Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = acyl hydrazone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3204 KiB  
Article
Design, Synthesis, and Evaluation of Antinociceptive Properties of Novel CBD-Based Terpene-Cinnamoyl-Acyl-Hydrazone Analogues
by Mikaela Lucinda de Souza, João Pedro Barros de Paiva, Graziella dos Reis Rosa Franco, Vanessa Silva Gontijo, Marina Amaral Alves, Hygor Marcos Ribeiro de Souza, Anna Carolina Pereira Lontra, Eduardo Araújo de Oliveira, Thaís Biondino Sardella Giorno, Isabella Alvim Guedes, Laurent Emmanuel Dardenne, Patrícia Dias Fernandes and Claudio Viegas Jr.
Pharmaceuticals 2025, 18(5), 755; https://doi.org/10.3390/ph18050755 - 20 May 2025
Viewed by 1035
Abstract
Background/Objectives: Cannabidiol (CBD) has been reported for its antinociceptive, anti-inflammatory, and neuroprotective activities. However, several legal restrictions on its medicinal uses and even research have contributed to the development of synthetic analogues. Therefore, the aim of this study was the design and [...] Read more.
Background/Objectives: Cannabidiol (CBD) has been reported for its antinociceptive, anti-inflammatory, and neuroprotective activities. However, several legal restrictions on its medicinal uses and even research have contributed to the development of synthetic analogues. Therefore, the aim of this study was the design and synthesis of a novel series of CBD-based structural analogues, and the in vivo evaluation of their potential antinociceptive activity. Methods: Using a two-step synthetic route, 26 new terpene-cinnamoyl acyl-hydrazone analogues were obtained and were submitted to in vivo screening in the classical formalin-induced paw edema and hot plate assays. Results: The compounds PQM-292, PQM-293, PQM-295, PQM-307, PQM-308, and PQM-309 exhibited the best results in the neurogenic phase (first phase) of the formalin-induced licking response, showing comparable results to morphine. Notably, in the inflammatory phase (second phase), compound PQM-292 exhibited the best anti-inflammatory activity. Interestingly, in the hot plate model, six other compounds (PQM-274, PQM-291, PQM-294, PQM-304, PQM-305, and PQM-378) showed the best antinociceptive activity in comparison to morphine, especially PQM-274, which exhibited an antinociceptive effect almost equivalent to the reference drug. Interestingly, these findings suggested that these bioactive compounds, despite their structural similarity, act through different mechanisms, which were investigated by molecular docking with CB1, CB2, and TRPV1 receptors. In silico results indicated that the most active compounds should act through different mechanisms, probably involving interactions with TRPA1. Conclusions: Therefore, due to the promising antinociceptive activity observed for these highlighted compounds, particularly for PQM-292 and PQM-274, without apparent toxicity and psychoactive effects, and the possible involvement of diverse mechanisms of action, these compounds could be considered as promising starting points to the development of new drug candidate prototypes of clinical interest. Full article
Show Figures

Graphical abstract

11 pages, 1602 KiB  
Article
Nematocidal Potential of Synthetic Phenyl Azide Derivatives Against False Root-Knot Nematode (Nacobbus aberrans) Under In Vitro Conditions
by Julio Cruz-Arévalo, Alonzo González-González, Eyra Ortiz-Pérez, Lenci K. Vázquez-Jiménez, Timoteo Delgado-Maldonado, Alma D. Paz-González, Jesús Antonio Pineda-Alegría, Gildardo Rivera and Liliana Aguilar-Marcelino
Agriculture 2025, 15(7), 688; https://doi.org/10.3390/agriculture15070688 - 25 Mar 2025
Viewed by 505
Abstract
The primary strategy for managing Nacobbus aberrans has traditionally relied on synthetic chemicals. However, increasing regulatory pressure on unsafe products has led to a growing research focus on nematicides. Despite this, chemical nematicides remain more effective than other control methods. Consequently, there is [...] Read more.
The primary strategy for managing Nacobbus aberrans has traditionally relied on synthetic chemicals. However, increasing regulatory pressure on unsafe products has led to a growing research focus on nematicides. Despite this, chemical nematicides remain more effective than other control methods. Consequently, there is a pressing need to develop novel nematicides that are both effective and environmentally safer. This study aimed to evaluate the nematocidal efficacy of various synthetic molecules against the second-stage juveniles of N. aberrans, the false root-knot nematode. A total of fifty-eight synthetic derivatives were obtained and tested in vitro at a concentration of 500 µg/mL. The results identified the AGAz family as the most promising, with AGAz-3 (LC50: 52.7 µg/mL) and AGAz-4 (LC50: 103.22 µg/mL) surpassing the efficacy of chitosan. Our findings emphasize the strong potential of AGAz-3 and AGAz-4 as nematocidal agents, particularly for in situ applications in agricultural settings. Additionally, AGAz-3 demonstrates potential not only as a nematocidal agent but also as an incentive for related research exploring its analogs as effective ovicidal compounds and investigating its efficacy against other phytonematodes. Furthermore, compounds from the N-Sulfonyl-hydrazone and N-acyl-hydrazone series showed efficacy (>50%), warranting additional experiments to assess their effectiveness across the most important pest phytonematodes. Full article
(This article belongs to the Special Issue Approaches for Plant-Parasitic Nematode Control)
Show Figures

Figure 1

16 pages, 2343 KiB  
Article
Antiparasitic Activities of Acyl Hydrazones from Cinnamaldehydes and Structurally Related Fragrances
by Ibrahim S. Al Nasr, Waleed S. Koko, Tariq A. Khan, Rainer Schobert and Bernhard Biersack
Antibiotics 2024, 13(12), 1114; https://doi.org/10.3390/antibiotics13121114 - 22 Nov 2024
Cited by 1 | Viewed by 1369
Abstract
Background: New drugs for the treatment of protozoal parasite infections such as toxoplasmosis and leishmaniasis are required. Cinnamaldehyde and its derivatives appear to be promising antiparasitic drug candidates. Methods: Acyl hydrazones of cinnamaldehyde, 4-dimethylaminocinnamaldehyde, and of the synthetic fragrances silvialTM and florhydral [...] Read more.
Background: New drugs for the treatment of protozoal parasite infections such as toxoplasmosis and leishmaniasis are required. Cinnamaldehyde and its derivatives appear to be promising antiparasitic drug candidates. Methods: Acyl hydrazones of cinnamaldehyde, 4-dimethylaminocinnamaldehyde, and of the synthetic fragrances silvialTM and florhydralTM were prepared and tested for activity against Toxoplasma gondii (T. gondii) and Leishmania major (L. major) parasites. Results: Three cinnamaldehyde acyl hydrazones (3-hydroxy-2-naphthoyl 2a and the salicyloyls 2c and 2d) showed good activity against T. gondii, and two compounds derived from cinnamaldehyde and florhydralTM (3-hydroxy-2-naphthoyls 2a and 4a) exhibited moderate activity against L. major promastigotes. Conclusions: In particular, the identified antitoxoplasmal activities are promising and might lead to the development of new potent and cost-effective drug candidates for the therapy of toxoplasmosis. Full article
Show Figures

Figure 1

16 pages, 6322 KiB  
Article
X-ray Single-Crystal Analysis, Pharmaco-Toxicological Profile and Enoyl-ACP Reductase-Inhibiting Activity of Leading Sulfonyl Hydrazone Derivatives
by Yoanna Teneva, Rumyana Simeonova, Orlin Besarboliev, Hristina Sbirkova-Dimitrova and Violina T. Angelova
Crystals 2024, 14(6), 560; https://doi.org/10.3390/cryst14060560 - 17 Jun 2024
Cited by 1 | Viewed by 1373
Abstract
Taking into consideration the growing resistance towards currently available antimycobacterials, there is still an unmet need for the development of new chemotherapeutic agents to combat the infectious agents. This study presents X-ray single-crystal analysis to verify the structure of leading sulfonyl hydrazone 3b [...] Read more.
Taking into consideration the growing resistance towards currently available antimycobacterials, there is still an unmet need for the development of new chemotherapeutic agents to combat the infectious agents. This study presents X-ray single-crystal analysis to verify the structure of leading sulfonyl hydrazone 3b, which has proven its potent antimycobacterial activity against Mycobacterium tuberculosis H37Rv with an MIC value of 0.0716 μM, respectively, low cytotoxicity, and very high selectivity indexes (SI = 2216), and which has been fully characterized by Nuclear Magnetic Resonance (NMR) and High-Resolution Mass Spectrometry (HRMS) methods. Furthermore, this study assessed the ex vivo antioxidant activity, acute and subacute toxicity, and in vitro inhibition capacity against enoyl-ACP reductase of hydrazones 3a and 3b, as 3a was identified as the second leading compound in our previous research. Compared to isoniazid, compounds 3a and 3b demonstrated lower acute toxicity for intraperitoneal administration, with LD50 values of 866 and 1224.7 mg/kg, respectively. Subacute toxicity tests, involving the repeated administration of a single dose of the test samples per day, revealed no significant deviations in hematological and biochemical parameters or pathomorphological tissues. The compounds exhibited potent antioxidant capabilities, reducing malondialdehyde (MDA) levels and increasing reduced glutathione (GSH). Enzyme inhibition assays of the sulfonyl hydrazones 3a and 3b with IC50 values of 18.2 µM and 10.7 µM, respectively, revealed that enoyl acyl carrier protein reductase (InhA) could be considered as their target enzyme to exhibit their antitubercular activities. In conclusion, the investigated sulfonyl hydrazones display promising drug-like properties and warrant further investigation. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

14 pages, 1260 KiB  
Article
Synthesis and Characterization of New N-acyl Hydrazone Derivatives of Carprofen as Potential Tuberculostatic Agents
by Ilinca Margareta Vlad, Diana Camelia Nuță, Miron Theodor Căproiu, Florea Dumitrașcu, Eleonóra Kapronczai, Georgiana Ramona Mük, Speranta Avram, Adelina Gabriela Niculescu, Irina Zarafu, Vanesa Alexandra Ciorobescu, Ana Maria Brezeanu and Carmen Limban
Antibiotics 2024, 13(3), 212; https://doi.org/10.3390/antibiotics13030212 - 23 Feb 2024
Cited by 9 | Viewed by 2825
Abstract
N-acyl hydrazone (NAH) is recognized as a promising framework in drug design due to its versatility, straightforward synthesis, and attractive range of biological activities, including antimicrobial, antitumoral, analgesic, and anti-inflammatory properties. In the global context of increasing resistance of pathogenic bacteria to antibiotics, [...] Read more.
N-acyl hydrazone (NAH) is recognized as a promising framework in drug design due to its versatility, straightforward synthesis, and attractive range of biological activities, including antimicrobial, antitumoral, analgesic, and anti-inflammatory properties. In the global context of increasing resistance of pathogenic bacteria to antibiotics, NAHs represent potential solutions for developing improved treatment alternatives. Therefore, this research introduces six novel derivatives of (EZ)-N’-benzylidene-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide, synthesized using a microwave-assisted method. In more detail, we joined two pharmacophore fragments in a single molecule, represented by an NSAID-type carprofen structure and a hydrazone-type structure, obtaining a new series of NSAID-N-acyl hydrazone derivatives that were further characterized spectrally using FT-IR, NMR, and HRMS investigations. Additionally, the substances were assessed for their tuberculostatic activity by examining their impact on four strains of M. tuberculosis, including two susceptible to rifampicin (RIF) and isoniazid (INH), one susceptible to RIF and resistant to INH, and one resistant to both RIF and INH. The results of our research highlight the potential of the prepared compounds in fighting against antibiotic-resistant M. tuberculosis strains. Full article
(This article belongs to the Section Novel Antimicrobial Agents)
Show Figures

Figure 1

18 pages, 4245 KiB  
Article
Synthesis and Primary Activity Assay of Novel Benitrobenrazide and Benserazide Derivatives
by Karolina Juszczak, Wojciech Szczepankiewicz and Krzysztof Walczak
Molecules 2024, 29(3), 629; https://doi.org/10.3390/molecules29030629 - 29 Jan 2024
Cited by 1 | Viewed by 2980
Abstract
Schiff bases attract research interest due to their applications in chemical synthesis and medicinal chemistry. In recent years, benitrobenrazide and benserazide containing imine moiety have been synthesized and characterized as promising inhibitors of hexokinase 2 (HK2), an enzyme overexpressed in most cancer cells. [...] Read more.
Schiff bases attract research interest due to their applications in chemical synthesis and medicinal chemistry. In recent years, benitrobenrazide and benserazide containing imine moiety have been synthesized and characterized as promising inhibitors of hexokinase 2 (HK2), an enzyme overexpressed in most cancer cells. Benserazide and benitrobenrazide possess a common structural fragment, a 2,3,4-trihydroxybenzaldehyde moiety connected through a hydrazone or hydrazine linker acylated on an N′ nitrogen atom by serine or a 4-nitrobenzoic acid fragment. To avoid the presence of a toxicophoric nitro group in the benitrobenrazide molecule, we introduced common pharmacophores such as 4-fluorophenyl or 4-aminophenyl substituents. Modification of benserazide requires the introduction of other endogenous amino acids instead of serine. Herein, we report the synthesis of benitrobenrazide and benserazide analogues and preliminary results of inhibitory activity against HK2 evoked by these structural changes. The derivatives contain a fluorine atom or amino group instead of a nitro group in BNB and exhibit the most potent inhibitory effects against HK2 at a concentration of 1 µM, with HK2 inhibition rates of 60% and 54%, respectively. Full article
Show Figures

Graphical abstract

14 pages, 813 KiB  
Article
Old Dogs with New Tricks: Antiparasitic Potential of Structurally Diverse 5-Nitrofuran and 5-Nitrothiophene Imines and Acyl Hydrazones
by Ibrahim S. Al Nasr, Waleed S. Koko, Tariq A. Khan, Rainer Schobert and Bernhard Biersack
Sci. Pharm. 2023, 91(3), 44; https://doi.org/10.3390/scipharm91030044 - 19 Sep 2023
Cited by 1 | Viewed by 2363
Abstract
Miscellaneous imines and acyl hydrazones were prepared from 5-nitrofuraldehyde and 5-nitrothiophene-2-carboxaldehyde. Their activities against Toxoplasma gondii and Leishmania major parasites were evaluated. Promising antiparasitic effects and selectivities were observed for certain acyl hydrazones and imines. Cobalt(II) and copper(II) complexes conserved the high anti-Toxoplasma activities [...] Read more.
Miscellaneous imines and acyl hydrazones were prepared from 5-nitrofuraldehyde and 5-nitrothiophene-2-carboxaldehyde. Their activities against Toxoplasma gondii and Leishmania major parasites were evaluated. Promising antiparasitic effects and selectivities were observed for certain acyl hydrazones and imines. Cobalt(II) and copper(II) complexes conserved the high anti-Toxoplasma activities of 3-hydroxy-2-naphthoic carboxyl hydrazone (2a). In addition, sound activities against L. major promastigotes were observed for various analogs of 2a (2b and 2i) and pyrid-2-ylpyrazole-based imines (3g and 3h). Relatively low toxicities to kidney cells and macrophages indicate promising selectivity profiles for these compounds. Full article
Show Figures

Figure 1

26 pages, 4717 KiB  
Article
Identification of N-Acyl Hydrazones as New Non-Zinc-Binding MMP-13 Inhibitors by Structure-Based Virtual Screening Studies and Chemical Optimization
by Doretta Cuffaro, Aleix Gimeno, Bianca Laura Bernardoni, Riccardo Di Leo, Gerard Pujadas, Santiago Garcia-Vallvé, Susanna Nencetti, Armando Rossello and Elisa Nuti
Int. J. Mol. Sci. 2023, 24(13), 11098; https://doi.org/10.3390/ijms241311098 - 4 Jul 2023
Cited by 4 | Viewed by 2808
Abstract
Matrix metalloproteinase 13 plays a central role in osteoarthritis (OA), as its overexpression induces an excessive breakdown of collagen that results in an imbalance between collagen synthesis and degradation in the joint, leading to progressive articular cartilage degradation. Therefore, MMP-13 has been proposed [...] Read more.
Matrix metalloproteinase 13 plays a central role in osteoarthritis (OA), as its overexpression induces an excessive breakdown of collagen that results in an imbalance between collagen synthesis and degradation in the joint, leading to progressive articular cartilage degradation. Therefore, MMP-13 has been proposed as a key therapeutic target for OA. Here we have developed a virtual screening workflow aimed at identifying selective non-zinc-binding MMP-13 inhibitors by targeting the deep S1′ pocket of MMP-13. Three ligands were found to inhibit MMP-13 in the µM range, and one of these showed selectivity over other MMPs. A structure-based analysis guided the chemical optimization of the hit compound, leading to the obtaining of a new N-acyl hydrazone-based derivative with improved inhibitory activity and selectivity for the target enzyme. Full article
(This article belongs to the Special Issue Recent Advances in Virtual Screening 3.0)
Show Figures

Figure 1

13 pages, 2638 KiB  
Article
Acyl Hydrazides and Acyl Hydrazones as High-Performance Chemical Exchange Saturation Transfer MRI Contrast Agents
by Shaowei Bo, Dong Zhang, Mengjie Ma, Xukai Mo, Julia Stabinska, Michael T. McMahon, Changzheng Shi and Liangping Luo
Pharmaceuticals 2023, 16(5), 639; https://doi.org/10.3390/ph16050639 - 23 Apr 2023
Cited by 3 | Viewed by 3659
Abstract
Chemical exchange saturation transfer (CEST) MRI is a versatile molecular imaging approach that holds great promise for clinical translation. A number of compounds have been identified as suitable for performing CEST MRI, including paramagnetic CEST (paraCEST) agents and diamagnetic CEST (diaCEST) agents. DiaCEST [...] Read more.
Chemical exchange saturation transfer (CEST) MRI is a versatile molecular imaging approach that holds great promise for clinical translation. A number of compounds have been identified as suitable for performing CEST MRI, including paramagnetic CEST (paraCEST) agents and diamagnetic CEST (diaCEST) agents. DiaCEST agents are very attractive because of their excellent biocompatibility and potential for biodegradation, such as glucose, glycogen, glutamate, creatine, nucleic acids, et al. However, the sensitivity of most diaCEST agents is limited because of small chemical shifts (1.0–4.0 ppm) from water. To expand the catalog of diaCEST agents with larger chemical shifts, herein, we have systematically investigated the CEST properties of acyl hydrazides with different substitutions, including aromatic and aliphatic substituents. We have tuned the labile proton chemical shifts from 2.8–5.0 ppm from water while exchange rates varied from ~680 to 2340 s−1 at pH 7.2, which allows strong CEST contrast on scanners down to B0 = 3 T. One acyl hydrazide, adipic acid dihydrazide (ADH), was tested on a mouse model of breast cancer and showed nice contrast in the tumor region. We also prepared a derivative, acyl hydrazone, which showed the furthest shifted labile proton (6.4 ppm from water) and excellent contrast properties. Overall, our study expands the catalog of diaCEST agents and their application in cancer diagnosis. Full article
(This article belongs to the Special Issue Next-Generation Contrast Agents for Medical Imaging)
Show Figures

Figure 1

16 pages, 3362 KiB  
Article
Study of the Metabolic Profiles of “Indazole-3-Carboxamide” and “Isatin Acyl Hydrazone” (OXIZID) Synthetic Cannabinoids in a Human Liver Microsome Model Using UHPLC-QE Orbitrap MS
by Jiahong Xiang, Di Wen, Junbo Zhao, Ping Xiang, Yan Shi and Chunling Ma
Metabolites 2023, 13(4), 576; https://doi.org/10.3390/metabo13040576 - 18 Apr 2023
Cited by 7 | Viewed by 2569
Abstract
Unregulated core structures, “isatin acyl hydrazones” (OXIZIDs), have quietly appeared on the market since China legislated to ban seven general core scaffolds of synthetic cannabinoids (SCs). The fast evolution of SCs presents clinical and forensic toxicologists with challenges. Due to extensive metabolism, the [...] Read more.
Unregulated core structures, “isatin acyl hydrazones” (OXIZIDs), have quietly appeared on the market since China legislated to ban seven general core scaffolds of synthetic cannabinoids (SCs). The fast evolution of SCs presents clinical and forensic toxicologists with challenges. Due to extensive metabolism, the parent compounds are barely detectable in urine. Therefore, studies on the metabolism of SCs are essential to facilitate their detection in biological matrices. The aim of the present study was to elucidate the metabolism of two cores, “indazole-3-carboxamide” (e.g., ADB-BUTINACA) and “isatin acyl hydrazone” (e.g., BZO-HEXOXIZID). The in vitro phase I and phase II metabolism of these six SCs was investigated by incubating 10 mg/mL pooled human liver microsomes with co-substrates for 3 h at 37 °C, and then analyzing the reaction mixture using ultrahigh-performance liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry. In total, 9 to 34 metabolites were detected for each SC, and the major biotransformations were hydroxylation, dihydrodiol formation (MDMB-4en-PINACA and BZO-4en-POXIZID), oxidative defluorination (5-fluoro BZO-POXIZID), hydrogenation, hydrolysis, dehydrogenation, oxidate transformation to ketone and carboxylate, N-dealkylation, and glucuronidation. Comparing our results with previous studies, the parent drugs and SC metabolites formed via hydrogenation, carboxylation, ketone formation, and oxidative defluorination were identified as suitable biomarkers. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Graphical abstract

24 pages, 2992 KiB  
Review
Recent Advances in Anti-Tuberculosis Drug Discovery Based on Hydrazide–Hydrazone and Thiadiazole Derivatives Targeting InhA
by Yoanna Teneva, Rumyana Simeonova, Violeta Valcheva and Violina T. Angelova
Pharmaceuticals 2023, 16(4), 484; https://doi.org/10.3390/ph16040484 - 23 Mar 2023
Cited by 27 | Viewed by 6656
Abstract
Tuberculosis is an extremely serious problem of global public health. Its incidence is worsened by the presence of multidrug-resistant (MDR) strains of Mycobacterium tuberculosis. More serious forms of drug resistance have been observed in recent years. Therefore, the discovery and/or synthesis of new [...] Read more.
Tuberculosis is an extremely serious problem of global public health. Its incidence is worsened by the presence of multidrug-resistant (MDR) strains of Mycobacterium tuberculosis. More serious forms of drug resistance have been observed in recent years. Therefore, the discovery and/or synthesis of new potent and less toxic anti-tubercular compounds is very critical, especially having in mind the consequences and the delays in treatment caused by the COVID-19 pandemic. Enoyl-acyl carrier protein reductase (InhA) is an important enzyme involved in the biosynthesis of mycolic acid, a major component of the M. tuberculosis cell wall. At the same time, it is a key enzyme in the development of drug resistance, making it an important target for the discovery of new antimycobacterial agents. Many different chemical scaffolds, including hydrazide hydrazones and thiadiazoles, have been evaluated for their InhA inhibitory activity. The aim of this review is to evaluate recently described hydrazide-hydrazone- and thiadiazole-containing derivatives that inhibit InhA activity, resulting in antimycobacterial effects. In addition, a brief review of the mechanisms of action of currently available anti-tuberculosis drugs is provided, including recently approved agents and molecules in clinical trials. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

22 pages, 4215 KiB  
Article
Molecular Hybridization Strategy on the Design, Synthesis, and Structural Characterization of Ferrocene-N-acyl Hydrazones as Immunomodulatory Agents
by Laís Peres Silva, Ivanilson Pimenta Santos, Dahara Keyse Carvalho Silva, Bruna Padilha Zurita Claro dos Reis, Cássio Santana Meira, Marcos Venícius Batista de Souza Castro, José Maurício dos Santos Filho, João Honorato de Araujo-Neto, Javier Alcides Ellena, Rafael Gomes da Silveira and Milena Botelho Pereira Soares
Molecules 2022, 27(23), 8343; https://doi.org/10.3390/molecules27238343 - 30 Nov 2022
Cited by 5 | Viewed by 2828
Abstract
Immunomodulatory agents are widely used for the treatment of immune-mediated diseases, but the range of side effects of the available drugs makes necessary the search for new immunomodulatory drugs. Here, we investigated the immunomodulatory activity of new ferrocenyl-N-acyl hydrazones derivatives ( [...] Read more.
Immunomodulatory agents are widely used for the treatment of immune-mediated diseases, but the range of side effects of the available drugs makes necessary the search for new immunomodulatory drugs. Here, we investigated the immunomodulatory activity of new ferrocenyl-N-acyl hydrazones derivatives (SintMed(141156). The evaluated N-acyl hydrazones did not show cytotoxicity at the tested concentrations, presenting CC50 values greater than 50 µM. In addition, all ferrocenyl-N-acyl hydrazones modulated nitrite production in immortalized macrophages, showing inhibition values between 14.4% and 74.2%. By presenting a better activity profile, the ferrocenyl-N-acyl hydrazones SintMed149 and SintMed150 also had their cytotoxicity and anti-inflammatory effect evaluated in cultures of peritoneal macrophages. The molecules were not cytotoxic at any of the concentrations tested in peritoneal macrophages and were able to significantly reduce (p < 0.05) the production of nitrite, TNF-α, and IL-1β. Interestingly, both molecules significantly reduced the production of IL-2 and IFN-γ in cultured splenocytes activated with concanavalin A. Moreover, SintMed150 did not show signs of acute toxicity in animals treated with 50 or 100 mg/kg. Finally, we observed that ferrocenyl-N-acyl hydrazone SintMed150 at 100 mg/kg reduced the migration of neutrophils (44.6%) in an acute peritonitis model and increased animal survival by 20% in an LPS-induced endotoxic shock model. These findings suggest that such compounds have therapeutic potential to be used to treat diseases of inflammatory origin. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

26 pages, 29008 KiB  
Article
Cytotoxic Activity and Docking Studies of 2-arenoxybenzaldehyde N-acyl Hydrazone and 1,3,4-Oxadiazole Derivatives against Various Cancer Cell Lines
by Esranur Aydın, Ahmet Mesut Şentürk, Hatice Başpınar Küçük and Mustafa Güzel
Molecules 2022, 27(21), 7309; https://doi.org/10.3390/molecules27217309 - 27 Oct 2022
Cited by 9 | Viewed by 2435
Abstract
To understand whether previously synthesized novel hydrazone and oxadiazole derivatives have promising anticancer effects, docking studies and in vitro toxicity assays were performed on A-549, MDA-MB-231, and PC-3 cell lines. The antiproliferative properties of the compounds were investigated using molecular docking experiments. Each [...] Read more.
To understand whether previously synthesized novel hydrazone and oxadiazole derivatives have promising anticancer effects, docking studies and in vitro toxicity assays were performed on A-549, MDA-MB-231, and PC-3 cell lines. The antiproliferative properties of the compounds were investigated using molecular docking experiments. Each compound’s best-docked poses, binding affinity, and receptor-ligand interaction were evaluated. Compounds’ molecular weights, logPs, TPSAs, abilities to pass the blood-brain barrier, GI absorption qualities, and CYPP450 inhibition have been given. When the activities of these molecules were examined in vitro, for the A-549 cell line, hydrazone 1e had the minimum IC50 value of 13.39 μM. For the MDA-MB-231 cell line, oxadiazole 2l demonstrated the lowest IC50 value, with 22.73 μM. For PC-3, hydrazone 1d showed the lowest C50 value of 9.38 μM. The three most promising compounds were determined as compounds 1e, 1d, and 2a based on their minimum IC50 values, and an additional scratch assay was performed for A-549 and MDA-MB-231 cells, which have high migration capacity, for the three most potent molecules; it was determined that these molecules did not show a significant antimetastatic effect. Full article
(This article belongs to the Topic Bioinformatics in Drug Design and Discovery)
Show Figures

Graphical abstract

15 pages, 3143 KiB  
Article
Isoniazid Linked to Sulfonate Esters via Hydrazone Functionality: Design, Synthesis, and Evaluation of Antitubercular Activity
by Ebru Koçak Aslan, Muhammed İhsan Han, Vagolu Siva Krishna, Rasoul Tamhaev, Cagatay Dengiz, Şengül Dilem Doğan, Christian Lherbet, Lionel Mourey, Tone Tønjum and Miyase Gözde Gündüz
Pharmaceuticals 2022, 15(10), 1301; https://doi.org/10.3390/ph15101301 - 21 Oct 2022
Cited by 17 | Viewed by 4947
Abstract
Isoniazid (INH) is one of the key molecules employed in the treatment of tuberculosis (TB), the most deadly infectious disease worldwide. However, the efficacy of this cornerstone drug has seriously decreased due to emerging INH-resistant strains of Mycobacterium tuberculosis (Mtb). In [...] Read more.
Isoniazid (INH) is one of the key molecules employed in the treatment of tuberculosis (TB), the most deadly infectious disease worldwide. However, the efficacy of this cornerstone drug has seriously decreased due to emerging INH-resistant strains of Mycobacterium tuberculosis (Mtb). In the present study, we aimed to chemically tailor INH to overcome this resistance. We obtained thirteen novel compounds by linking INH to in-house synthesized sulfonate esters via a hydrazone bridge (SIH1–SIH13). Following structural characterization by FTIR, 1H NMR, 13C NMR, and HRMS, all compounds were screened for their antitubercular activity against Mtb H37Rv strain and INH-resistant clinical isolates carrying katG and inhA mutations. Additionally, the cytotoxic effects of SIH1–SIH13 were assessed on three different healthy host cell lines; HEK293, IMR-90, and BEAS-2B. Based on the obtained data, the synthesized compounds appeared as attractive antimycobacterial drug candidates with low cytotoxicity. Moreover, the stability of the hydrazone moiety in the chemical structure of the final compounds was confirmed by using UV/Vis spectroscopy in both aqueous medium and DMSO. Subsequently, the compounds were tested for their inhibitory activities against enoyl acyl carrier protein reductase (InhA), the primary target enzyme of INH. Although most of the synthesized compounds are hosted by the InhA binding pocket, SIH1–SIH13 do not primarily show their antitubercular activities by direct InhA inhibition. Finally, in silico determination of important physicochemical parameters of the molecules showed that SIH1–SIH13 adhered to Lipinski’s rule of five. Overall, our study revealed a new strategy for modifying INH to cope with the emerging drug-resistant strains of Mtb. Full article
(This article belongs to the Special Issue Drug Candidates for the Treatment of Tuberculosis 2021)
Show Figures

Graphical abstract

34 pages, 5287 KiB  
Article
Identification of Novel Ribonucleotide Reductase Inhibitors for Therapeutic Application in Bile Tract Cancer: An Advanced Pharmacoinformatics Study
by Md Ataul Islam, Mayuri Makarand Barshetty, Sridhar Srinivasan, Dawood Babu Dudekula, V. P. Subramanyam Rallabandi, Sameer Mohammed, Sathishkumar Natarajan and Junhyung Park
Biomolecules 2022, 12(9), 1279; https://doi.org/10.3390/biom12091279 - 10 Sep 2022
Cited by 1 | Viewed by 3009
Abstract
Biliary tract cancer (BTC) is constituted by a heterogeneous group of malignant tumors that may develop in the biliary tract, and it is the second most common liver cancer. Human ribonucleotide reductase M1 (hRRM1) has already been proven to be a potential BTC [...] Read more.
Biliary tract cancer (BTC) is constituted by a heterogeneous group of malignant tumors that may develop in the biliary tract, and it is the second most common liver cancer. Human ribonucleotide reductase M1 (hRRM1) has already been proven to be a potential BTC target. In the current study, a de novo design approach was used to generate novel and effective chemical therapeutics for BTC. A set of comprehensive pharmacoinformatics approaches was implemented and, finally, seventeen potential molecules were found to be effective for the modulation of hRRM1 activity. Molecular docking, negative image-based ShaEP scoring, absolute binding free energy, in silico pharmacokinetics, and toxicity assessments corroborated the potentiality of the selected molecules. Almost all molecules showed higher affinity in comparison to gemcitabine and naphthyl salicylic acyl hydrazone (NSAH). On binding interaction analysis, a number of critical amino acids was found to hold the molecules at the active site cavity. The molecular dynamics (MD) simulation study also indicated the stability between protein and ligands. High negative MM-GBSA (molecular mechanics generalized Born and surface area) binding free energy indicated the potentiality of the molecules. Therefore, the proposed molecules might have the potential to be effective therapeutics for the management of BTC. Full article
Show Figures

Figure 1

Back to TopTop