Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,292)

Search Parameters:
Keywords = adaptive energy analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 2730 KiB  
Review
Deep Learning and NLP-Based Trend Analysis in Actuators and Power Electronics
by Woojun Jung and Keuntae Cho
Actuators 2025, 14(8), 379; https://doi.org/10.3390/act14080379 (registering DOI) - 1 Aug 2025
Abstract
Actuators and power electronics are fundamental components of modern control systems, enabling high-precision functionality, enhanced energy efficiency, and sophisticated automation. This study investigates evolving research trends and thematic developments in these areas spanning the last two decades (2005–2024). This study analyzed 1840 peer-reviewed [...] Read more.
Actuators and power electronics are fundamental components of modern control systems, enabling high-precision functionality, enhanced energy efficiency, and sophisticated automation. This study investigates evolving research trends and thematic developments in these areas spanning the last two decades (2005–2024). This study analyzed 1840 peer-reviewed abstracts obtained from the Web of Science database using BERTopic modeling, which integrates transformer-based sentence embeddings with UMAP for dimensionality reduction and HDBSCAN for clustering. The approach also employed class-based TF-IDF calculations, intertopic distance visualization, and hierarchical clustering to clarify topic structures. The analysis revealed a steady increase in research publications, with a marked surge post-2015. From 2005 to 2014, investigations were mainly focused on established areas including piezoelectric actuators, adaptive control, and hydraulic systems. In contrast, the 2015–2024 period saw broader diversification into new topics such as advanced materials, robotic mechanisms, resilient systems, and networked actuator control through communication protocols. The structural topic analysis indicated a shift from a unified to a more differentiated and specialized spectrum of research themes. This study offers a rigorous, data-driven outlook on the increasing complexity and diversity of actuator and power electronics research. The findings are pertinent for researchers, engineers, and policymakers aiming to advance state-of-the-art, sustainable industrial technologies. Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
Show Figures

Figure 1

29 pages, 5343 KiB  
Article
Optimizing Electric Bus Efficiency: Evaluating Seasonal Performance in a Southern USA Transit System
by MD Rezwan Hossain, Arjun Babuji, Md. Hasibul Hasan, Haofei Yu, Amr Oloufa and Hatem Abou-Senna
Future Transp. 2025, 5(3), 92; https://doi.org/10.3390/futuretransp5030092 (registering DOI) - 1 Aug 2025
Abstract
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced [...] Read more.
Electric buses (EBs) are increasingly adopted for their environmental and operational benefits, yet their real-world efficiency is influenced by climate, route characteristics, and auxiliary energy demands. While most existing research identifies winter as the most energy-intensive season due to cabin heating and reduced battery performance, this study presents a contrasting perspective based on a three-year longitudinal analysis of the LYMMO fleet in Orlando, Florida—a subtropical U.S. region. The findings reveal that summer is the most energy-intensive season, primarily due to sustained HVAC usage driven by high ambient temperatures—a seasonal pattern rarely reported in the current literature and a key regional contribution. Additionally, idling time exceeds driving time across all seasons, with HVAC usage during idling emerging as the dominant contributor to total energy consumption. To mitigate these inefficiencies, a proxy-based HVAC energy estimation method and an optimization model were developed, incorporating ambient temperature and peak passenger load. This approach achieved up to 24% energy savings without compromising thermal comfort. Results validated through non-parametric statistical testing support operational strategies such as idling reduction, HVAC control, and seasonally adaptive scheduling, offering practical pathways to improve EB efficiency in warm-weather transit systems. Full article
Show Figures

Figure 1

42 pages, 4490 KiB  
Review
Continuous Monitoring with AI-Enhanced BioMEMS Sensors: A Focus on Sustainable Energy Harvesting and Predictive Analytics
by Mingchen Cai, Hao Sun, Tianyue Yang, Hongxin Hu, Xubing Li and Yuan Jia
Micromachines 2025, 16(8), 902; https://doi.org/10.3390/mi16080902 (registering DOI) - 31 Jul 2025
Abstract
Continuous monitoring of environmental and physiological parameters is essential for early diagnostics, real-time decision making, and intelligent system adaptation. Recent advancements in bio-microelectromechanical systems (BioMEMS) sensors have significantly enhanced our ability to track key metrics in real time. However, continuous monitoring demands sustainable [...] Read more.
Continuous monitoring of environmental and physiological parameters is essential for early diagnostics, real-time decision making, and intelligent system adaptation. Recent advancements in bio-microelectromechanical systems (BioMEMS) sensors have significantly enhanced our ability to track key metrics in real time. However, continuous monitoring demands sustainable energy supply solutions, especially for on-site energy replenishment in areas with limited resources. Artificial intelligence (AI), particularly large language models, offers new avenues for interpreting the vast amounts of data generated by these sensors. Despite this potential, fully integrated systems that combine self-powered BioMEMS sensing with AI-based analytics remain in the early stages of development. This review first examines the evolution of BioMEMS sensors, focusing on advances in sensing materials, micro/nano-scale architectures, and fabrication techniques that enable high sensitivity, flexibility, and biocompatibility for continuous monitoring applications. We then examine recent advances in energy harvesting technologies, such as piezoelectric nanogenerators, triboelectric nanogenerators and moisture electricity generators, which enable self-powered BioMEMS sensors to operate continuously and reducereliance on traditional batteries. Finally, we discuss the role of AI in BioMEMS sensing, particularly in predictive analytics, to analyze continuous monitoring data, identify patterns, trends, and anomalies, and transform this data into actionable insights. This comprehensive analysis aims to provide a roadmap for future continuous BioMEMS sensing, revealing the potential unlocked by combining materials science, energy harvesting, and artificial intelligence. Full article
Show Figures

Figure 1

24 pages, 6731 KiB  
Article
Combined Impacts of Acute Heat Stress on the Histology, Antioxidant Activity, Immunity, and Intestinal Microbiota of Wild Female Burbot (Lota Lota) in Winter: New Insights into Heat Sensitivity in Extremely Hardy Fish
by Cunhua Zhai, Yutao Li, Ruoyu Wang, Haoxiang Han, Ying Zhang and Bo Ma
Antioxidants 2025, 14(8), 947; https://doi.org/10.3390/antiox14080947 (registering DOI) - 31 Jul 2025
Abstract
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. [...] Read more.
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. In January of 2025, we collected wild adult burbot individuals from the Ussuri River (water temperature: about 2 °C), China. The burbot were exposed to 2 °C, 7 °C, 12 °C, 17 °C, and 22 °C environments for 96 h; then, the liver and intestinal contents were subsequently collected for histopathology observation, immunohistochemistry, biochemical index assessment, and transcriptome/16S rDNA sequencing analysis. There was obvious liver damage including hepatocyte necrosis, fat vacuoles, and cellular peripheral nuclei. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were elevated and subsequently decreased. Additionally, the malondialdehyde (MDA) level significantly increased with increasing temperature. These results indicate that 7 °C (heat stress temperature), 12 °C (tipping point for normal physiological metabolism status), 17 °C (tipping point for individual deaths), and 22 °C (thermal limit) are critical temperatures in terms of the physiological response of burbot during their breeding period. In the hepatic transcriptome profiling, 6538 differentially expressed genes (DEGs) were identified, while KEGG enrichment analysis showed that high-temperature stress could affect normal liver function by regulating energy metabolism, immune, and apoptosis-related pathways. Microbiomics also revealed that acute heat stress could change the intestinal microbe community structure. Additionally, correlation analysis suggested potential regulatory relationships between intestinal microbe taxa and immune/apoptosis-related DEGs in the liver. This study revealed the potential impact of environmental water temperature changes in cold habitats in winter on the physiological adaptability of burbot during the breeding period and provides new insights for the ecological protection of burbot in the context of global climate change and habitat warming. Full article
(This article belongs to the Special Issue Antioxidant Response in Aquatic Animals)
Show Figures

Figure 1

44 pages, 7966 KiB  
Systematic Review
Eco-Efficient Retrofitting of Rural Heritage: A Systematic Review of Sustainable Strategies
by Stefano Bigiotti, Mariangela Ludovica Santarsiero, Anna Irene Del Monaco and Alvaro Marucci
Energies 2025, 18(15), 4065; https://doi.org/10.3390/en18154065 (registering DOI) - 31 Jul 2025
Abstract
Through a systematic review of sustainable rural dwelling recovery, this study offers a broader reflection on retrofitting practices, viewing eco-efficiency as a means to enhance both cultural heritage and agricultural landscapes. The work is based on the assumption that vernacular architecture in rural [...] Read more.
Through a systematic review of sustainable rural dwelling recovery, this study offers a broader reflection on retrofitting practices, viewing eco-efficiency as a means to enhance both cultural heritage and agricultural landscapes. The work is based on the assumption that vernacular architecture in rural contexts embodies historical, cultural, and typological values worthy of preservation, while remaining adaptable to reuse through eco-efficient solutions and technological innovation. Using the PRISMA protocol, 115 scientific contributions were selected from 1711 initial records and classified into four macro-groups: landscape relationships; seismic and energy retrofitting; construction techniques and innovative materials; and morphological–typological analysis. Results show a predominance (over 50%) of passive design strategies, compatible materials, and low-impact techniques, while active systems are applied more selectively to protect cultural integrity. The study identifies replicable methodological models combining sustainability, cultural continuity, and functional adaptation, offering recommendations for future operational guidelines. Conscious eco-efficient retrofitting thus emerges as a strategic tool for the integrated valorization of rural landscapes and heritage. Full article
(This article belongs to the Special Issue Sustainable Building Energy and Environment: 2nd Edition)
35 pages, 6006 KiB  
Review
Enhancing Mitochondrial Maturation in iPSC-DerivedCardiomyocytes: Strategies for Metabolic Optimization
by Dhienda C. Shahannaz, Tadahisa Sugiura and Brandon E. Ferrell
BioChem 2025, 5(3), 23; https://doi.org/10.3390/biochem5030023 (registering DOI) - 31 Jul 2025
Abstract
Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold transformative potential for cardiovascular regenerative medicine, yet their clinical application is hindered by suboptimal mitochondrial maturation and metabolic inefficiencies. This systematic review evaluates targeted strategies for optimizing mitochondrial function, integrating metabolic preconditioning, substrate selection, and [...] Read more.
Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold transformative potential for cardiovascular regenerative medicine, yet their clinical application is hindered by suboptimal mitochondrial maturation and metabolic inefficiencies. This systematic review evaluates targeted strategies for optimizing mitochondrial function, integrating metabolic preconditioning, substrate selection, and pathway modulation to enhance energy production and cellular resilience. Additionally, we examine the role of extracellular matrix stiffness and mechanical stimulation in mitochondrial adaptation, given their influence on metabolism and maturation. Methods: A comprehensive analysis of recent advancements in iPSC-CM maturation was conducted, focusing on metabolic interventions that enhance mitochondrial structure and function. Studies employing metabolic preconditioning, lipid and amino acid supplementation, and modulation of key signaling pathways, including PGC-1α, AMPK, and mTOR, were reviewed. Computational modeling approaches predicting optimal metabolic shifts were assessed, alongside insights into reactive oxygen species (ROS) signaling, calcium handling, and the impact of electrical pacing on energy metabolism. Results: Evidence indicates that metabolic preconditioning with fatty acids and oxidative phosphorylation enhancers improves mitochondrial architecture, cristae density, and ATP production. Substrate manipulation fosters a shift toward adult-like metabolism, while pathway modulation refines mitochondrial biogenesis. Computational models enhance precision, predicting interventions that best align iPSC-CM metabolism with native cardiomyocytes. The synergy between metabolic and biomechanical cues offers new avenues for accelerating maturation, bridging the gap between in vitro models and functional cardiac tissues. Conclusions: Strategic metabolic optimization is essential for overcoming mitochondrial immaturity in iPSC-CMs. By integrating biochemical engineering, predictive modeling, and biomechanical conditioning, a robust framework emerges for advancing iPSC-CM applications in regenerative therapy and disease modeling. These findings pave the way for more physiologically relevant cell models, addressing key translational challenges in cardiovascular medicine. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Figure 1

23 pages, 20436 KiB  
Article
An Adaptive Decomposition Method with Low Parameter Sensitivity for Non-Stationary Noise Suppression in Magnetotelluric Data
by Zhenyu Guo, Cheng Huang, Wen Jiang, Tao Hong and Jiangtao Han
Minerals 2025, 15(8), 808; https://doi.org/10.3390/min15080808 - 30 Jul 2025
Abstract
Magnetotelluric (MT) sounding is a crucial technique in mineral exploration. However, MT data are highly susceptible to various types of noise. Traditional data processing methods, which rely on the assumption of signal stationarity, often result in severe distortion when suppressing non-stationary noise. In [...] Read more.
Magnetotelluric (MT) sounding is a crucial technique in mineral exploration. However, MT data are highly susceptible to various types of noise. Traditional data processing methods, which rely on the assumption of signal stationarity, often result in severe distortion when suppressing non-stationary noise. In this study, we propose a novel, adaptive, and less parameter-dependent signal decomposition method for MT signal denoising, based on time–frequency domain analysis and the application of modal decomposition. The method uses Variational Mode Decomposition (VMD) to adaptively decompose the MT signal into several intrinsic mode functions (IMFs), obtaining the instantaneous time–frequency energy distribution of the signal. Subsequently, robust statistical methods are introduced to extract the independent components of each IMF, thereby identifying signal and noise components within the decomposition results. Synthetic data experiments show that our method accurately separates high-amplitude non-stationary interference. Furthermore, it maintains stable decomposition results under various parameter settings, exhibiting strong robustness and low parameter dependency. When applied to field MT data, the method effectively filters out non-stationary noise, leading to significant improvements in both apparent resistivity and phase curves, indicating its practical value in mineral exploration. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

30 pages, 3319 KiB  
Article
A Pilot Study on Thermal Comfort in Young Adults: Context-Aware Classification Using Machine Learning and Multimodal Sensors
by Bibars Amangeldy, Timur Imankulov, Nurdaulet Tasmurzayev, Serik Aibagarov, Nurtugan Azatbekuly, Gulmira Dikhanbayeva and Aksultan Mukhanbet
Buildings 2025, 15(15), 2694; https://doi.org/10.3390/buildings15152694 - 30 Jul 2025
Abstract
While personal thermal comfort is critical for well-being and productivity, it is often overlooked by traditional building management systems that rely on uniform settings. Modern data-driven approaches often fail to capture the complex interactions between various data streams. This pilot study introduces a [...] Read more.
While personal thermal comfort is critical for well-being and productivity, it is often overlooked by traditional building management systems that rely on uniform settings. Modern data-driven approaches often fail to capture the complex interactions between various data streams. This pilot study introduces a high-accuracy, interpretable framework for thermal comfort classification, designed to identify the most significant predictors from a comprehensive suite of environmental, physiological, and anthropometric data in a controlled group of young adults. Initially, an XGBoost model using the full 24-feature dataset achieved the best performance at 91% accuracy. However, after using SHAP analysis to identify and select the most influential features, the performance of our ensemble models improved significantly; notably, a Random Forest model’s accuracy rose from 90% to 94%. Our analysis confirmed that for this homogeneous cohort, environmental parameters—specifically temperature, humidity, and CO2—were the dominant predictors of thermal comfort. The primary strength of this methodology lies in its ability to create a transparent pipeline that objectively identifies the most critical comfort drivers for a given population, forming a crucial evidence base for model design. The analysis also revealed that the predictive value of heart rate variability (HRV) diminished when richer physiological data, such as diastolic blood pressure, were included. For final validation, the optimized Random Forest model, using only the top 10 features, was tested on a hold-out set of 100 samples, achieving a final accuracy of 95% and an F1-score of 0.939, with all misclassifications occurring only between adjacent comfort levels. These findings establish a validated methodology for creating effective, context-aware comfort models that can be embedded into intelligent building management systems. Such adaptive systems enable a shift from static climate control to dynamic, user-centric environments, laying the critical groundwork for future personalized systems while enhancing occupant well-being and offering significant energy savings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

38 pages, 9517 KiB  
Article
Multidimensional Evaluation Framework and Classification Strategy for Low-Carbon Technologies in Office Buildings
by Hongjiang Liu, Yuan Song, Yawei Du, Tao Feng and Zhihou Yang
Buildings 2025, 15(15), 2689; https://doi.org/10.3390/buildings15152689 (registering DOI) - 30 Jul 2025
Abstract
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% [...] Read more.
The global climate crisis has driven unprecedented agreements among nations on carbon mitigation. With China’s commitment to carbon peaking and carbon neutrality targets, the building sector has emerged as a critical focus for emission reduction, particularly because office buildings account for over 30% of building energy consumption. However, a systematic and regionally adaptive low-carbon technology evaluation framework is lacking. To address this gap, this study develops a multidimensional decision-making system to quantify and rank low-carbon technologies for office buildings in Beijing. The method includes four core components: (1) establishing three archetypal models—low-rise (H ≤ 24 m), mid-rise (24 m < H ≤ 50 m), and high-rise (50 m < H ≤ 100 m) office buildings—based on 99 office buildings in Beijing; (2) classifying 19 key technologies into three clusters—Envelope Structure Optimization, Equipment Efficiency Enhancement, and Renewable Energy Utilization—using bibliometric analysis and policy norm screening; (3) developing a four-dimensional evaluation framework encompassing Carbon Reduction Degree (CRD), Economic Viability Degree (EVD), Technical Applicability Degree (TAD), and Carbon Intensity Degree (CID); and (4) conducting a comprehensive quantitative evaluation using the AHP-entropy-TOPSIS algorithm. The results indicate distinct priority patterns across the building types: low-rise buildings prioritize roof-mounted photovoltaic (PV) systems, LED lighting, and thermal-break aluminum frames with low-E double-glazed laminated glass. Mid- and high-rise buildings emphasize integrated PV-LED-T8 lighting solutions and optimized building envelope structures. Ranking analysis further highlights LED lighting, T8 high-efficiency fluorescent lamps, and rooftop PV systems as the top-recommended technologies for Beijing. Additionally, four policy recommendations are proposed to facilitate the large-scale implementation of the program. This study presents a holistic technical integration strategy that simultaneously enhances the technological performance, economic viability, and carbon reduction outcomes of architectural design and renovation. It also establishes a replicable decision-support framework for decarbonizing office and public buildings in cities, thereby supporting China’s “dual carbon” goals and contributing to global carbon mitigation efforts in the building sector. Full article
Show Figures

Figure 1

34 pages, 1156 KiB  
Systematic Review
Mathematical Modelling and Optimization Methods in Geomechanically Informed Blast Design: A Systematic Literature Review
by Fabian Leon, Luis Rojas, Alvaro Peña, Paola Moraga, Pedro Robles, Blanca Gana and Jose García
Mathematics 2025, 13(15), 2456; https://doi.org/10.3390/math13152456 - 30 Jul 2025
Abstract
Background: Rock–blast design is a canonical inverse problem that joins elastodynamic partial differential equations (PDEs), fracture mechanics, and stochastic heterogeneity. Objective: Guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, a systematic review of mathematical methods for geomechanically informed [...] Read more.
Background: Rock–blast design is a canonical inverse problem that joins elastodynamic partial differential equations (PDEs), fracture mechanics, and stochastic heterogeneity. Objective: Guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol, a systematic review of mathematical methods for geomechanically informed blast modelling and optimisation is provided. Methods: A Scopus–Web of Science search (2000–2025) retrieved 2415 records; semantic filtering and expert screening reduced the corpus to 97 studies. Topic modelling with Bidirectional Encoder Representations from Transformers Topic (BERTOPIC) and bibliometrics organised them into (i) finite-element and finite–discrete element simulations, including arbitrary Lagrangian–Eulerian (ALE) formulations; (ii) geomechanics-enhanced empirical laws; and (iii) machine-learning surrogates and multi-objective optimisers. Results: High-fidelity simulations delimit blast-induced damage with ≤0.2 m mean absolute error; extensions of the Kuznetsov–Ram equation cut median-size mean absolute percentage error (MAPE) from 27% to 15%; Gaussian-process and ensemble learners reach a coefficient of determination (R2>0.95) while providing closed-form uncertainty; Pareto optimisers lower peak particle velocity (PPV) by up to 48% without productivity loss. Synthesis: Four themes emerge—surrogate-assisted PDE-constrained optimisation, probabilistic domain adaptation, Bayesian model fusion for digital-twin updating, and entropy-based energy metrics. Conclusions: Persisting challenges in scalable uncertainty quantification, coupled discrete–continuous fracture solvers, and rigorous fusion of physics-informed and data-driven models position blast design as a fertile test bed for advances in applied mathematics, numerical analysis, and machine-learning theory. Full article
Show Figures

Figure 1

17 pages, 2136 KiB  
Article
Mitigating Intermittency in Offshore Wind Power Using Adaptive Nonlinear MPPT Control Techniques
by Muhammad Waqas Ayub, Inam Ullah Khan, George Aggidis and Xiandong Ma
Energies 2025, 18(15), 4041; https://doi.org/10.3390/en18154041 - 29 Jul 2025
Abstract
This paper addresses the challenge of maximizing power extraction in offshore wind energy systems through the development of an enhanced maximum power point tracking (MPPT) control strategy. Offshore wind energy is inherently intermittent, leading to discrepancies between power generation and electricity demand. To [...] Read more.
This paper addresses the challenge of maximizing power extraction in offshore wind energy systems through the development of an enhanced maximum power point tracking (MPPT) control strategy. Offshore wind energy is inherently intermittent, leading to discrepancies between power generation and electricity demand. To address this issue, we propose three advanced control algorithms to perform a comparative analysis: sliding mode control (SMC), the Integral Backstepping-Based Real-Twisting Algorithm (IBRTA), and Feed-Back Linearization (FBL). These algorithms are designed to handle the nonlinear dynamics and aerodynamic uncertainties associated with offshore wind turbines. Given the practical limitations in acquiring accurate nonlinear terms and aerodynamic forces, our approach focuses on ensuring the adaptability and robustness of the control algorithms under varying operational conditions. The proposed strategies are rigorously evaluated through MATLAB/Simulink 2024 A simulations across multiple wind speed scenarios. Our comparative analysis demonstrates the superior performance of the proposed methods in optimizing power extraction under diverse conditions, contributing to the advancement of MPPT techniques for offshore wind energy systems. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

19 pages, 717 KiB  
Article
Advancing Nuclear Energy Governance Through Strategic Pathways for Q-NPT Adoption
by Hassan Qudrat-Ullah
Energies 2025, 18(15), 4040; https://doi.org/10.3390/en18154040 - 29 Jul 2025
Abstract
This paper proposes a strategic framework to enhance nuclear energy governance by advancing the Qudrat-Ullah Nuclear Peace and Trust (Q-NPT) framework. Designed to complement existing treaties such as the Nuclear Non-Proliferation Treaty (NPT) and International Atomic Energy Agency (IAEA) safeguards, Q-NPT integrates principles [...] Read more.
This paper proposes a strategic framework to enhance nuclear energy governance by advancing the Qudrat-Ullah Nuclear Peace and Trust (Q-NPT) framework. Designed to complement existing treaties such as the Nuclear Non-Proliferation Treaty (NPT) and International Atomic Energy Agency (IAEA) safeguards, Q-NPT integrates principles of equity, transparency, and trust to address persistent governance challenges. The framework emphasizes sustainable nuclear technology access, multilateral cooperation, and integration with global energy transition goals. Through an analysis of institutional, economic, technological, and geopolitical barriers, the study outlines actionable pathways for adoption, including legal harmonization, differentiated financial instruments, and deployment of advanced verification technologies such as blockchain, artificial intelligence (AI), and remote monitoring. A phased implementation timeline is presented, enabling adaptive learning and stakeholder engagement over short-, medium-, and long-term horizons. Regional case studies, including Serbia and Latin America, demonstrate the framework’s applicability in diverse contexts. By linking nuclear policy to broader climate, energy equity, and global security objectives, Q-NPT offers an operational and inclusive roadmap for future-ready governance. This approach contributes to the literature on energy systems transformation by situating nuclear governance within a sustainability-oriented, trust-centered paradigm. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

27 pages, 405 KiB  
Article
Comparative Analysis of Centralized and Distributed Multi-UAV Task Allocation Algorithms: A Unified Evaluation Framework
by Yunze Song, Zhexuan Ma, Nuo Chen, Shenghao Zhou and Sutthiphong Srigrarom
Drones 2025, 9(8), 530; https://doi.org/10.3390/drones9080530 - 28 Jul 2025
Viewed by 144
Abstract
Unmanned aerial vehicles (UAVs), commonly known as drones, offer unprecedented flexibility for complex missions such as area surveillance, search and rescue, and cooperative inspection. This paper presents a unified evaluation framework for the comparison of centralized and distributed task allocation algorithms specifically tailored [...] Read more.
Unmanned aerial vehicles (UAVs), commonly known as drones, offer unprecedented flexibility for complex missions such as area surveillance, search and rescue, and cooperative inspection. This paper presents a unified evaluation framework for the comparison of centralized and distributed task allocation algorithms specifically tailored to multi-UAV operations. We first contextualize the classical assignment problem (AP) under UAV mission constraints, including the flight time, propulsion energy capacity, and communication range, and evaluate optimal one-to-one solvers including the Hungarian algorithm, the Bertsekas ϵ-auction algorithm, and a minimum cost maximum flow formulation. To reflect the dynamic, uncertain environments that UAV fleets encounter, we extend our analysis to distributed multi-UAV task allocation (MUTA) methods. In particular, we examine the consensus-based bundle algorithm (CBBA) and a distributed auction 2-opt refinement strategy, both of which iteratively negotiate task bundles across UAVs to accommodate real-time task arrivals and intermittent connectivity. Finally, we outline how reinforcement learning (RL) can be incorporated to learn adaptive policies that balance energy efficiency and mission success under varying wind conditions and obstacle fields. Through simulations incorporating UAV-specific cost models and communication topologies, we assess each algorithm’s mission completion time, total energy expenditure, communication overhead, and resilience to UAV failures. Our results highlight the trade-off between strict optimality, which is suitable for small fleets in static scenarios, and scalable, robust coordination, necessary for large, dynamic multi-UAV deployments. Full article
Show Figures

Figure 1

24 pages, 6890 KiB  
Article
Multi-Level Transcriptomic and Physiological Responses of Aconitum kusnezoffii to Different Light Intensities Reveal a Moderate-Light Adaptation Strategy
by Kefan Cao, Yingtong Mu and Xiaoming Zhang
Genes 2025, 16(8), 898; https://doi.org/10.3390/genes16080898 - 28 Jul 2025
Viewed by 159
Abstract
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive [...] Read more.
Objectives: Light intensity is a critical environmental factor regulating plant growth, development, and stress adaptation. However, the physiological and molecular mechanisms underlying light responses in Aconitum kusnezoffii, a valuable alpine medicinal plant, remain poorly understood. This study aimed to elucidate the adaptive strategies of A. kusnezoffii under different light intensities through integrated physiological and transcriptomic analyses. Methods: Two-year-old A. kusnezoffii plants were exposed to three controlled light regimes (790, 620, and 450 lx). Leaf anatomical traits were assessed via histological sectioning and microscopic imaging. Antioxidant enzyme activities (CAT, POD, and SOD), membrane lipid peroxidation (MDA content), osmoregulatory substances, and carbon metabolites were quantified using standard biochemical assays. Transcriptomic profiling was conducted using Illumina RNA-seq, with differentially expressed genes (DEGs) identified through DESeq2 and functionally annotated via GO and KEGG enrichment analyses. Results: Moderate light (620 lx) promoted optimal leaf structure by enhancing palisade tissue development and epidermal thickening, while reducing membrane lipid peroxidation. Antioxidant defense capacity was elevated through higher CAT, POD, and SOD activities, alongside increased accumulation of soluble proteins, sugars, and starch. Transcriptomic analysis revealed DEGs enriched in photosynthesis, monoterpenoid biosynthesis, hormone signaling, and glutathione metabolism pathways. Key positive regulators (PHY and HY5) were upregulated, whereas negative regulators (COP1 and PIFs) were suppressed, collectively facilitating chloroplast development and photomorphogenesis. Trend analysis indicated a “down–up” gene expression pattern, with early suppression of stress-responsive genes followed by activation of photosynthetic and metabolic processes. Conclusions: A. kusnezoffii employs a coordinated, multi-level adaptation strategy under moderate light (620 lx), integrating leaf structural optimization, enhanced antioxidant defense, and dynamic transcriptomic reprogramming to maintain energy balance, redox homeostasis, and photomorphogenic flexibility. These findings provide a theoretical foundation for optimizing artificial cultivation and light management of alpine medicinal plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

25 pages, 2281 KiB  
Article
Life Cycle Cost Modeling and Multi-Dimensional Decision-Making of Multi-Energy Storage System in Different Source-Grid-Load Scenarios
by Huijuan Huo, Peidong Li, Cheng Xin, Yudong Wang, Yuan Zhou, Weiwei Li, Yanchao Lu, Tianqiong Chen and Jiangjiang Wang
Processes 2025, 13(8), 2400; https://doi.org/10.3390/pr13082400 - 28 Jul 2025
Viewed by 150
Abstract
The large-scale integration of volatile and intermittent renewables necessitates greater flexibility in the power system. Improving this flexibility is key to achieving a high proportion of renewable energy consumption. In this context, the scientific selection of energy storage technology is of great significance [...] Read more.
The large-scale integration of volatile and intermittent renewables necessitates greater flexibility in the power system. Improving this flexibility is key to achieving a high proportion of renewable energy consumption. In this context, the scientific selection of energy storage technology is of great significance for the construction of new power systems. From the perspective of life cycle cost analysis, this paper conducts an economic evaluation of four mainstream energy storage technologies: lithium iron phosphate battery, pumped storage, compressed air energy storage, and hydrogen energy storage, and quantifies and compares the life cycle cost of multiple energy storage technologies. On this basis, a three-dimensional multi-energy storage comprehensive evaluation indicator system covering economy, technology, and environment is constructed. The improved grade one method and entropy weight method are used to determine the comprehensive performance, and the fuzzy comprehensive evaluation method is used to carry out multi-attribute decision-making on the multi-energy storage technology in the source, network, and load scenarios. The results show that pumped storage and compressed air energy storage have significant economic advantages in long-term and large-scale application scenarios. With its fast response ability and excellent economic and technical characteristics, the lithium iron phosphate battery has the smallest score change rate (15.2%) in various scenarios, showing high adaptability. However, hydrogen energy storage technology still lacks economic and technological maturity, and breakthrough progress is still needed for its wide application in various application scenarios in the future. Full article
Show Figures

Figure 1

Back to TopTop