Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = acylated anthocyanins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1332 KiB  
Article
Optimization of Anthocyanin Extraction from Purple Sweet Potato Peel (Ipomea batata) Using Sonotrode Ultrasound-Assisted Extraction
by Raquel Lucas-González, Mirian Pateiro, Rubén Domínguez-Valencia, Celia Carrillo and José M. Lorenzo
Foods 2025, 14(15), 2686; https://doi.org/10.3390/foods14152686 - 30 Jul 2025
Viewed by 235
Abstract
Sweet potato is a valuable root due to its nutritional benefits, health-promoting properties, and technological applications. The peel, often discarded during food processing, can be employed in the food industry, supporting a circular economy. Purple sweet potato peel (PSPP) is rich in anthocyanins, [...] Read more.
Sweet potato is a valuable root due to its nutritional benefits, health-promoting properties, and technological applications. The peel, often discarded during food processing, can be employed in the food industry, supporting a circular economy. Purple sweet potato peel (PSPP) is rich in anthocyanins, which can be used as natural colourants and antioxidants. Optimising their extraction can enhance yield and reduce costs. The current work aimed to optimize anthocyanin and antioxidant recovery from PSPP using a Box-Behnken design and sonotrode ultrasound-assisted extraction (sonotrode-UAE). Three independent variables were analysed: extraction time (2–6 min), ethanol concentration (35–85%), and liquid-to-solid ratio (10–30 mL/g). The dependent variables included total monomeric anthocyanin content (TMAC), individual anthocyanins, and antioxidant activity. TMAC in 15 extracts ranged from 0.16 to 2.66 mg/g PSPP. Peonidin-3-caffeoyl-p-hydroxybenzoyl sophoroside-5-glucoside was the predominant anthocyanin. Among four antioxidant assays, Ferric-reducing antioxidant power (FRAP) showed the highest value. Ethanol concentration significantly influenced anthocyanin and antioxidant recovery (p < 0.05). The model demonstrated adequacy based on the coefficient of determination and variation. Optimal extraction conditions were 6 min with 60% ethanol at a 30 mL/g ratio. Predicted values were validated experimentally (coefficient of variation <10%). In conclusion, PSPP is a promising matrix for obtaining anthocyanin-rich extracts with antioxidant activity, offering potential applications in the food industry. Full article
Show Figures

Figure 1

19 pages, 10222 KiB  
Article
Molecular Hydrogen Improves Blueberry Main Fruit Traits via Metabolic Reprogramming
by Longna Li, Jiaxin Gong, Ke Jiang, Liqin Huang, Lijun Gan, Yan Zeng, Xu Cheng, Didier Pathier and Wenbiao Shen
Plants 2025, 14(14), 2137; https://doi.org/10.3390/plants14142137 - 10 Jul 2025
Viewed by 351
Abstract
Fruit yield and quality improvement are challenges for researchers and farmers. This study reveals that the main fruit traits of blueberry (Vaccinium ashei ‘Bluegem’) were significantly improved after hydrogen (H2)-based irrigation, assessed by the increased single fruit weight (14.59 ± [...] Read more.
Fruit yield and quality improvement are challenges for researchers and farmers. This study reveals that the main fruit traits of blueberry (Vaccinium ashei ‘Bluegem’) were significantly improved after hydrogen (H2)-based irrigation, assessed by the increased single fruit weight (14.59 ± 6.66%) and fruit equatorial diameter (4.19 ± 2.39%), decreased titratable acidity, increased solid–acid and sugar–acid ratios. The enhancement of fruit quality was confirmed by the increased total volatiles, vitamin C contents, and antioxidant capacity. Using weighted protein co-expression network analysis (WPCNA), proteomic interrogation revealed that serine carboxypeptidase-like proteins I/II (SCPLI/II), ADP ribosylation factor 1/2 (ARF1/2), and UDP-glucosyltransferase 85A (UGT85A) might be functionally associated with the increased fruit weight and size driven by H2. Reduced organic acid accumulation was caused by the regulation of the specific enzymes involved in sucrose metabolism (e.g., α-amylase, endoglucanase, β-glucosidase, etc.). H2 regulation of fatty acid degradation (e.g., acyl CoA oxidase 1 (ACX1), acetyl CoA acyltransferase 1 (ACAA1), etc.) and phenylpropanoid metabolism were used to explain the improved fruit aroma and anthocyanin accumulation. Meanwhile, the upregulated heat shock protein 20/70 matched with the enhanced antioxidant activity. Together, this study provides a novel approach for yield and quality improvement in horticultural crops. Full article
Show Figures

Figure 1

30 pages, 925 KiB  
Review
Review: Enhancing the Bioavailability and Stability of Anthocyanins for the Prevention and Treatment of Central Nervous System-Related Diseases
by Lan Zhang, Yan Wang, Yalong Cao, Fangxu Wang and Fang Li
Foods 2025, 14(14), 2420; https://doi.org/10.3390/foods14142420 - 9 Jul 2025
Viewed by 691
Abstract
Central nervous system diseases are highly complex in terms of etiology and pathogenesis, making their treatment and interventions for them a major focus and challenge in neuroscience research. Anthocyanins, natural water-soluble pigments widely present in plants, belong to the class of flavonoid compounds. [...] Read more.
Central nervous system diseases are highly complex in terms of etiology and pathogenesis, making their treatment and interventions for them a major focus and challenge in neuroscience research. Anthocyanins, natural water-soluble pigments widely present in plants, belong to the class of flavonoid compounds. As natural antioxidants, anthocyanins have attracted extensive attention due to their significant functions in scavenging free radicals, antioxidation, anti-inflammation, and anti-apoptosis. The application of anthocyanins in the field of central nervous system injury, particularly in neurodegenerative diseases, neurotoxicity induced by chemical drugs, stress-related nerve damage, and cerebrovascular diseases, has achieved remarkable research outcomes. However, anthocyanins often exhibit low chemical stability, a short half-life, and relatively low bioavailability, which limit their clinical application. Recent studies have found that the stability and bioavailability of anthocyanins can be significantly improved through nanoencapsulation, acylation, and copigmentation, as well as the preparation of nanogels, nanoemulsions, and liposomes. These advancements offer the potential for the development of anthocyanins as a new type of neuroprotective agent. Future research will focus on the innovative design of nano-delivery systems and structural modification based on artificial intelligence. Such research is expected to break through the bottleneck of anthocyanin application and enable it to become a core component of next-generation intelligent neuroprotective agents. Full article
Show Figures

Figure 1

17 pages, 3416 KiB  
Article
Influence of Enzymatic Acylation on the Stability and Antioxidant Properties of Cyanidin-3-O-Glucoside in Both Aqueous and Lipid Systems
by Ziwei Ye, Mingyun Liu, Jingmei Lyu, Han Rong and Lujing Gan
Molecules 2025, 30(9), 2015; https://doi.org/10.3390/molecules30092015 - 30 Apr 2025
Viewed by 570
Abstract
Cyanidin-3-O-glucoside (C3G) was used as a substrate for enzymatic acylation, and different compounds (methyl n-octanoate and methyl salicylate) were selected as acyl donors. Structural analysis (UV–Vis, FTIR, and HPLC) revealed the successful integration of methyl ester compounds into the structural [...] Read more.
Cyanidin-3-O-glucoside (C3G) was used as a substrate for enzymatic acylation, and different compounds (methyl n-octanoate and methyl salicylate) were selected as acyl donors. Structural analysis (UV–Vis, FTIR, and HPLC) revealed the successful integration of methyl ester compounds into the structural units of C3G. The thermostability and photostability of acylated C3Gs, particularly those with methyl salicylate as the acyl donor, exhibited significant improvements. The molecular geometries of the different anthocyanins were optimized using computational chemistry, and energy level calculations were performed by using Density Functional Theory (DFT) to identify the antioxidant active site. Then, the antioxidant properties of C3G and acylated C3Gs (O-C3G and S-C3G) were studied in both aqueous and lipid systems. In aqueous systems, acylated C3Gs exhibited higher antioxidant properties than C3G in DPPH radical scavenging and hydroxyl radical scavenging assays, with cyanidin-3-O-glucoside salicyl acyl product (S-C3G) demonstrating the highest activity. However, the antioxidant properties varied in lipid systems. In lipid systems, acylated C3Gs displayed better antioxidant properties than C3G in POV and TBARS assays, with cyanidin-3-O-glucoside n-octanoate acid acyl product (O-C3G) showing better antioxidant properties compared to that in aqueous systems. Full article
Show Figures

Graphical abstract

11 pages, 565 KiB  
Article
The Preparation of Black Goji Berry Enzyme and Its Therapeutic Effect on Alcoholic Liver Injury in Mice
by Keshan Wang, Zhishan Zhang, Wenge Xu, Shuyuan Yang, Jing Zhao, Zeyu Wu and Wencheng Zhang
Foods 2025, 14(3), 523; https://doi.org/10.3390/foods14030523 - 6 Feb 2025
Viewed by 1383
Abstract
This study aimed to prepare a black goji berry enzyme (BGBE) using high acyl gellan gum as a substitute for aqueous slurry, followed by fermentation with Saccharomyces cerevisiae (SC) for 48 h, pasteurization, and subsequent fermentation with Lactobacillus plantarum (SC) for 48 h [...] Read more.
This study aimed to prepare a black goji berry enzyme (BGBE) using high acyl gellan gum as a substitute for aqueous slurry, followed by fermentation with Saccharomyces cerevisiae (SC) for 48 h, pasteurization, and subsequent fermentation with Lactobacillus plantarum (SC) for 48 h to obtain the optimal BGBE sample. The anthocyanin content and in vitro antioxidant activity were significantly enhanced. The primary objective of this study was to evaluate the potential therapeutic effect of BGBE on alcoholic liver injury (ALD) in mice. An animal model of alcoholic liver injury was established, and the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol (TC), malondialdehyde (MDA), superoxide dismutase (SOD), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH) in the serum and liver were analyzed. Furthermore, histopathological examination was performed using hematoxylin–eosin staining. The results indicated that BGBE significantly improved the liver histopathological condition in mice, markedly reducing the serum levels of ALT, AST, TG, TC, and the hepatic MDA levels (p < 0.05), while significantly increasing the levels of SOD, ADH, and ALDH (p < 0.05). The therapeutic effect of BGBE on alcoholic liver injury appears to be associated with its antioxidant properties. Full article
(This article belongs to the Special Issue Food Bioactive Compounds in Disease Prevention and Health Promotion)
Show Figures

Figure 1

20 pages, 3147 KiB  
Article
A Comparative Study of Physicochemical, Aroma, and Color Profiles Affecting the Sensory Properties of Grape Juice from Four Chinese Vitis vinifera × Vitis labrusca and Vitis vinifera Grapes
by Chen Yang, Xinyue Fan, Fei Lao, Jin Huang, M. Monica Giusti, Jihong Wu and Hongmei Lu
Foods 2024, 13(23), 3889; https://doi.org/10.3390/foods13233889 - 2 Dec 2024
Viewed by 1649
Abstract
In order to compare the grape juice sensory properties of four common seedless grape varieties (Kyoho, Summer Black, Moldovan, and Sweet Sapphire) in China, a thorough comparison of these grape varieties was conducted. Physicochemical indicators, aroma, and color characteristics were analyzed and compared [...] Read more.
In order to compare the grape juice sensory properties of four common seedless grape varieties (Kyoho, Summer Black, Moldovan, and Sweet Sapphire) in China, a thorough comparison of these grape varieties was conducted. Physicochemical indicators, aroma, and color characteristics were analyzed and compared to a commercially available not-from-concentrate Concord grape juice. The contents of fructose, glucose, and seven organic acids were evaluated. Kyoho and Sweet Sapphire possessed optimal Brix–acid ratio in the range around 35–40. In terms of aroma, 60 volatiles were identified by GC-MS, including 16 alcohols, 9 terpenes, 6 aldehydes, and 4 ketones. Kyoho demonstrated the highest aroma intensity with superior floral and fruity notes, while Sweet Sapphire showed the lowest aroma intensity with a grassy scent. Additionally, grape pigment profiles were investigated by HPLC-PDA-MS. Summer Black grapes featured a vibrant color, and 52.5% of their anthocyanins were acylated, which helps provide good stability in follow-up processing. Concord juice showed the best overall properties, with the most saturated color and delightful aroma. It was suggested that blending Summer Black with Kyoho could be a promising way to achieve balanced color, taste, and aroma of grape juice. This study provides a feasible and promising combination of Chinese local grapes for making all-round high-quality juice products. Full article
(This article belongs to the Special Issue Latest Research on Flavor Components and Sensory Properties of Food)
Show Figures

Figure 1

16 pages, 1791 KiB  
Article
Extraction of Bioactive Phenolics from Various Anthocyanin-Rich Plant Materials and Comparison of Their Heat Stability
by Yanli Yu, Syyu Shiau, Weichen Pan and Yvette Yang
Molecules 2024, 29(22), 5256; https://doi.org/10.3390/molecules29225256 - 6 Nov 2024
Cited by 2 | Viewed by 2074
Abstract
Butterfly pea flower (BPF), roselle calyx (RC), and grape skin (GS) are rich in bioactive phenolics with health benefits. Due to its simplicity, safety, and environmental friendliness, this study used water as a solvent to explore different extraction conditions in these plant materials [...] Read more.
Butterfly pea flower (BPF), roselle calyx (RC), and grape skin (GS) are rich in bioactive phenolics with health benefits. Due to its simplicity, safety, and environmental friendliness, this study used water as a solvent to explore different extraction conditions in these plant materials and compared the heat stability of anthocyanins in the aqueous extracts. To maximize the total anthocyanins and polyphenols in the aqueous extracts, the powders of BPF, GS, and RC should be extracted for 30 min at 90 °C; 30 min and 120 min at 90 °C; and 30 min and 60 min at 60 °C, respectively. Among the tested plant materials, the content of total anthocyanins was RC > GS > BPF, while the total phenolic content was GS > BPF > RC. Anthocyanins of the aqueous extracts underwent rapid thermal degradation at high temperatures and high pH values. The thermal stability of anthocyanins in the materials was in the order: BPF > GS > RC. This is likely related to the types and structures of the anthocyanins such as the degree of acylation and glycosylation. The study demonstrates that hot water extraction is efficient and practical for these materials, yielding extracts suitable for food and nutraceutical applications. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds, 3rd Edition)
Show Figures

Figure 1

20 pages, 1322 KiB  
Article
Chemical Profiling of Polar Lipids and the Polyphenolic Fraction of Commercial Italian Phaseolus Seeds by UHPLC-HRMS and Biological Evaluation
by Vadym Samukha, Francesca Fantasma, Gilda D’Urso, Ester Colarusso, Anna Schettino, Noemi Marigliano, Maria Giovanna Chini, Gabriella Saviano, Vincenzo De Felice, Gianluigi Lauro, Francesco Maione, Giuseppe Bifulco, Agostino Casapullo and Maria Iorizzi
Biomolecules 2024, 14(10), 1336; https://doi.org/10.3390/biom14101336 - 20 Oct 2024
Cited by 1 | Viewed by 1731
Abstract
The common bean (Phaseolus vulgaris L.) is one of the oldest food crops in the world. In this study, the ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-MS/MS) technique was used to characterize the polar lipid composition and polyphenolic fraction of five bean [...] Read more.
The common bean (Phaseolus vulgaris L.) is one of the oldest food crops in the world. In this study, the ultra-high-performance liquid chromatography high-resolution mass spectrometry (UHPLC-MS/MS) technique was used to characterize the polar lipid composition and polyphenolic fraction of five bean varieties commonly consumed in Italy: Cannellino (PVCA), Controne (PVCO), Borlotti (PVBO), Stregoni (PVST), and Vellutina (PVVE). Lipid content represents a minor fraction of the whole metabolome in dry beans, and little is known about their polar lipids, which could be potentially bioactive components. Thirty-three compounds were detected through UHPLC-MS/MS, including oxylipins, phospholipids, N-acyl glycerolipids, and several fatty acids. The dichloromethane extracts were subjected to principal component analysis (PCA), with the results showing greater differentiation for the Borlotti variety. Moreover, 27 components belonging to different polyphenol classes, such as phenolic acids, flavonoids, catechins, anthocyanins and their glycosides, and some saponins, were identified in the hydroalcoholic seed extracts. In addition, the mineral content of the beans was determined. Considering the high number of compounds in the five apolar seed extracts, all samples were examined to determine their in vitro inhibitory activity against the enzyme cyclooxygenase-2 (COX-2), which is inducible in inflammatory cells and mediates inflammatory responses. Only PVCO showed the best inhibition of the COX-2 enzyme with an IC50 = 31.15 ± 2.16 µg/mL. In light of these results, the potential anti-inflammatory properties of PVCO were evaluated in the LPS-stimulated murine macrophage cell line J774A.1. Herein, we demonstrate, for the first time, that PVCO at 30 µg/mL can significantly reduce the release of TNF-α, with a less significant anti-inflammatory effect being observed in terms of IL-6 release. Full article
Show Figures

Graphical abstract

24 pages, 7360 KiB  
Article
Phytochemical Analysis, Biological Activities, and Docking of Phenolics from Shoot Cultures of Hypericum perforatum L. Transformed by Agrobacterium rhizogenes
by Oliver Tusevski, Marija Todorovska, Jasmina Petreska Stanoeva and Sonja Gadzovska Simic
Molecules 2024, 29(16), 3893; https://doi.org/10.3390/molecules29163893 - 17 Aug 2024
Cited by 2 | Viewed by 1785
Abstract
Hypericum perforatum transformed shoot lines (TSL) regenerated from corresponding hairy roots and non-transformed shoots (NTS) were comparatively evaluated for their phenolic compound contents and in vitro inhibitory capacity against target enzymes (monoamine oxidase-A, cholinesterases, tyrosinase, α-amylase, α-glucosidase, lipase, and cholesterol esterase). Molecular docking [...] Read more.
Hypericum perforatum transformed shoot lines (TSL) regenerated from corresponding hairy roots and non-transformed shoots (NTS) were comparatively evaluated for their phenolic compound contents and in vitro inhibitory capacity against target enzymes (monoamine oxidase-A, cholinesterases, tyrosinase, α-amylase, α-glucosidase, lipase, and cholesterol esterase). Molecular docking was conducted to assess the contribution of dominant phenolic compounds to the enzyme-inhibitory properties of TSL samples. The TSL extracts represent a rich source of chlorogenic acid, epicatechin and procyanidins, quercetin aglycone and glycosides, anthocyanins, naphthodianthrones, acyl-phloroglucinols, and xanthones. Concerning in vitro bioactivity assays, TSL displayed significantly higher acetylcholinesterase, tyrosinase, α-amylase, pancreatic lipase, and cholesterol esterase inhibitory properties compared to NTS, implying their neuroprotective, antidiabetic, and antiobesity potential. The docking data revealed that pseudohypericin, hyperforin, cadensin G, epicatechin, and chlorogenic acid are superior inhibitors of selected enzymes, exhibiting the lowest binding energy of ligand–receptor complexes. Present data indicate that H. perforatum transformed shoots might be recognized as an excellent biotechnological system for producing phenolic compounds with multiple health benefits. Full article
Show Figures

Graphical abstract

13 pages, 1700 KiB  
Article
Authenticity Markers of Aged Red Wines from Aglianico, Uva di Troia, Negroamaro and Primitivo Grapes
by Ilaria Benucci, Claudio Lombardelli, Pasquale Tamborra, Massimo Muganu and Marco Esti
Foods 2024, 13(12), 1866; https://doi.org/10.3390/foods13121866 - 14 Jun 2024
Viewed by 959
Abstract
The wide ampelographic treasure of Italian wine grape varieties is driving research towards suitable approaches for the varietal authenticity control of wine. In this paper, Aglianico, Negroamaro, Primitivo and Uva di Troia red wines, which were produced experimentally by single-grape winemaking from non-aromatic [...] Read more.
The wide ampelographic treasure of Italian wine grape varieties is driving research towards suitable approaches for the varietal authenticity control of wine. In this paper, Aglianico, Negroamaro, Primitivo and Uva di Troia red wines, which were produced experimentally by single-grape winemaking from non-aromatic grapes native to southern Italy, were analyzed with respect to berry markers, namely anthocyanins, hydroxycinnamic acids (HPLC-DAD), shikimic acid (HPLC-UV) and glycosidic aroma precursors (GC-MS). The study confirms that, just as for the berries, useful varietal authenticity markers for red wine, even after aging, turn out to be hydroxycinnamic acids, relative amounts of acylated forms of anthocyanins, and shikimic acid, together with some grape glycosidic precursors from terpenes and C13− norisoprenoids. Principal Component Analysis was used as a valuable tool to highlight the results. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

20 pages, 6547 KiB  
Article
Petanin Potentiated JNK Phosphorylation to Negatively Regulate the ERK/CREB/MITF Signaling Pathway for Anti-Melanogenesis in Zebrafish
by Jian Ouyang, Na Hu and Honglun Wang
Int. J. Mol. Sci. 2024, 25(11), 5939; https://doi.org/10.3390/ijms25115939 - 29 May 2024
Cited by 7 | Viewed by 4589
Abstract
Petanin, an acylated anthocyanin from the Solanaceae family, shows potential in tyrosinase inhibitory activity and anti-melanogenic effects; however, its mechanism remains unclear. Therefore, to investigate the underlying mechanism of petanin’s anti-melanogenic effects, the enzyme activity, protein expression and mRNA transcription of melanogenic and [...] Read more.
Petanin, an acylated anthocyanin from the Solanaceae family, shows potential in tyrosinase inhibitory activity and anti-melanogenic effects; however, its mechanism remains unclear. Therefore, to investigate the underlying mechanism of petanin’s anti-melanogenic effects, the enzyme activity, protein expression and mRNA transcription of melanogenic and related signaling pathways in zebrafish using network pharmacology, molecular docking and molecular dynamics simulation were combined for analysis. The results showed that petanin could inhibit tyrosinase activity and melanogenesis, change the distribution and arrangement of melanocytes and the structure of melanosomes, reduce the activities of catalase (CAT) and peroxidase (POD) and enhance the activity of glutathione reductase (GR). It also up-regulated JNK phosphorylation, inhibited ERK/RSK phosphorylation and down-regulated CREB/MITF-related protein expression and mRNA transcription. These results were consistent with the predictions provided through network pharmacology and molecular docking. Thus, petanin could inhibit the activity of tyrosinase and the expression of tyrosinase by inhibiting and negatively regulating the tyrosinase-related signaling pathway ERK/CREB/MITF through p-JNK. In conclusion, petanin is a good tyrosinase inhibitor and anti-melanin natural compound with significant market prospects in melanogenesis-related diseases and skin whitening cosmetics. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

19 pages, 5908 KiB  
Article
Effect of Cap Management Frequency on the Phenolic, Chromatic, and Sensory Composition of Cabernet Sauvignon Wines from the Central Coast of California over Two Vintages
by L. Federico Casassa, Isabelle LoMonaco, Marcel Velasco and Dimos D. Papageorgas
Molecules 2024, 29(11), 2509; https://doi.org/10.3390/molecules29112509 - 26 May 2024
Cited by 3 | Viewed by 1672
Abstract
Cabernet Sauvignon from the California Paso Robles AVA was processed with a contrasting array of cap management frequencies, consisting of punch-down (PD) frequencies (0, 1, 2, and 3 PD/day) over two vintages, one of which the fruit was harvested at two contrasting maturity [...] Read more.
Cabernet Sauvignon from the California Paso Robles AVA was processed with a contrasting array of cap management frequencies, consisting of punch-down (PD) frequencies (0, 1, 2, and 3 PD/day) over two vintages, one of which the fruit was harvested at two contrasting maturity levels. Wines followed with up to 3 years of bottle aging for basic and phenolic chemistry, and the wines of the second harvest of 2020 were submitted to sensory analysis. There were almost non-existent effects due to the frequency of punch downs on parameters such as ethanol, pH, titratable acidity, lactic acid, and glucose + fructose. In 2019, the chromatic differences between different PD regimes were subtle, and minor effects of the punch-down frequency were observed for tannins and total phenolics. During the early stages of alcoholic fermentation, higher levels of all anthocyanin classes were observed in 1 PD wines and the lowest levels in 0 PD wines. The anthocyanin content of the wines of the first harvest (unripe) was 27% higher than that of the wines of the second harvest (ripe), but these differences disappeared after 3 years of bottle aging irrespective of the vintage and harvest date. Acylated anthocyanins were preferentially lost during aging, especially in 2019 wines and, to a lesser extent, in 2020 wines. In 2020, the polymeric pigment content of the wines of the second harvest was higher than in the wines of the first harvest, with 3 PD wines showing higher polymeric pigments and yellow hues than 0 and 2 PD wines after 3 years of bottle aging. Sensory analysis of the second harvest of the 2020 wines showed that the wines of all four PD regimes were perceived as drying, signifying they were perceived as equally astringent, which is consistent with comparable tannin levels on said wines. The perception of bitterness increased with the frequency of punch downs; thus, 3 PD wines showed the highest bitterness perception. It was concluded that in sufficiently warm fermentations and small volumes, phenolic extraction occurs regardless of fruit maturity and under conditions of minimum mixing. Full article
Show Figures

Figure 1

19 pages, 11587 KiB  
Article
Characterization of Polyphenol Composition and Starch and Protein Structure in Brown Rice Flour, Black Rice Flour and Their Mixtures
by Alexandra Uivarasan, Jasmina Lukinac, Marko Jukić, Gordana Šelo, Anca Peter, Camelia Nicula, Anca Mihaly Cozmuta and Leonard Mihaly Cozmuta
Foods 2024, 13(11), 1592; https://doi.org/10.3390/foods13111592 - 21 May 2024
Cited by 2 | Viewed by 2356
Abstract
The study investigates the structural and chemical properties of brown rice flour (WRF), black rice flour (BRF) and their mixtures in ratios of 25%, 50% and 75% to provide reference information for the gluten-free bakery industry. BRF contains higher concentrations of proteins, lipids, [...] Read more.
The study investigates the structural and chemical properties of brown rice flour (WRF), black rice flour (BRF) and their mixtures in ratios of 25%, 50% and 75% to provide reference information for the gluten-free bakery industry. BRF contains higher concentrations of proteins, lipids, total minerals, crude fiber, total polyphenols, proanthocyanidins and flavonoids than WRF. A higher amylose content in BRF than in WRF resulted in flour mixtures with slower starch digestion and a lower glycemic response depending on the BRF ratio added. Differences in the chemical composition of WRF and BRF led to improved composition of the flour mixtures depending on the BRF ratio. The presence of anthocyanidins and phenolic acids in higher concentrations in the BRF resulted in a red–blue color shift within the flour mixtures. The deconvoluted FTIR spectra showed a higher proportion of α-helixes in the amide I band of BRF proteins, indicating their tighter folding. An analysis of the FTIR spectra revealed a more compact starch structure in BRF than in WRF. By processing reflection spectra, nine optically active compound groups were distinguished in rice flour, the proportion in BRF being 83.02% higher than in WRF. Due to co-pigmentation, the bathochromic shift to higher wavelengths was expressed by the proanthocyanins and phenolic acids associated with the wavelengths 380 nm to 590 nm and at 695 nm. Anthocyanins, protein–tannin complexes, methylated anthocyanins and acylated anthocyanins, associated with wavelengths 619, 644 and 668 nm, exhibited a hypsochromic effect by shifting the wavelengths to lower values. This research represents a first step in the development of rice-based products with increased nutritional value and a lower glycemic index. Full article
Show Figures

Figure 1

17 pages, 6091 KiB  
Article
Isolation, Purification and Tyrosinase Inhibitory Activity of Anthocyanins and Their Novel Degradation Compounds from Solanum tuberosum L.
by Jian Ouyang, Na Hu and Honglun Wang
Molecules 2024, 29(7), 1492; https://doi.org/10.3390/molecules29071492 - 27 Mar 2024
Cited by 4 | Viewed by 1939
Abstract
To explore the composition of anthocyanins and expand their biological activities, anthocyanins were systematically isolated and purified from tubers of Solanum tuberosum L., and their tyrosinase inhibitory activity was investigated. In this study, two new anthocyanin degradation compounds, norpetanin (9) and [...] Read more.
To explore the composition of anthocyanins and expand their biological activities, anthocyanins were systematically isolated and purified from tubers of Solanum tuberosum L., and their tyrosinase inhibitory activity was investigated. In this study, two new anthocyanin degradation compounds, norpetanin (9) and 4-O-(p-coumaryl) rhamnose (10), along with 17 known anthocyanins and their derivatives, were isolated and purified from an acid-ethanolic extract of fresh purple potato tubers. Their structures were elucidated via 1D and 2D NMR and HR-ESI-MS and compared with those reported in the literature. The extracts were evaluated for anthocyanins and their derivatives using a tyrosinase inhibitor screening kit and molecular docking technology, and the results showed that petanin, norpetanin, 4-O-(p-coumaryl) rhamnose, and lyciruthephenylpropanoid D/E possessed tyrosinase inhibitory activity, with 50% inhibiting concentration (IC50) values of 122.37 ± 8.03, 115.53 ± 7.51, 335.03 ± 12.99, and 156.27 ± 11.22 μM (Mean ± SEM, n = 3), respectively. Furthermore, petanin was validated against melanogenesis in zebrafish; it was found that it could significantly inhibit melanin pigmentation (p < 0.001), and the inhibition rate of melanin was 17% compared with the normal group. This finding may provide potential treatments for diseases with abnormal melanin production, and high-quality raw materials for whitening cosmetics. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

15 pages, 1333 KiB  
Article
Phenolic, Nutritional and Sensory Characteristics of Bakery Foods Formulated with Grape Pomace
by Andrea Antoniolli, Lucía Becerra, Patricia Piccoli and Ariel Fontana
Plants 2024, 13(5), 590; https://doi.org/10.3390/plants13050590 - 22 Feb 2024
Cited by 7 | Viewed by 1988
Abstract
The potentiality of cv. Malbec grape pomace (GP) as a functional ingredient in the formulation of bakery foods (muffins, biscuits and cereal bars) was studied. The effect of GP addition on the phenolic compounds (PCs) composition, nutritional and sensory properties were evaluated. The [...] Read more.
The potentiality of cv. Malbec grape pomace (GP) as a functional ingredient in the formulation of bakery foods (muffins, biscuits and cereal bars) was studied. The effect of GP addition on the phenolic compounds (PCs) composition, nutritional and sensory properties were evaluated. The addition of GP increased the content of dietary fiber, proteins, ash, total phenolic content (TPC), antiradical capacity (AC), anthocyanins and non-anthocyanin PCs while decreasing the carbohydrates content. The main PCs given by the GP to supplemented foods were quercetin-3-O-glucoside, rutin, caffeic acid, syringic acid and (+)-catechin. For anthocyanins, the acylated derivatives were more stable to heat treatment (baking) in food processing which was evidenced by a higher proportion of these PCs compounds when compared to the same derivatives quantified in GP. In general, when the TPC or individual concentrations of PCs were analyzed in a nutritional or functional context, one portion of the supplemented foods showed levels high enough to satisfy the recommended dose per day of these bioactive compounds. Additionally, the foods were well received by consumers during the sensory evaluation and supplemented biscuits received the highest acceptability. This study demonstrated that GP could be a viable functional ingredient in bakery foods to incorporate components like PCs and dietary fiber into traditional consumers’ diets. Full article
Show Figures

Figure 1

Back to TopTop