Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (931)

Search Parameters:
Keywords = adaptive kalman

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1814 KiB  
Article
Student’s t Kernel-Based Maximum Correntropy Criterion Extended Kalman Filter for GPS Navigation
by Dah-Jing Jwo, Yi Chang, Yun-Han Hsu and Amita Biswal
Appl. Sci. 2025, 15(15), 8645; https://doi.org/10.3390/app15158645 (registering DOI) - 5 Aug 2025
Abstract
Global Navigation Satellite System (GNSS) receivers may produce measurement outliers in real-world applications owing to various circumstances, including poor signal quality, multipath effects, data loss, satellite signal loss, or electromagnetic interference. This can lead to a noise distribution that is non-Gaussian heavy-tailed, affecting [...] Read more.
Global Navigation Satellite System (GNSS) receivers may produce measurement outliers in real-world applications owing to various circumstances, including poor signal quality, multipath effects, data loss, satellite signal loss, or electromagnetic interference. This can lead to a noise distribution that is non-Gaussian heavy-tailed, affecting the effectiveness of satellite navigation filters. This paper presents a robust Extended Kalman Filter (EKF) based on the Maximum Correntropy Criterion with a Student’s t kernel (STMCCEKF) for GPS navigation under non-Gaussian noise. Unlike traditional EKF and Gaussian-kernel MCCEKF, the proposed method enhances robustness by leveraging the heavy-tailed Student’s t kernel, which effectively suppresses outliers and dynamic observation noise. A fixed-point iterative algorithm is used for state update, and a new posterior error covariance expression is derived. The simulation results demonstrate that STMCCEKF outperforms conventional filters in positioning accuracy and robustness, particularly in environments with impulsive noise and multipath interference. The Student’s t-distribution kernel efficiently mitigates heavy-tailed non-Gaussian noise, while it adaptively adjusts process and measurement noise covariances, leading to improved estimation performance. A detailed explanation of several key concepts along with practical examples are discussed to aid in understanding and applying the Global Positioning System (GPS) navigation filter. By integrating cutting-edge reinforcement learning with robust statistical approaches, this work advances adaptive signal processing and estimation, offering a significant contribution to the field. Full article
Show Figures

Figure 1

18 pages, 5151 KiB  
Article
An Adaptive Bandpass Full-Order Observer with a Compensated PLL for Sensorless IPMSMs
by Qiya Wu, Jia Zhang, Dongyi Meng, Ye Liu and Lijun Diao
Actuators 2025, 14(8), 387; https://doi.org/10.3390/act14080387 - 4 Aug 2025
Abstract
Model-based sensorless control of interior permanent-magnet synchronous motors (IPMSMs) typically employs an estimation observer with embedded position information, followed by a position extraction process. Although a type-2 phase-locked loop (PLL) is widely adopted for position and speed extraction, it suffers from steady-state tracking [...] Read more.
Model-based sensorless control of interior permanent-magnet synchronous motors (IPMSMs) typically employs an estimation observer with embedded position information, followed by a position extraction process. Although a type-2 phase-locked loop (PLL) is widely adopted for position and speed extraction, it suffers from steady-state tracking errors under variable-speed operation, leading to torque bias in IPMSM torque control. To mitigate this issue, this paper first proposes an adaptive bandpass full-order observer in the stationary reference frame. Subsequently, a Kalman filter (KF)-based compensation strategy is introduced for the PLL to eliminate tracking errors while maintaining system stability. Experimental validation on a 300 kW platform confirms the effectiveness of the proposed sensorless torque control algorithm, demonstrating significant reductions in position error and torque fluctuations during acceleration and deceleration. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

25 pages, 394 KiB  
Article
SMART DShot: Secure Machine-Learning-Based Adaptive Real-Time Timing Correction
by Hyunmin Kim, Zahid Basha Shaik Kadu and Kyusuk Han
Appl. Sci. 2025, 15(15), 8619; https://doi.org/10.3390/app15158619 (registering DOI) - 4 Aug 2025
Viewed by 27
Abstract
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems [...] Read more.
The exponential growth of autonomous systems demands robust security mechanisms that can operate within the extreme constraints of real-time embedded environments. This paper introduces SMART DShot, a groundbreaking machine learning-enhanced framework that transforms the security landscape of unmanned aerial vehicle motor control systems through seamless integration of adaptive timing correction and real-time anomaly detection within Digital Shot (DShot) communication protocols. Our approach addresses critical vulnerabilities in Electronic Speed Controller (ESC) interfaces by deploying four synergistic algorithms—Kalman Filter Timing Correction (KFTC), Recursive Least Squares Timing Correction (RLSTC), Fuzzy Logic Timing Correction (FLTC), and Hybrid Adaptive Timing Correction (HATC)—each optimized for specific error characteristics and attack scenarios. Through comprehensive evaluation encompassing 32,000 Monte Carlo test iterations (500 per scenario × 16 scenarios × 4 algorithms) across 16 distinct operational scenarios and PolarFire SoC Field-Programmable Gate Array (FPGA) implementation, we demonstrate exceptional performance with 88.3% attack detection rate, only 2.3% false positive incidence, and substantial vulnerability mitigation reducing Common Vulnerability Scoring System (CVSS) severity from High (7.3) to Low (3.1). Hardware validation on PolarFire SoC confirms practical viability with minimal resource overhead (2.16% Look-Up Table utilization, 16.57 mW per channel) and deterministic sub-10 microsecond execution latency. The Hybrid Adaptive Timing Correction algorithm achieves 31.01% success rate (95% CI: [30.2%, 31.8%]), representing a 26.5% improvement over baseline approaches through intelligent meta-learning-based algorithm selection. Statistical validation using Analysis of Variance confirms significant performance differences (F(3,1996) = 30.30, p < 0.001) with large effect sizes (Cohen’s d up to 4.57), where 64.6% of algorithm comparisons showed large practical significance. SMART DShot establishes a paradigmatic shift from reactive to proactive embedded security, demonstrating that sophisticated artificial intelligence can operate effectively within microsecond-scale real-time constraints while providing comprehensive protection against timing manipulation, de-synchronization, burst interference, replay attacks, coordinated multi-channel attacks, and firmware-level compromises. This work provides essential foundations for trustworthy autonomous systems across critical domains including aerospace, automotive, industrial automation, and cyber–physical infrastructure. These results conclusively demonstrate that ML-enhanced motor control systems can achieve both superior security (88.3% attack detection rate with 2.3% false positives) and operational performance (31.01% timing correction success rate, 26.5% improvement over baseline) simultaneously, establishing SMART DShot as a practical, deployable solution for next-generation autonomous systems. Full article
Show Figures

Figure 1

18 pages, 603 KiB  
Article
Leveraging Dynamic Pricing and Real-Time Grid Analysis: A Danish Perspective on Flexible Industry Optimization
by Sreelatha Aihloor Subramanyam, Sina Ghaemi, Hessam Golmohamadi, Amjad Anvari-Moghaddam and Birgitte Bak-Jensen
Energies 2025, 18(15), 4116; https://doi.org/10.3390/en18154116 - 3 Aug 2025
Viewed by 113
Abstract
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming [...] Read more.
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming to minimize operational costs and enhance energy efficiency. The method integrates dynamic pricing and real-time grid analysis, alongside a state estimation model using Extended Kalman Filtering (EKF) that improves the accuracy of system state predictions. Model Predictive Control (MPC) is employed for real-time adjustments. A real-world case studies from aquaculture industries and industrial power grids in Denmark demonstrates the approach. By leveraging dynamic pricing and grid signals, the system enables adaptive pump scheduling, achieving a 27% reduction in energy costs while maintaining voltage stability within 0.95–1.05 p.u. and ensuring operational safety. These results confirm the effectiveness of grid-aware, flexible control in reducing costs and enhancing stability, supporting the transition toward smarter, sustainable industrial energy systems. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

24 pages, 1593 KiB  
Article
Robust Adaptive Multiple Backtracking VBKF for In-Motion Alignment of Low-Cost SINS/GNSS
by Weiwei Lyu, Yingli Wang, Shuanggen Jin, Haocai Huang, Xiaojuan Tian and Jinling Wang
Remote Sens. 2025, 17(15), 2680; https://doi.org/10.3390/rs17152680 - 2 Aug 2025
Viewed by 149
Abstract
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To [...] Read more.
The low-cost Strapdown Inertial Navigation System (SINS)/Global Navigation Satellite System (GNSS) is widely used in autonomous vehicles for positioning and navigation. Initial alignment is a critical stage for SINS operations, and the alignment time and accuracy directly affect the SINS navigation performance. To address the issue that low-cost SINS/GNSS cannot effectively achieve rapid and high-accuracy alignment in complex environments that contain noise and external interference, an adaptive multiple backtracking robust alignment method is proposed. The sliding window that constructs observation and reference vectors is established, which effectively avoids the accumulation of sensor errors during the full integration process. A new observation vector based on the magnitude matching is then constructed to effectively reduce the effect of outliers on the alignment process. An adaptive multiple backtracking method is designed in which the window size can be dynamically adjusted based on the innovation gradient; thus, the alignment time can be significantly shortened. Furthermore, the modified variational Bayesian Kalman filter (VBKF) that accurately adjusts the measurement noise covariance matrix is proposed, and the Expectation–Maximization (EM) algorithm is employed to refine the prior parameter of the predicted error covariance matrix. Simulation and experimental results demonstrate that the proposed method significantly reduces alignment time and improves alignment accuracy. Taking heading error as the critical evaluation indicator, the proposed method achieves rapid alignment within 120 s and maintains a stable error below 1.2° after 80 s, yielding an improvement of over 63% compared to the backtracking-based Kalman filter (BKF) method and over 57% compared to the fuzzy adaptive KF (FAKF) method. Full article
(This article belongs to the Section Urban Remote Sensing)
14 pages, 2426 KiB  
Article
A Novel Integrated Inertial Navigation System with a Single-Axis Cold Atom Interferometer Gyroscope Based on Numerical Studies
by Zihao Chen, Fangjun Qin, Sibin Lu, Runbing Li, Min Jiang, Yihao Wang, Jiahao Fu and Chuan Sun
Micromachines 2025, 16(8), 905; https://doi.org/10.3390/mi16080905 (registering DOI) - 2 Aug 2025
Viewed by 132
Abstract
Inertial navigation systems (INSs) exhibit distinctive characteristics, such as long-duration operation, full autonomy, and exceptional covertness compared to other navigation systems. However, errors are accumulated over time due to operational principles and the limitations of sensors. To address this problem, this study theoretically [...] Read more.
Inertial navigation systems (INSs) exhibit distinctive characteristics, such as long-duration operation, full autonomy, and exceptional covertness compared to other navigation systems. However, errors are accumulated over time due to operational principles and the limitations of sensors. To address this problem, this study theoretically explores a numerically simulated integrated inertial navigation system consisting of a single-axis cold atom interferometer gyroscope (CAIG) and a conventional inertial measurement unit (IMU). The system leverages the low bias and drift of the CAIG and the high sampling rate of the conventional IMU to obtain more accurate navigation information. Furthermore, an adaptive gradient ascent (AGA) method is proposed to estimate the variance of the measurement noise online for the Kalman filter. It was found that errors of latitude, longitude, and positioning are reduced by 43.9%, 32.6%, and 32.3% compared with the conventional IMU over 24 h. On this basis, errors from inertial sensor drift could be further reduced by the online Kalman filter. Full article
Show Figures

Figure 1

21 pages, 4522 KiB  
Article
A Method Integrating the Matching Field Algorithm for the Three-Dimensional Positioning and Search of Underwater Wrecked Targets
by Huapeng Cao, Tingting Yang and Ka-Fai Cedric Yiu
Sensors 2025, 25(15), 4762; https://doi.org/10.3390/s25154762 - 1 Aug 2025
Viewed by 169
Abstract
In this paper, a joint Matching Field Processing (MFP) Algorithm based on horizontal uniform circular array (UCA) is proposed for three-dimensional position of underwater wrecked targets. Firstly, a Marine search and rescue position model based on Minimum Variance Distortionless Response (MVDR) and matching [...] Read more.
In this paper, a joint Matching Field Processing (MFP) Algorithm based on horizontal uniform circular array (UCA) is proposed for three-dimensional position of underwater wrecked targets. Firstly, a Marine search and rescue position model based on Minimum Variance Distortionless Response (MVDR) and matching field quadratic joint Algorithm was proposed. Secondly, an MVDR beamforming method based on pre-Kalman filtering is designed to refine the real-time DOA estimation of the desired signal and the interference source, and the sound source azimuth is determined for prepositioning. The antenna array weights are dynamically adjusted according to the filtered DOA information. Finally, the Adaptive Matching Field Algorithm (AMFP) used the DOA information to calculate the range and depth of the lost target, and obtained the range and depth estimates. Thus, the 3D position of the lost underwater target is jointly estimated. This method alleviates the angle ambiguity problem and does not require a computationally intensive 2D spectral search. The simulation results show that the proposed method can better realise underwater three-dimensional positioning under certain signal-to-noise ratio conditions. When there is no error in the sensor coordinates, the positioning error is smaller than that of the baseline method as the SNR increases. When the SNR is 0 dB, with the increase in the sensor coordinate error, the target location error increases but is smaller than the error amplitude of the benchmark Algorithm. The experimental results verify the robustness of the proposed framework in the hierarchical ocean environment, which provides a practical basis for the deployment of rapid response underwater positioning systems in maritime search and rescue scenarios. Full article
(This article belongs to the Special Issue Sensor Fusion in Positioning and Navigation)
Show Figures

Figure 1

14 pages, 1714 KiB  
Article
A Kalman Filter-Based Localization Calibration Method Optimized by Reinforcement Learning and Information Matrix Fusion
by Zijia Huang, Qiushi Xu, Menghao Sun and Xuzhen Zhu
Entropy 2025, 27(8), 821; https://doi.org/10.3390/e27080821 - 1 Aug 2025
Viewed by 222
Abstract
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement [...] Read more.
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement learning network is designed to adaptively adjust the state covariance matrix, enhancing the Kalman filter’s adaptability to environmental changes. Meanwhile, a multi-trajectory information matrix fusion strategy is introduced, which aggregates multiple trajectories in the information domain via weighted inverse covariance matrices to suppress error propagation and improve system consistency. Experiments using both simulated and real-world sensor data demonstrate that the proposed method outperforms traditional extended Kalman filter approaches in terms of localization accuracy and stability, providing a novel solution for cooperative localization calibration of unmanned aerial vehicle (UAV) swarms in dynamic environments. Full article
(This article belongs to the Special Issue Complexity, Entropy and the Physics of Information II)
Show Figures

Figure 1

21 pages, 1573 KiB  
Review
A Novel Real-Time Battery State Estimation Using Data-Driven Prognostics and Health Management
by Juliano Pimentel, Alistair A. McEwan and Hong Qing Yu
Appl. Sci. 2025, 15(15), 8538; https://doi.org/10.3390/app15158538 (registering DOI) - 31 Jul 2025
Viewed by 121
Abstract
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered [...] Read more.
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered via exponentially weighted moving averages (EWMAs) and refined through SHAP-based feature attribution. Compared against a Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) across ten diverse drive cycles, the proposed model consistently achieved superior performance, with mean absolute errors (MAEs) as low as 0.40%, outperforming EKF (0.66%) and UKF (1.36%). The Bi-LSTM model also demonstrated higher R2 values (up to 0.9999) and narrower 95% confidence intervals, confirming its precision and robustness. Real-time implementation on embedded platforms yielded inference times of 1.3–2.2 s, validating its deployability for edge applications. The framework’s model-free nature makes it adaptable to other nonlinear, time-dependent systems beyond battery SOC estimation. Full article
(This article belongs to the Special Issue Design and Applications of Real-Time Embedded Systems)
Show Figures

Figure 1

25 pages, 25022 KiB  
Article
Research on Underwater Laser Communication Channel Attenuation Model Analysis and Calibration Device
by Wenyu Cai, Hengmei Wang, Meiyan Zhang and Yu Wang
J. Mar. Sci. Eng. 2025, 13(8), 1483; https://doi.org/10.3390/jmse13081483 - 31 Jul 2025
Viewed by 130
Abstract
To investigate the influence of different water quality conditions on the underwater transmission performance of laser communication signals, this paper systematically analyzes the absorption and scattering characteristics of the underwater laser communication channel, and constructs a transmission model of laser propagation in water, [...] Read more.
To investigate the influence of different water quality conditions on the underwater transmission performance of laser communication signals, this paper systematically analyzes the absorption and scattering characteristics of the underwater laser communication channel, and constructs a transmission model of laser propagation in water, so as to explore the transmission influence mechanism under typical water quality environments. On this basis, a system of in situ measurements for underwater laser channel attenuation is designed and constructed, and several sets of experiments are carried out to verify the rationality and applicability of the model. The collected experimental data are denoised by the fusion of wavelet analysis and adaptive Kalman filtering (DWT-AKF in short) algorithm, and compared with the data measured by an underwater hyperspectral Absorption Coefficient Spectrophotometer (ACS in short), which shows that the channel attenuation coefficients of the model inversion and the measured values are in high agreement. The research results provide a reliable theoretical basis and experimental support for the performance optimization and engineering design of the underwater laser communication system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

29 pages, 6079 KiB  
Article
A Highly Robust Terrain-Aided Navigation Framework Based on an Improved Marine Predators Algorithm and Depth-First Search
by Tian Lan, Ding Li, Qixin Lou, Chao Liu, Huiping Li, Yi Zhang and Xudong Yu
Drones 2025, 9(8), 543; https://doi.org/10.3390/drones9080543 - 31 Jul 2025
Viewed by 253
Abstract
Autonomous underwater vehicles (AUVs) have obtained extensive application in the exploitation of marine resources. Terrain-aided navigation (TAN), as an accurate and reliable autonomous navigation method, is commonly used for AUV navigation. However, its accuracy degrades significantly in self-similar terrain features or measurement uncertainties. [...] Read more.
Autonomous underwater vehicles (AUVs) have obtained extensive application in the exploitation of marine resources. Terrain-aided navigation (TAN), as an accurate and reliable autonomous navigation method, is commonly used for AUV navigation. However, its accuracy degrades significantly in self-similar terrain features or measurement uncertainties. To overcome these challenges, we propose a novel terrain-aided navigation framework integrating an Improved Marine Predators Algorithm with Depth-First Search optimization (DFS-IMPA-TAN). This framework maintains positioning precision in partially self-similar terrains through two synergistic mechanisms: (1) IMPA-driven optimization based on the hunger-inspired adaptive exploitation to determine optimal trajectory transformations, cascaded with Kalman filtering for navigation state correction; (2) a Robust Tree (RT) hypothesis manager that maintains potential trajectory candidates in graph-structured memory, employing Depth-First Search for ambiguity resolution in feature matching. Experimental validation through simulations and in-vehicle testing demonstrates the framework’s distinctive advantages: (1) consistent terrain association in partially self-similar topographies; (2) inherent error resilience against ambiguous feature measurements; and (3) long-term navigation stability. In all experimental groups, the root mean squared error of the framework remained around 60 m. Under adverse conditions, its navigation accuracy improved by over 30% compared to other traditional batch processing TAN methods. Comparative analysis confirms superior performance over conventional methods under challenging conditions, establishing DFS-IMPA-TAN as a robust navigation solution for AUVs in complex underwater environments. Full article
Show Figures

Figure 1

17 pages, 5247 KiB  
Article
An Intelligent Optimization-Based Secure Filter Design for State Estimation of Power Systems with Multiple Disturbances
by Yudong Xu, Wei Wang, Yong Liu, Xiaokai Meng, Yutong Chen and Zhixiang Liu
Electronics 2025, 14(15), 3059; https://doi.org/10.3390/electronics14153059 - 31 Jul 2025
Viewed by 197
Abstract
To address multiple disturbance threats such as system anomalies and cyberattacks faced by power systems, an intelligent optimized secure filter method is developed in this paper for state estimation of power systems with the aid of the improved sparrow search algorithm–optimized unscented Kalman [...] Read more.
To address multiple disturbance threats such as system anomalies and cyberattacks faced by power systems, an intelligent optimized secure filter method is developed in this paper for state estimation of power systems with the aid of the improved sparrow search algorithm–optimized unscented Kalman filter (ISSA-UKF). Firstly, the problem of insufficient robustness in noise modeling and parameter selection of the conventional unscented Kalman filter (UKF) is analyzed. Secondly, an intelligent optimization method is adopted to adaptively update the UKF’s process and measurement noise covariances in real time, and an ISSA-UKF fusion framework is constructed to improve the estimation accuracy and system response capability. Thirdly, an adaptive weight function based on disturbance observation differences is provided to strengthen the stability of the algorithm in response to abnormal measurements at edge nodes and dynamic system changes. Finally, simulation analysis under a typical power system model shows that compared with the conventional UKF method, the developed ISSA-UKF algorithm demonstrates significant improvements in estimation accuracy, robustness, and dynamic response performance and can effectively cope with non-ideal disturbances that may occur in power systems. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

25 pages, 8468 KiB  
Article
An Autonomous Localization Vest System Based on Advanced Adaptive PDR with Binocular Vision Assistance
by Tianqi Tian, Yanzhu Hu, Xinghao Zhao, Hui Zhao, Yingjian Wang and Zhen Liang
Micromachines 2025, 16(8), 890; https://doi.org/10.3390/mi16080890 (registering DOI) - 30 Jul 2025
Viewed by 151
Abstract
Despite significant advancements in indoor navigation technology over recent decades, it still faces challenges due to excessive dependency on external infrastructure and unreliable positioning in complex environments. This paper proposes an autonomous localization system that integrates advanced adaptive pedestrian dead reckoning (APDR) and [...] Read more.
Despite significant advancements in indoor navigation technology over recent decades, it still faces challenges due to excessive dependency on external infrastructure and unreliable positioning in complex environments. This paper proposes an autonomous localization system that integrates advanced adaptive pedestrian dead reckoning (APDR) and binocular vision, designed to provide a low-cost, high-reliability, and high-precision solution for rescuers. By analyzing the characteristics of measurement data from various body parts, the chest is identified as the optimal placement for sensors. A chest-mounted advanced APDR method based on dynamic step segmentation detection and adaptive step length estimation has been developed. Furthermore, step length features are innovatively integrated into the visual tracking algorithm to constrain errors. Visual data is fused with dead reckoning data through an extended Kalman filter (EKF), which notably enhances the reliability and accuracy of the positioning system. A wearable autonomous localization vest system was designed and tested in indoor corridors, underground parking lots, and tunnel environments. Results show that the system decreases the average positioning error by 45.14% and endpoint error by 38.6% when compared to visual–inertial odometry (VIO). This low-cost, wearable solution effectively meets the autonomous positioning needs of rescuers in disaster scenarios. Full article
(This article belongs to the Special Issue Artificial Intelligence for Micro Inertial Sensors)
Show Figures

Figure 1

29 pages, 20494 KiB  
Article
Research on INS/GNSS Integrated Navigation Algorithm for Autonomous Vehicles Based on Pseudo-Range Single Point Positioning
by Zhongchao Liang, Kunfeng He, Zijian Wang, Haobin Yang and Junqiang Zheng
Electronics 2025, 14(15), 3048; https://doi.org/10.3390/electronics14153048 - 30 Jul 2025
Viewed by 129
Abstract
This study proposes an enhanced integration framework for the global navigation satellite system (GNSS) and inertial navigation system (INS). The framework combines real-time differential GNSS corrections with an adaptive extended Kalman filter (EKF) to address positional accuracy and system robustness challenges in practical [...] Read more.
This study proposes an enhanced integration framework for the global navigation satellite system (GNSS) and inertial navigation system (INS). The framework combines real-time differential GNSS corrections with an adaptive extended Kalman filter (EKF) to address positional accuracy and system robustness challenges in practical navigation scenarios. The proposed method dynamically compensates for positioning inaccuracies and sensor drift by integrating differential GNSS corrections to reduce errors and employing an adaptive EKF to address temporal synchronization discrepancies and misalignment angle deviations. Simulation and experimental results demonstrate that the framework keeps horizontal positioning error within 2 m and achieves a maximum accuracy improvement of 4.2 m compared to conventional single-point positioning. This low-cost solution ensures robust performance for practical autonomous navigation scenarios. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

14 pages, 2595 KiB  
Article
Fiber Optic Gyro Random Error Suppression Based on Dual Adaptive Kalman Filter
by Hongcai Li, Zhe Liang, Zhaofa Zhou, Zhili Zhang, Junyang Zhao and Longjie Tian
Micromachines 2025, 16(8), 884; https://doi.org/10.3390/mi16080884 - 29 Jul 2025
Viewed by 144
Abstract
The random error of fiber optic gyros is a critical factor affecting their measurement accuracy. However, the statistical characteristics of these errors exhibit time-varying properties, which degrade model fidelity and consequently impair the performance of random error suppression algorithms. To address these issues, [...] Read more.
The random error of fiber optic gyros is a critical factor affecting their measurement accuracy. However, the statistical characteristics of these errors exhibit time-varying properties, which degrade model fidelity and consequently impair the performance of random error suppression algorithms. To address these issues, this study first proposes a recursive dynamic Allan variance calculation method that effectively mitigates the poor real-time performance and spectral leakage inherent in conventional dynamic Allan variance techniques. Subsequently, the recursive dynamic Allan variance is integrated with the process variance estimation of Kalman filtering to construct a dual-adaptive Kalman filter capable of autonomously switching and adjusting between model parameters and noise variance. Finally, both static and dynamic validation experiments were conducted to evaluate the proposed method. The experimental results demonstrate that, compared to existing algorithms, the proposed approach significantly enhances the suppression of angular random walk errors in fiber optic gyros. Full article
(This article belongs to the Special Issue Integrated Photonics and Optoelectronics, 2nd Edition)
Show Figures

Figure 1

Back to TopTop