADC Samples 151

Stop–Start Min Step 150 MHz
EIRP (Effective Isotropic Radiated Power) −5 dBm

Max Range Resolution 2.14 cm
Max Angular Resolution 6.7◦
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The accuracy of non-contact vital sign detection results needs to be compared with that
of the gold standard, contact-based heart rate measurements. Accurate heart rate readings
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were obtained using the ePM 10 Neo patient monitor manufactured by Mindray. The laptop
computer was utilized for radar data acquisition and processing. The radar measurements
were synchronized with the reference values provided by the patient monitor through the
computer and the electrocardiogram (ECG) monitor’s internal clock.

After recording the data, the multi-channel data underwent beamforming processing,
aligning the beams towards the subject’s chest. The resulting echoes from the beamforming
process were extracted, and after removing the static clutter, the phase information on the
surface of the subject’s chest was obtained, as depicted in Figure 11. Figure 11 consists of
nine phase results, and each row represents the phase information of a different newborn.
Rows 1 to 3 correspond to baby 1, baby 2, and baby 3, respectively, while each column
represents a specific state. The first column represents the phase variation in a stationary
state, whereas the second and third columns represent the phase variation during the
occurrence of RBM.
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The first-order differencing technique was applied to the phase on the chest surface to
accentuate the heartbeat details. Then a signal analysis using the CWT was performed, as
illustrated in Figure 12. During periods of relative stillness, the intensity of the heartbeat
frequency component was relatively high. However, when the subjects experienced RBM,
the intensity of the heartbeat frequency component varied at different time points and was
sometimes overshadowed by other components.

The AMF method was applied to further process the results of the wavelet transform,
allowing for the separation of the cardiac component and the clutter component based on
the relationship between the spectral peaks at adjacent time points. Figure 13 illustrates
the extraction results of the CWT spectral peaks shown in Figure 12, as well as the final
obtained cardiac component. From Figure 13, it can be observed that the acquisition of the
cardiac component is not influenced by its intensity. Even when the intensity of the cardiac
component is lower than that of other components, as long as the cardiac component is
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not completely overshadowed, it can be obtained through the continuous characteristics of
the heartbeat.
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The final results demonstrate that the proposed method successfully extracts the
cardiac component, which closely aligns with the heartbeat measurements obtained through
ECG, as depicted in Figure 14. In comparison to other methods, the proposed approach
fully utilizes the temporal and frequency characteristics of the signal. By decomposing the
signal, it effectively captures the frequency components at different time points and exhibits
an advantage in removing clutter components. Furthermore, it enables the assessment of
temporal variations in heart rate.
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After acquiring the cardiac signal, the accuracy (ACC), average absolute error (MAE),
and root mean square error (RMSE) of the measurement results were calculated [42,43].
The formulas for these calculations are shown as Equations (16)–(18).

ACC = 1−

∣∣∣HRest − HRre f

∣∣∣
HRre f

(17)

MAE =
1
N ∑

∣∣∣HRest − HRre f

∣∣∣ (18)

RMSE =

√
1
N ∑ (HRest − HRre f ).2 (19)

In order to further quantify the performance of the proposed adaptive RBM removal
method, multiple experiments were conducted using different subjects and various motion
states. The first set of experiments involved subjects in a stationary state, while the second
set included subjects experiencing RBM, such as newborn hiccups, tremors, seizures, and
limb movements. The accuracy of the HR measurements for the multiple sets of data in
the stationary state was 97%, while in the motion state, they had a high accuracy of 96%.
Furthermore, a detailed analysis of the results was conducted.

The performance of the AMF method across different individuals is elaborated in
Table 3. The results indicate minimal variations in HR accuracy across the different states
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among the individuals. However, significant differences were observed in the MAE and
RMSE among the different individuals, with baby 2 exhibiting particularly exceptional re-
sults. A further analysis of the individual’s condition revealed that baby 2 was a premature
infant with a low level of muscle tone and reduced physiological movement compared to a
typical newborn, resulting in a lower activity frequency. Hence, relatively better results
were obtained for this individual.

Table 3. The performance evaluation results of the AMF method.

Study
Participants

ACC (%) MAE (bpm) RMSE (bpm)

Static Movement Static Movement Static Movement

Baby1 96.4 96.3 4.6 4.7 5.4 5.8
Baby2 99.4 96.4 0.7 3.1 1.0 3.6
Baby3 97.6 96.2 3.0 4.6 3.6 5.7

4. Discussion and Conclusions

This paper’s method was also compared with other recent wavelet-based methods, as
shown in Table 4. In conclusion, the processing workflow proposed in this paper demon-
strates a superior performance in terms of its HR accuracy (ACC), average absolute error
(MAE), and root mean square error (RMSE) compared to those of the other methods, partic-
ularly in the presence of RBM. This can be attributed to two main factors. For one, during
the preprocessing stage, the MIMO mmWave radar utilizes digital beamforming (DBF) to
physically focus the beam, suppressing interference from surrounding objects, individuals,
and limbs outside the thoracic cavity. Additionally, the AMF method successfully mitigates
the impact of high-intensity clutter on the cardiac signal components by addressing the
inherent variations in the heartbeat signal. Although we have validated the performance
of the proposed method in the current scenario, further explorations of signals from the
chest surface are necessary to optimize its performance in more complex cardiopulmonary
resuscitation scenarios.

Table 4. The performance evaluation results of different methods.

Method
ACC (%) MAE (bpm) RMSE (bpm)

Static Movement Static Movement Static Movement

Method 1 [31] 94.1 89.8 7.7 13.4 7.7 13.8
Method 2 [28] 98.1 88.1 2.4 15.9 2.5 16.2

AMF 97.9 96.6 2.8 4.6 3.3 5.1

In the current experiments, the relative angle between the newborn and the radar
remains relatively fixed. However, in more complex neonatal resuscitation scenarios, the
angle between the newborn’s chest and the radar may vary. Therefore, in future studies, it
is necessary to explore more optimal beamforming techniques to focus the radar beam on
the chest and suppress the surrounding interference. In the presence of more severe RBM,
there may be instances in which the cardiac signal component is completely overwhelmed.
Hence, further explorations of signal decomposition methods are necessary to mitigate the
impact of RBM on the heartbeat.

The accuracy of the AMF method for detecting neonatal respiratory rate has been
validated in this article; however, it has been found that some steps still cannot be adaptively
adjusted. For instance, after the neonate’s position changes, it has been observed that the
beamforming is unable to automatically identify the location of the neonate’s chest. In
future research, it is planned to determine the chest’s location by mining the differences
between the chest and other signal features in the space over a period of time. This
information will be utilized to guide the radar in performing adaptive beamforming at
the chest’s location, which is expected to further improve the accuracy of the detection.
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Furthermore, preparations are being made to integrate the AMF system with other medical
monitoring equipment, with the aim of providing a more comprehensive solution for the
detection of neonatal vital signs.
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