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Abstract: Immunomodulatory agents are widely used for the treatment of immune-mediated diseases,
but the range of side effects of the available drugs makes necessary the search for new immunomodu-
latory drugs. Here, we investigated the immunomodulatory activity of new ferrocenyl-N-acyl hydra-
zones derivatives (SintMed(141–156). The evaluated N-acyl hydrazones did not show cytotoxicity at
the tested concentrations, presenting CC50 values greater than 50 µM. In addition, all ferrocenyl-N-
acyl hydrazones modulated nitrite production in immortalized macrophages, showing inhibition val-
ues between 14.4% and 74.2%. By presenting a better activity profile, the ferrocenyl-N-acyl hydrazones
SintMed149 and SintMed150 also had their cytotoxicity and anti-inflammatory effect evaluated in
cultures of peritoneal macrophages. The molecules were not cytotoxic at any of the concentrations
tested in peritoneal macrophages and were able to significantly reduce (p < 0.05) the production of ni-
trite, TNF-α, and IL-1β. Interestingly, both molecules significantly reduced the production of IL-2 and
IFN-γ in cultured splenocytes activated with concanavalin A. Moreover, SintMed150 did not show
signs of acute toxicity in animals treated with 50 or 100 mg/kg. Finally, we observed that ferrocenyl-
N-acyl hydrazone SintMed150 at 100 mg/kg reduced the migration of neutrophils (44.6%) in
an acute peritonitis model and increased animal survival by 20% in an LPS-induced endotoxic
shock model. These findings suggest that such compounds have therapeutic potential to be used to
treat diseases of inflammatory origin.

Keywords: immunomodulation; endotoxic shock; acute peritonitis; N-acyl hydrazones; ferrocene

1. Introduction

Throughout life, the human organism is exposed to a series of agents that can break
homeostasis, whether they are pathogenic or not [1]. Among the pathogens, bacteria,
fungi, parasites, and viruses stand out, while among the non-pathogenic agents there
are trauma, exposure to toxic compounds, radioactivity, and smoke. Exposure to these
agents culminates in the emergence of inflammation as the body responds to such harmful
stimuli [2]. Inflammation is one of the body’s protective and fundamental reactions. It
occurs in order to eliminate the source of the noxious stimulus or tissue injury to which the
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organism is being subjected and involves a series of cellular and molecular processes that
aim to reestablish body homeostasis [3].

Despite its remarkable protective function, the inflammatory process, in addition to
being well orchestrated, needs to be well controlled and properly terminated to prevent
it from contributing to the emergence of metabolic disorders that may lead to diabetes
and cancer, for example [4]. It is reported that unresolved inflammation can lead to the
emergence of a series of inflammatory diseases that affect a large part of the population,
such as asthma, rheumatoid arthritis, and atherosclerosis [5].

Currently, inflammation is controlled with two classes of drugs widely used in clini-
cal practice: non-steroidal anti-inflammatory agents (NSAIDs) and glucocorticoids [6,7].
Despite their known effectiveness in the treatment of inflammatory disorders, the in-
discriminate use of these drugs by the population has been increasing and, along with
it, the incidence of adverse effects also grows [6–9]. The frequent use of non-steroidal
anti-inflammatory drugs causes a series of unwanted reactions in the body such as gastroin-
testinal complications, cardiovascular diseases, and kidney diseases, while glucocorticoids
can cause cardiovascular disease and disorders such as Cushing’s syndrome [8,9].

In this scenario, it is necessary to develop effective drugs with fewer adverse effects
for the management of inflammation, and N-acyl hydrazones (NAHs) appear as promising
alternatives. As a privileged structure in medicinal chemistry [10], the NAH scaffold is
often found as a structural part of strong candidates for the control of inflammatory diseases
due to their already reported action on macrophages and lymphocyte cells and in experi-
mental models of immune diseases [11–13]. It is a Schiff base resulting from the conden-
sation of carbonylated substances with hydrazides and constitutes a key pharmacophore
for the binding and consequent inhibition of cyclooxygenases, acting as NSAIDs [14,15].
In addition, the NAH fraction provides greater stability and a safer inhibition of COX, and
it is believed that this occurs from the relative hydrogen acidity of the amine group or its
ability to stabilize free radicals [16,17]. As an important concept for the design of potentially
bioactive compounds, molecular hybridization is a useful strategy based on the combi-
nation of pharmacophoric moieties of diverse substances to lead to a new molecule with
an improved biological response when compared to the starting structural models [18,19].

Targeting the development of molecular hybrids that incorporate a second fragment of
importance for the desired biological activity and remain structurally simple, the ferrocene
(Fc) core was selected for the present studies, since Fc-bearing compounds are recognized
for their importance in medicinal chemistry [20]. Ferrocene derivatives have been found
to play an important role in the discovery of new immunomodulatory molecules [21–24],
especially due to the Fc mechanisms of action, which are usually multi-modal, and rarely
accessible with most organic pharmacophores. Some of the well-known mechanisms of
action of ferrocene comprise direct protein inhibition, photoactivation with consequent
singlet oxygen generation and cellular damage, metalation of macromolecules, and, the
most common, redox activation and reactive oxygen species (ROS) formation, leading to
cellular oxidative stress [25–27]. Due to the iron presence in the structure and its role in the
oxidative biochemical processes, oxidative stress is the most important mechanism of action
observed in bioactive ferrocene derivatives, so its association with other pharmacophoric
groups has been proven to be an excellent strategy for the design of new potential biological
active molecules [28]. Therefore, a series of ferrocene-N-acyl hydrazone (Fc-NAH) hybrids
has been designed according to the concept in Figure 1, which fulfills our main goal of
obtaining simple molecules with an accessible and easy synthetic route as well as the
potential for further molecular modifications and biological studies.

Based on this premise, our group carried out the synthesis of new Fc-NAH derivatives
and, in the present study, we have investigated their structural characterization by means of
spectroscopic and crystallographic techniques, as well as their in vitro immunomodulatory
activity, and also tested the effectiveness of the most active molecule SintMed150 in murine
models of endotoxic shock and acute peritonitis.
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(Fc-NAH).

2. Results

The synthetic route to prepare the planned compounds SintMed(141–156), depicted
in Scheme 1, was based on a method developed by our research group [29]. Commercially
available aldehydes 1a–p have undergone silver (I)-mediated oxidation under basic con-
ditions [30], leading to the corresponding carboxylic acids 2a–p as solid materials with
good yields. Aryl carboxylic methyl esters 3a–p were easily obtained by means of Fischer
esterification, and thus converted into the corresponding hydrazides 4a–p under reflux in
the presence of hydrazine hydrate in excess. The key intermediate hydrazides 4a–p and
ferrocenecarboxaldehyde were reacted in the presence of cerium (III) chloride heptahydrate
(CeCl3·7H2O) as a catalyst under mild conditions, according to a method developed in
our laboratory [31], in order to afford the Fc-NAH series SintMed(141–156) with excellent
isolated yields, stereoselectivity, and high purity of crude products. The Fc-NAH were
characterized using spectroscopic techniques such as nuclear magnetic resonance of hy-
drogen (1H NMR) and carbon-13 (13C NMR) and infrared spectroscopy (IR), as well as
elemental analysis.

In addition to the assessed physical and spectroscopic data, attempts to reinforce
the formation of the thermodynamically more stable E-isomers by means of the CeCl3-
catalyzed synthesis of the Fc-NAH have included the crystallographic structure acquisition
of some molecules of this series, with success for compound SintMed149, one of the more
active molecules, confirming the proposed molecular structures and their purity. The
E-isomer structure is clearly confirmed as observed in Figure 2.

Initially, the cytotoxicity of the molecules was tested in the J774 macrophage cell
line. All evaluated ferrocenyl-N-acyl hydrazones did not show cytotoxicity at the tested
concentrations, exhibiting CC50 values greater than 50 µM (Table 1). Under the same
conditions, gentian violet, used as a positive control, presented a CC50 value equal to
0.8 µM.
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The anti-inflammatory effect of the molecules was initially evaluated at a concentration
of 40 µM in cultures of macrophages stimulated with LPS + IFN-γ by analysis of nitric oxide
production. As can be seen in Table 1, all Fc-NAH derivatives modulate nitrite production,
showing inhibition values between 14.4% and 74.2%. The most active molecules were
the ferrocenyl-N-acyl hydrazones SintMed149 and SintMed150, which showed inhibition
values of 71.7% and 74.2% respectively. Under the same conditions, dexamethasone (Dexa)
showed inhibition of 64.9% (Table 1).

To further explore the anti-inflammatory potential of compounds SintMed149 and
SintMed150, a new set of experiments was performed using peritoneal macrophages.
Initially, the cytotoxicity of the investigated compounds was evaluated in peritoneal
macrophages in the presence of LPS + IFNγ. As revealed in Figure 3, the molecules
were not cytotoxic at any of the concentrations tested, as well as dexamethasone at 40 µM.
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Table 1. Cytotoxicity and inhibitory effect on nitric oxide production of Fc-NAH SintMed(141–156).
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Dexamethasone d - 64.9 (±6.7)
a Cytotoxicity was evaluated on J774 macrophages exposed to compounds for 72 h by Alamar blue method. b Per-
cent inhibition determined 24 h after incubation with compounds and LPS plus IFN-γ. c reference cytotoxic drug.
d reference immunosuppressive drug. Values represent the mean (±standard deviation) of three independent
experiments. CC50 = cytotoxic concentration at 50%. NO = nitric oxide. GV = gentian violet.



Molecules 2022, 27, 8343 6 of 22

Molecules 2022, 27, x FOR PEER REVIEW 6 of 23 
 

 

a Cytotoxicity was evaluated on J774 macrophages exposed to compounds for 72 h by Alamar blue 
method. b Percent inhibition determined 24 h after incubation with compounds and LPS plus IFN-
γ. c reference cytotoxic drug. d reference immunosuppressive drug. Values represent the mean 
(±standard deviation) of three independent experiments. CC50 = cytotoxic concentration at 50%. NO 
= nitric oxide. GV = gentian violet. 

The anti-inflammatory effect of the molecules was initially evaluated at a concentra-
tion of 40 µM in cultures of macrophages stimulated with LPS + IFN-γ by analysis of nitric 
oxide production. As can be seen in Table 1, all Fc-NAH derivatives modulate nitrite pro-
duction, showing inhibition values between 14.4% and 74.2%. The most active molecules 
were the ferrocenyl-N-acyl hydrazones SintMed149 and SintMed150, which showed in-
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Figure 3. SintMed149 and SintMed150 did not affect peritoneal macrophage viability stimulated 
with LPS plus IFNγ. Mouse peritoneal exudate macrophages stimulated or not with LPS + IFNγ 
were cultured in the absence or presence of SintMed149 (A) and SintMed150 (B) (10, 20, and 40 
µM) or dexamethasone (Dexa; 40 µM). Cell viability was determined by the Alamar Blue method. 
“-” refers to the group of untreated and unstimulated cells. C- refers to the group of untreated cells 
stimulated with LPS + IFNγ. Values represent the mean (±standard deviation) of four determina-
tions obtained from three experiments performed. 

Next, the anti-inflammatory effect of both compounds was better evaluated using a 
concentration-response curve in peritoneal macrophages. As expected, macrophage acti-
vation with LPS plus IFNγ increased the amount of nitrite production (Figure 4). Treat-
ment with SintMed149 and SintMed150 inhibited, in a concentration-dependent manner, 
the production of nitrite (p < 0.05). Interestingly, the inhibitory effect of SintMed149 and 
SintMed150 was also observed in the production of the pro-inflammatory cytokines TNF 
and IL-1β (p < 0.05) (Figure 5). Under the same conditions, dexamethasone, at a concen-
tration of 10 µM, also promoted the reduction of these cytokines and nitrite (Figures 4 and 
5). 

Figure 3. SintMed149 and SintMed150 did not affect peritoneal macrophage viability stimulated
with LPS plus IFNγ. Mouse peritoneal exudate macrophages stimulated or not with LPS + IFNγ were
cultured in the absence or presence of SintMed149 (A) and SintMed150 (B) (10, 20, and 40 µM) or
dexamethasone (Dexa; 40 µM). Cell viability was determined by the Alamar Blue method. “-” refers
to the group of untreated and unstimulated cells. C- refers to the group of untreated cells stimulated
with LPS + IFNγ. Values represent the mean (±standard deviation) of four determinations obtained
from three experiments performed.

Next, the anti-inflammatory effect of both compounds was better evaluated using
a concentration-response curve in peritoneal macrophages. As expected, macrophage
activation with LPS plus IFNγ increased the amount of nitrite production (Figure 4). Treat-
ment with SintMed149 and SintMed150 inhibited, in a concentration-dependent manner,
the production of nitrite (p < 0.05). Interestingly, the inhibitory effect of SintMed149 and
SintMed150 was also observed in the production of the pro-inflammatory cytokines TNF
and IL-1β (p < 0.05) (Figure 5). Under the same conditions, dexamethasone, at a concentra-
tion of 10 µM, also promoted the reduction of these cytokines and nitrite (Figures 4 and 5).
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Figure 4. Ferrocenyl-N-acyl hydrazones SintMed149 and SintMed150 inhibit nitrite production 
by activated macrophages. Nitrite concentrations were determined in macrophage culture super-
natants treated or not with hydrazones SintMed149 (A) and SintMed150 (B) (10, 20, and 40 µM) 
or dexamethasone (Dexa; 10 µM) in the presence of LPS (500 ng/mL) and IFN-γ (5 ng/mL). Values 
represent the mean (±standard deviation) of four determinations obtained in one of three experi-
ments performed. *** p < 0.001 compared to untreated and LPS + IFN-γ-stimulated cultures. # p < 
0.05 compared to untreated and unstimulated cultures with LPS + IFN-γ. $ p < 0.05 compared to 
dexamethasone-treated and stimulated cultures. 

 
Figure 5. Assessment of cytokine production by peritoneal macrophages treated with SintMed149 
or SintMed150. Mouse peritoneal exudate macrophages stimulated or not with LPS + IFN-γ were 
cultured in the absence or presence of SintMed149 (A,C) or SintMed150 (B,D) (10, 20, and 40 µM) 

Figure 4. Ferrocenyl-N-acyl hydrazones SintMed149 and SintMed150 inhibit nitrite production by
activated macrophages. Nitrite concentrations were determined in macrophage culture supernatants
treated or not with hydrazones SintMed149 (A) and SintMed150 (B) (10, 20, and 40 µM) or dexam-
ethasone (Dexa; 10 µM) in the presence of LPS (500 ng/mL) and IFN-γ (5 ng/mL). Values represent the
mean (±standard deviation) of four determinations obtained in one of three experiments performed.
*** p < 0.001 compared to untreated and LPS + IFN-γ-stimulated cultures. # p < 0.05 compared to un-
treated and unstimulated cultures with LPS + IFN-γ. $ p < 0.05 compared to dexamethasone-treated
and stimulated cultures.
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Figure 5. Assessment of cytokine production by peritoneal macrophages treated with SintMed149
or SintMed150. Mouse peritoneal exudate macrophages stimulated or not with LPS + IFN-γ were
cultured in the absence or presence of SintMed149 (A,C) or SintMed150 (B,D) (10, 20, and 40 µM) or
dexamethasone (Dexa; 10 µM). Cell-free supernatants were collected after 4 h for TNFα quantification
(A and B) or 24 h for IL-6 quantification (C and D). “-” refers to the group of untreated and unstimu-
lated cells. C- refers to the group of untreated cells stimulated with LPS + IFNγ. Values represent the
mean (±standard deviation) of four determinations obtained in one of three experiments performed.
*** p < 0.001 compared to stimulated and untreated cells; ** p < 0.01 compared to stimulated and
untreated cells; # p < 0.05 compared to unstimulated and untreated cells; $ p < 0.05 compared to
dexamethasone-treated cells.

To investigate the immunosuppressive activity of SintMed149 and SintMed150, the
levels of IL-2, IL-4, and IFN-γ were evaluated in the supernatant of cultures of splenocytes
stimulated with concanavalin A. As shown in Figure 6, stimulation with concanavalin A
induced a significant increase in the production levels of the cytokines IL-2, IL-4, and IFN-γ.
Treatment using the hydrazones SintMed149 and SintMed150 promoted a significant and
concentration-dependent reduction of IL-2 and SintMed150 also performed the same feat
in the production of IFN-γ. However, the molecules did not significantly reduce IL-4 levels.
Under the same conditions, dexamethasone significantly reduced the levels of IL-2, IL-4,
and IFN-γ (Figure 6).
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Figure 6. Assessment of cytokine production by splenocytes treated with SintMed149 and
SintMed150. The concentrations of IL-2 (A,B), IL-4 (C,D), and IFN-γ (E,F) were determined in
cell-free supernatants from splenocyte cultures stimulated with concanavalin A (Con A, 5 µg/mL)
and treated or not with SintMed149 and SintMed150 (10, 20, 40 µM) or dexamethasone (10 µM)
for 24 h. Culture supernatants were collected and cytokine quantification was performed by
ELISA. Values represent the mean (±standard deviation) of four determinations obtained in one of
three experiments performed. *** p < 0.001 compared to untreated and Con A-stimulated cultures
** p < 0.01 in comparison to untreated and Con A-stimulated cultures * p < 0.05 compared to untreated
and Con A-stimulated cultures. # p < 0.05 compared to untreated and unstimulated cultures with
Con A. $ p < 0.05 compared to dexamethasone-treated and stimulated cultures.
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After the in vitro results, we investigated the toxicity effect of a single dose of the com-
pound SintMed150 in BALB/c mice. Administration of 50 or 100 mg/kg of SintMed150
did not cause mortality or the appearance of any sign of toxicity in animals (Table 2). In
addition, no difference in body weight was observed in animals treated with SintMed150
when compared to vehicle-treated mice (Table 3).

Table 2. Effect of SintMed150 on behavioral and general appearance of male BALB/c mice.

Behavior and General
Appearance

Observations

Vehicle SintMed150
(50 mg/kg)

SintMed150
(100 mg/kg)

Changes in the eyes No changes No changes No changes

Changes in the fur No changes No changes No changes

Changes in the skin No changes No changes No changes

Coma Absent Absent Absent

Convulsions Absent Absent Absent

Diarrhea Absent Absent Absent

Lethargy Absent Absent Absent

Salivation Absent Absent Absent

Sleep Usual Usual Usual

Tremors Absent Absent Absent

The animals were observed daily for 14 days.

Table 3. Body weight of BALB/c mice treated with the compound SintMed150.

Days Vehicle SintMed150 (50 mg/kg) SintMed150 (100 mg/kg)

0 21.6 (±1.3) 20.9 (±1.1) 20.1 (±0.8)

7 21.8 (±1.0) 21.1 (±1.1) 20.4 (±0.7)

14 22.3 (±1.1) 21.7 (±0.9) 21.0 (±0.7)
Values represent the mean ± standard deviation of six animals per group.

Then, we tested the compound SintMed150 in a murine model of endotoxic shock
induced by a lethal dose of LPS. As shown in Figure 7, in comparison with the vehicle group,
the animals treated with the compound SintMed150 had a longer survival time, despite,
on the third day, all the animals treated with the dose of 50 mg/kg having already died.
On the fourth day, only 20% of the group treated with the 100 mg/kg dose survived, this
finding being statistically significant (p < 0.05). Under the same conditions, dexamethasone,
at a dose of 25 mg/kg, promoted a more significant survival rate (83.3%).

Lastly, the anti-inflammatory effect of SintMed150 was evaluated in a murine model
of carrageenan-induced acute peritonitis. As can be seen in Figure 8, animals stimulated
with carrageenan and treated with vehicle solution had a high number of neutrophils in the
peritoneal lavage. Compared to the vehicle-treated group, pretreatment with SintMed150
at 100 mg/kg caused a reduction in neutrophil migration of 44.6%. Under the same
conditions, dexamethasone, at a dose of 25 mg/kg, induced a reduction of 55% in neutrophil
migration (Figure 8).
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Figure 7. Survival curve of mice treated with SintMed150 and submitted to endotoxic shock. Mice
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at a dose of 25 mg/kg (�), or vehicle (•). Survival was monitored for 4 days after LPS challenge. The
results are from two experiments performed independently. * p < 0.05 compared to the vehicle group.
** p < 0.01 compared to the vehicle group. Statistical analysis was performed using Logrank
(Mantel Cox).
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Figure 8. Effect of SintMed150 in a carrageenan-induced model of acute peritonitis. BALB/c mice
(n = 5/group) were treated with SintMed150 (100 mg/kg) or dexamethasone (Dexa; 25 mg/kg) or
vehicle (solution containing 30% sorbitol, 10% Tween 80, and 60% saline) and challenged with 1%
carrageenan solution. The naïve group consists of untreated and unchallenged animals. Values
represent the means ± S.D. of six mice/group. *** p < 0.001 compared to the vehicle group; # p < 0.05
compared to naïve group.



Molecules 2022, 27, 8343 11 of 22

3. Discussion

The derivatives SintMed(141–156) were characterized by usual spectroscopic tech-
niques, namely IR, 1H NMR, and 13C NMR, with structural assignments assisted by DEPT,
HSQC, and HMQC experiments, confirming the structures and stereochemical features
for each compound. 1H NMR analysis of crude Fc-NAH derivatives has revealed that
only the E-isomer was formed, in agreement with previously reported outcomes for other
compounds synthesized using this method. In addition to the mild condition and low
reaction time, cerium (III) chloride catalysis has proved to be highly stereoselective, leading
exclusively to the E-isomers [31]. All compounds from this series exhibit a clear and easy
pattern of signals in agreement with previously reported works, mainly based upon the
analysis of the signals observed for the amidic (–CONH–) and iminic (–N=CH–) groups,
which are singlets [29]. However, N-acyl hydrazones may exist as conformers due to the in-
fluence of some structural features of the substituents linked to the amidic carbonyl. It was
ascertained that electron-withdrawing effects acting on an aromatic ring, ortho-substituents,
or the linkage to non-aromatic substituents can destabilize the resonance effects involving
the –CONH– portion, favoring the possible emergence of rotamers. Signal duplication for
Fc-NAH derivatives due to rotamery has been observed for the hydrogen atoms of the
–CONH– and –N=CH– moieties and agreed with reported results from the literature [32,33].
Additionally, the Fc signals can also split due to the rotamery. The signal duplication does
not follow a standard behavior, so different patterns can appear for different compounds,
which are completely described in the Supplementary Materials. The crystal structure of
compound SintMed149 shows the E-configuration, confirming the stereochemical anal-
ysis based on NMR studies. It is also important to notice that this specific molecule is
not planar throughout the aryl-N-acyl hydrazone backbone, corroborating the works of
Lopes et al. [32] and da Silva et al. [33], which explain the nature of the rotamery observed
for this compound (Supplementary Materials Figure S1). Any structural and/or elec-
tronic factors disrupting the resonance are at the origin of the rotamery observed for some
members of the Fc-NAH series.

N-acyl hydrazones have been widely used in medicinal chemistry due to their ability
to act on several molecular targets and ease of synthesis; therefore, the development of new
NAH hybrids is an attractive strategy for drug design and discovery [34]. Several studies
report the ability of NAH to modulate cells and inflammatory mediators of the immune
response for in vitro and in vivo models of immune disorders [35,36]. The association with
the ferrocene scaffold is a recognized strategy to enhance biological responses [37] and was
expected to work well in our approach.

In this study, the immunomodulatory potential of 16 new Fc-NAH derivatives was
investigated. The evaluated molecules presented non-cytotoxicity in the tested concentra-
tion, which reinforces the safety profile of the class, previously demonstrated in several
cell lines, such as mouse splenocytes from BALB/c mice and J774 macrophages [11,13,38].
Meira et al. (2018) [13], using the same method described in this report, investigated the
cytotoxicity of 24 N-acyl hydrazones and obtained CC50 values between 17.8 and >100 µM
in the same cell line used in this report.

Knowing that nitric oxide (NO) is a key mediator of the inflammatory response, it is
essential to verify the modulation of its production performed by the new compounds [39],
as disclosed in Table 1. It was found that all tested Fc-NAH hybrids reduced the production
of NO; however, some structural features seem to affect the activity, depending upon the
aromatic moiety. SintMed141 (phenyl) has exhibited 19.7% of NO inhibition production
and was chosen as comparing parameter. Inspecting Table 1, only one compound has pre-
sented a poorer activity, namely derivative SintMed146 (3,5-di-t-butyl-4-hydroxyphenyl)
with an inhibition of 14.4%. The influence of the bulkiness of the t-butyl group on the
biological response seems to be fundamental, especially in comparison to compounds
SintMed151 (3,4,5-trihydroxyphenyl) and SintMed152 (3,4,5-trihymethoxyphenyl), both
similarly substituted but more active with 25.2% and 55.5% of inhibition, respectively.
The substitution at the meta position of the phenyl ring reduces unequivocally the NO
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production inhibition, as observed for compounds SintMed153 (2-hydroxy-5-nitrophenyl,
43.7%) and SintMed154 (3-chlorophenyl, 45.2%), both with activities lower than 50%. Het-
erocyclic aromatic rings such as in Fc-NAH hybrids SintMed143 (2-furanyl) with 49.2%
and SintMed145 (2-quinolinyl) with 49.6% and the ring-fused compound SintMed155
(1-naphthyl) with 35.6% of NO inhibition suggest that this kind of substitution is re-
lated to moderate-to-poor biological responses. However, the para substitution at the
phenyl ring seems to exert a positive effect on the inhibition of the NO production, as
can be ascertained by compounds SintMed144 (4-cyanophenyl, 55.2%) and SintMed147
(4-trifluoromethylphenyl, 59.9%). A set of four molecules has disclosed the most impor-
tant outcomes for the whole series. Bearing ortho substituents, compounds SintMed142
(2-chlorophenyl, 49.3%), SintMed148 (2-tolyl, 56.6%), SintMed149 (2-bromophenyl, 71.7%),
and SintMed150 (2-phenoxyphenyl, 74.2%) have brought to light the importance of this
substitution pattern to the enhancement of the biological response and suggested that the
lipophilic character of the ortho-substituent is directly responsible for the inhibition of the
NO production. The remarkable results found for SintMed149 and SintMed150 are higher
than the control drug dexamethasone and arouse the interest of further investigation of
their immunomodulatory profiles.

These data corroborate with previous investigations, in which N-acyl hydrazone deriva-
tives have been shown to be effective in reducing nitric oxide production in macrophage cul-
tures stimulated with LPS plus IFN-γ, at concentrations ranging from 2.5 to 30 µM [11,13].
The previously studied compound SintMed65, derived from NAH and tested by Meira
and collaborators (2018) [13], was able to decrease the levels of pro-inflammatory cytokines
(TNF-α and IL-1β) produced by macrophages during the inflammatory process. TNF-α
is considered the “master regulator” of inflammatory responses, it is mainly produced
by macrophages, and orchestrates the production of other inflammatory mediators, as
well as macrophages and lymphocytes for injured tissues [40], while IL-1β has potent
pro-inflammatory activity and is crucial for the body’s defense against infections and
injuries [41]. Here, it was observed that compounds SintMed149 and SintMed150 also
promoted a significant reduction in TNF and IL-1β production.

Evidence shows that the hydrazone fraction of the compounds has a pharmacophoric
character for the inhibition of cyclooxygenase (COX) and that non-steroidal anti-inflammatory
drugs containing the NAH fraction are less ulcerogenic [16,42]. The hydrazone derivative
LaSSBio-1386 demonstrated the ability to inhibit the phosphorylation of the iκB protein,
promoting a negative regulation of NF-κB, a relevant inflammatory pathway, whose inhi-
bition is related to the decrease in cytokine production and inflammatory response [11].
Other derivatives such as N-pyrazoloyl hydrazone of isatin and N-thiopheneacetyl hy-
drazone of isatin decreased the translocation of NF-κB into the nucleus and suppressed
the MAPK pathway, evidenced by a decrease in p-38, JNK, and ERK protein production,
which interferes with the production of pro-inflammatory mediators [43]. In addition,
compound 3a inhibited the activation of the TLR4 signaling pathway in macrophages
that induces the activation of NF-κB [44]. These findings encourage further investigations
with NF-κB and MAPK signaling pathways to understand the mechanism of action of
ferrocene-N-acyl hydrazone.

Then, it was found that SintMed149 and SintMed150 decreased IL-2 and IFN-γ levels
and neither of the two molecules reduced IL-4 levels. IL-2 promotes the growth, differ-
entiation, and maturation of lymphocytes and IFN-γ promotes apoptosis in infected cells
and activates macrophages and NK cells [45,46]. Moraes et al. (2018) [36] obtained similar
results when investigating the anti-inflammatory potential of indole-N-acyl hydrazone
derivatives in murine splenocyte cultures.

The endotoxic shock model was previously used by Guimarães and colleagues (2018) [13]
to verify the survival of mice in the face of a lethal dose of LPS. Under the same conditions
used in this study, the compound in question (LaSSBio-1386), at 50 and 100 mg/kg, pro-
moted an animal survival of 50 and 85%, respectively. Previously, the anti-inflammatory ac-
tivity of NAH derivatives from the inhibition of cell migration in murine models of the sub-
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cutaneous air pocket and carrageenan-induced acute peritonitis was demonstrated [21,22].
The data presented here suggest that Fc-NAH molecules have the potential to modulate
the immune response in inflammatory conditions.

4. Materials and Methods
4.1. Chemistry

All solvents and reactants were purchased from Sigma-Aldrich (Merck KGaA, Darm-
stadt, Germany), Fluka (Carvalhaes, Alvorada, RS, Brazil), Vetec (Vetec Química Fina,
Duque de Caxias, RJ, Brazil), and Acros Chemicals (Thermo Fisher Scientific, Waltham,
MA, USA), and were used without further purification. The reactions’ progresses were
monitored by thin-layer chromatography (TLC), performed onto glass-backed plates of
silica gel 60 F254 with gypsum from Merck (Merck KGaA, Darmstadt, Germany), and
all compounds were detected by ultraviolet light (254 nm). Melting points were de-
termined with a capillary apparatus Gehaka PF 1500 Farma (Gehaka, São Paulo, SP,
Brazil) and are uncorrected. NMR spectra were recorded at 400 MHz for hydrogen and
100 MHz for carbon, using a Varian UNMRS 400 spectrometer (Varian, Palo Alto, CA,
USA), or at 300 MHz for hydrogen and 75 MHz for carbon nuclei, using a Varian Unitplus
300 NMR (Varian, Palo Alto, CA, USA). Analyses were determined in DMSO-d6 with
chemical shift values (δ) in parts per million (ppm) and coupling constants (J) in Hertz (Hz)
and measured at 25 ◦C. 1H and 13C assignments were assisted by 2D experiments, such as
DEPT full edit, HMBC, and HSQC. The description of the results was based on the IUPAC
numbering and name recommendations. IR spectra were recorded on a Tensor27 FTIR
spectrometer from Bruker (Bruker, Billerica, MA, USA) or a Spectrum 400 FTIR-FTNIR
spectrometer from Perkin Elmer (Perkin Elmer, Waltham, MA, USA) with the samples
being analyzed as KBr pellets. Elemental analyses were performed in a Perkin Elmer
2400 Series L elemental analyzer (Perkin Elmer, Waltham, MA, USA). All spectra are
available in the Supplementary Materials section.

4.2. Preparation of Aryl Carboxylic Acids 2a–p [30]

In a 100 mL round-bottom flask, 20 mmol of silver nitrate was suspended in 60 mL of
potassium hydroxide aqueous solution (7%), which was stirred for 5 min before 10 mmol of
the appropriate aldehydes 1a–p was added into the suspension. The mixture was stirred at
60 ◦C for 1 h, then cooled to room temperature, and filtered. The filtrate was acidified with
a hydrochloric acid solution (10%) until the formation of a precipitate, which was cooled in
an ice bath, filtered out, and dried under vacuum. The crude products were characterized
by comparing their melting points with literature values as well as by 1H NMR analysis.
Yields have ranged from 70 to 90%, and all solid products were directly used in the next
step without further purification.

4.3. Preparation of Aryl Carboxylate Methyl Esters 3a–p [29]

In a 100 mL round-bottomed flask, 6 mmol of crude carboxylic acids 2a–p was placed
with 30 mL of methanol. Then, 2 mL of concentrated sulfuric acid was added dropwise
under vigorous stirring, and the solution was allowed to reflux overnight. After cooling
to room temperature, the methanol was removed at a rotary evaporator to afford an oil,
which was dissolved in ethyl acetate (30 mL), and extracted with saturated aqueous sodium
carbonate (3 × 30 mL), followed by saturated sodium chloride (1 × 30 mL). The organic
layer was dried over anhydrous sodium sulfate, filtered off, prior to solvent removal, and
drying under vacuum to afford crude esters as oils or solids, in yields ranging from 80
to 95%. 1H NMR data were found to agree with literature reports so that crude products
could undergo the next reaction.

4.4. Preparation of Aryl Carbo Hydrazides 4a–p [29]

In a 50 mL round-bottomed flask, 5 mmol of the corresponding methyl esters 3a–p
and 2 mL of ethanol were placed. Then, 2 mL of hydrazine hydrate (55%) was dropped
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under stirring, and the solution was allowed to reflux overnight. After cooling to room
temperature, the reaction mixture was placed in an ice bath and filtered to afford crude
products as solids in yields from 70 to 90%. Based on 1H NMR data and melting point
measurements, the solid hydrazides could be reacted directly in the next step.

4.5. Preparation of Ferrocenyl-N-acyl Hydrazones SintMed(141–156)

To a stirred suspension of 1 mmol of appropriate hydrazide and 1 mmol of ferrocenecar-
boxaldehyde in 10 mL of methanol was added 10 mol-% cerium (III) chloride heptahydrate
and the reaction mixture was stirred at 40 ◦C during 10–30 min. The reaction’s completion
was monitored by TLC. Once concluded, the heating was put away, and 10 mL of water was
added to the medium. After standing at the refrigerator, vacuum filtration was carried out,
and the solid was washed with cold water/ethanol 1:1 followed by cold water. 1H NMR
analysis of all crude products confirmed their purity and, in a few cases, residual methanol
(δ 3.16 ppm) can be observed. Recrystallization from dioxane/water mixture afforded
the pure products for biological purposes. Yields, melting points, and spectroscopic and
elemental analysis data are listed below for each compound.

(E)-N′-(Ferrocenylmethylidene)benzohydrazide SintMed141: Rf 0.50 (AcOEt/Hexanes
1:1), red powder, 0.93 mmol, 93%, mp 178.8–180.5 ◦C (from dioxane/H2O 1:1); IR (KBr,
νmax cm−1): 3441, 3226 (CONH), 3063 (Ar CH), 1646 (C=O), 1607 (C=C), 1557 (C=N); 1H
NMR (400 MHz; DMSO-d6, δH ppm): 11.5 (s, 1H, CONH), 8.29 (s, 1H, N=CH), 7.89 (d,
2H, 3J = 6.9 Hz, Ar H-2,6), 7.57 (d, 1H, 3J = 6.8 Hz, Ar H-4), 7.52 (d, 2H, 3J = 6.8 Hz, Ar
H-3,5), 4.66 (s, 2H, N=CH-Cp H-2,5), 4.46 (s, 2H, N=CH-Cp H-3,4), 4.24 (s, 5H, Cp-H); );
13C NMR (100 MHz; DMSO-d6, δH ppm): 162.3 (1C, C=O), 149.0 (1C, N=CH), 133.6 (1C,
Ar C-1), 131.3 (1C, Ar C-4), 128.3 (2C, Ar C-3,5), 127.4 (2C, Ar C-2,6), 78.8 (1C, N=CH-Cp
C-1), 70.1 (2C, N=CH-Cp C-3,4), 68.9 (5C, Cp), 67.5 (2C, N=CH-Cp C-2,5); Anal Calcd for
C18H16FeN2O: C, 65.08; H, 4.86; N, 8.43; found: C, 65.01; H, 4.80; N, 8.51.

(E)-N′-(Ferrocenylmethylidene)-2-chlorobenzohydrazide SintMed142: Rf 0.56 (AcOEt/
Hexanes 1:1), red powder, 0.91 mmol, 91%, mp 156.8–158.1 ◦C (from dioxane/H2O 1:1); IR
(KBr, νmax cm−1): 3181 (CONH), 2993 (aliphatic CH), 1641 (C=O), 1598 (C=C),
1547 (C=N); 1H NMR (400 MHz; DMSO-d6, δH ppm, ≈1.8:1 rotamers mixture): 11.65
(s, CONH minor), 11.57 (s, 1H, CONH), 8.12 (s, 1H, N=CH), 7.88 (s, N=CH), 7.55–7.41 (m,
4H, Ar, and minor), 4.66 (s, 2H, N=CH-Cp H-2,5), 4.46 (s, 2H, N=CH-Cp H-3,4), 4.34 (s,
N=CH-Cp H-2,5 minor), 4.31 (s, N=CH-Cp H-3,4 minor), 4.23 (s, 5H, Cp-H), 4.15 (s, Cp-H
minor); 13C NMR (100 MHz; DMSO-d6, δC ppm, ≈1.8:1 rotamers mixture): 167.8 (CONH
minor), 161.7 (1C, CONH), 149.1 (1C, N=CH), 144.5 (N=CH minor), 136.1 (Ar C-1 minor),
135.3 (1C, Ar C-1), 131.1, 130.3, 130.2, 129.8, 129.6, 129.2, 128.7, 128.5, 127.1, 126.7 (5C, Ar,
and minor), 78.8 (N=CH-Cp C-1 minor), 78.5 (1C, N=CH-Cp C-1), 70.2 (2C, N=CH-Cp
C-3,4), 69.7 (N=CH-Cp C-3,4 minor), 68.9 (5C, Cp), 68.8 (5C, Cp minor), 67.6 (2C, N=CH-Cp
C-2,5), 67.1 (2C, N=CH-Cp C-2,5 minor); Anal Calcd for C18H15FeN2ClO: C, 58.97; H, 4.12;
N, 7.64; found: C, 58.86; H, 4.18; N, 7.54.

(E)-N′-(Ferrocenylmethylidene)furan-2-ylcarbohydrazide SintMed143: Rf 0.46 (AcOEt/
Hexanes 1:1), dark-red powder, 0.91 mmol, 91%, mp 220.8–222.5 ◦C (from dioxane/H2O
1:1); IR (KBr, νmax cm−1): 3215 (CONH), 2925 (aliphatic CH), 1651 (C=O), 1606 (C=C); 1H
NMR (300 MHz; DMSO-d6, δH ppm): 11.5 (s, 1H, CONH), 8.28 (s, 1H, N=CH); 7.92 (s, 1H,
Furyl H-5), 7.25 (s, 1H, Furyl H-3), 6.68 (s, 1H, Furyl H-4), 4.64 (s, 2H, N=CH-Cp H-2,5),
4.44 (s, 2H, N=CH-Cp H-3,4), 4.22 (s, 5H, Cp-H); 13C NMR (75 MHz; DMSO-d6, δC ppm):
153.6 (1C, CONH), 149.1 (1C, N=CH), 146.8 (1C, Furyl C-2), 145.4 (1C, Furyl C-5), 114.3 (1C,
Furyl C-3), 111.9 (1C, Furyl C-4), 78.7 (1C, N=CH-Cp C-1), 70.1 (2C, N=CH-Cp C-3,4), 68.9
(5C, Cp), 67.5 (2C, N=CH-Cp C-2,5); Anal Calcd for C16H14FeN2O2: C, 59.66; H, 4.38; N,
8.70; found: C, 59.57; H, 4.45; N, 8.78.

(E)-N′-(Ferrocenylmethylidene)-4-cyanobenzohydrazide SintMed144: Rf 0.50 (AcOEt/
Hexanes 1:1), red powder, 0.98 mmol, 98%, mp 236.0–237.9 ◦C (from dioxane/H2O 1:1);
IR (KBr, νmax cm−1): 3354, 3229 (CONH), 3090 (Ar CH), 2227 (C≡N), 1650 (C=O), 1611
(C=C), 1565 (C=N); 1H NMR (300 MHz; DMSO-d6, δH ppm): 11.8 (s, 1H, CONH), 8.31 (s,
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1H, N=CH), 8.05 (br s, 2H, Ar), 8.02 (br s, 2H, Ar), 4.67 (s, 2H, N=CH-Cp H-2,5), 4.45 (s, 2H,
N=CH-Cp H-3,4), 4.22 (s, 5H, Cp-H); 13C NMR (75 MHz; DMSO-d6, δC ppm): 160.9 (1C,
CONH), 150.2 (1C, N=CH), 137.6 (1C, Ar C-1), 132.4 (2C, Ar), 128.3 (2C, Ar), 118.2 (1C, CN),
113.7 (1C, Ar C-4), 78.4 (1C, N=CH-Cp C-1), 70.3 (2C, N=CH-Cp C-3,4), 68.9 (5C, Cp), 67.6
(2C, N=CH-Cp C-2,5); Anal Calcd for C19H15FeN3O: C, 63.89; H, 4.23; N, 11.76; found: C,
63.99; H, 4.18; N, 11.71.

(E)-N′-(Ferrocenylmethylidene)quinolin-2-ylcarbohydrazide SintMed145: Rf 0.66
(AcOEt/Hexanes 1:1), red powder, 0.91 mmol, 91%, mp 227.1–228.7 ◦C (from dioxane/H2O
1:1); IR (KBr, νmax cm−1): 3238 (CONH), 3050 (Ar CH), 1664 (C=O), 1600 (C=C), 1533 (C=N);
1H NMR (400 MHz; DMSO-d6, δH ppm): 11.9 (s, 1H, CONH), 8.60 (d, 1H, 3J = 8.4 Hz,
Quinoline H-4), 8.52 (s, 1H, N=CH), 8.21 (d, 1H, 3J = 8.0 Hz, Quinoline H-3), 8.20 (d, 1H,
3J = 8.0 Hz, Quinoline H-8), 8.11 (d, 1H, 3J = 8.4 Hz, Quinoline H-5), 7.92 (t, 1H, 3J = 7.2 Hz,
Quinoline H-7), 7.75 (t, 1H, 3J = 7.6 Hz, Quinoline H-6), 4.69 (s, 2H, N=CH-Cp H-2,5), 4.48
(s, 2H, N=CH-Cp H-3,4), 4.27 (s, 5H, Cp-H); 13C NMR (100 MHz; DMSO-d6, δC ppm): 159.7
(1C, C=O), 150.6 (1C, N=CH), 150.0 (1C, Quinoline C-2), 145.8 (1C, Quinoline C-8a), 137.9 (1C,
Quinoline C-4), 130.5 (1C, Quinoline C-7), 129.1 (1C, Quinoline C-8), 128.8 (1C, Quinoline
C-4a), 128.12 (1C, Quinoline C-5), 128.09 (1C, Quinoline C-6), 118.9 (1C, Quinoline C-3), 78.7
(1C, N=CH-Cp C-1), 70.2 (2C, N=CH-Cp C-3,4), 69.0 (5C, Cp), 67.6 (2C, N=CH-Cp C-2,5);
Anal Calcd for C21H17FeN3O: C, 65.82; H, 4.47; N, 10.96; found: C, 65.75; H, 4.52; N, 11.03.

(E)-N′-(Ferrocenylmethylidene)-3,5-tert-butyl-4-hydroxybenzohydrazide SintMed146:
Rf 0.76 (AcOEt/Hexanes 1:1), red powder, 0.97 mmol, 97%, mp 256.2–258.4 ◦C (dec, from
dioxane/H2O 1:1); IR (KBr, νmax cm−1): 3627, 3610 (br OH), 3507, 3223 (CONH), 3082
(Ar CH), 2912 (aliphatic CH), 1640 (C=O), 1607 (C=C), 1556 (C=N); 1H NMR (400 MHz;
DMSO-d6, δH ppm): 11.3 (s, 1H, CONH), 8.29 (s, 1H, N=CH), 7.63 (s, 3H, OH, and Ar
H-2,6), 4.64 (s, 2H, N=CH-Cp H-2,5), 4.43 (s, 2H, N=CH-Cp H-3,4), 4.22 (s, 5H, Cp-H), 1.42
(s, 18H, 2xtBu); 13C NMR (100 MHz; DMSO-d6, δC ppm): 163.3 (1C, C=O), 156.9 (1C, Ar
C-4), 148.2 (1C, N=CH), 138.3 (2C, Ar C-3,5), 124.8 (1C, Ar C-1), 124.2 (2C, Ar C-2,6), 79.2
(1C, N=CH-Cp C-1), 69.9 (2C, N=CH-Cp C-3,4), 68.9 (5C, Cp), 67.4 (2C, N=CH-Cp C-2,5),
34.5 (2C, CtBu), 30.1 (6C, tBu); Anal Calcd for C26H32FeN2O2: C, 67.83; H, 7.01; N, 6.08;
found: C, 67.89; H, 6.94; N, 6.13.

(E)-N′-(Ferrocenylmethylidene)-4-(trifluoromethyl)benzohydrazide SintMed147: Rf
0.74 (AcOEt/Hexanes 1:1), red powder, 0.99 mmol, 99%, mp 220.9–222.5 ◦C (from dioxane/
H2O 1:1); IR (KBr, νmax cm−1): 3355, 3201 (CONH), 3083, 3053 (Ar CH), 1657 (C=O), 1608
(C=C), 1564 (C=N); 1H NMR (400 MHz; DMSO-d6, δH ppm): 11.7 (s, 1H, CONH), 8.32
(s, 1H, N=CH), 8.10 (d, 2H, 3J = 5.2 Hz, Ar H-2,6), 7.90 (d, 2H, 3J = 6.0 Hz, Ar H-3,5),
4.68 (s, 2H, N=CH-Cp H-2,5), 4.47 (s, 2H, N=CH-Cp H-3,4), 4.24 (s, 5H, Cp-H); 13C NMR
(100 MHz; DMSO-d6, δC ppm): 161.1 (1C, C=O), 150.0 (1C, N=CH), 137.4 (1C, Ar C-1),
131.3 (q, 1C, 2JFC = 31 Hz, Ar C-4), 128.3 (2C, Ar C-2,6), 125.3 (2C, Ar C-3,5), 126.1 (q, 1C,
1JFC = 200 Hz, CF3), 78.5 (1C, N=CH-Cp C-1), 70.2 (2C, N=CH-Cp C-3,4), 68.9 (5C, Cp), 67.6
(2C, N=CH-Cp C-2,5); 19F NMR (376 MHz; DMSO-d6, δF ppm): -61.2 (s, 1F, CF3); Anal
Calcd for C19H15FeN2F3O: C, 57.03; H, 3.78; N, 7.00; found: C, 56.99; H, 3.83; N, 7.03.

(E)-N′-(Ferrocenylmethylidene)-2-methylbenzohydrazide SintMed148: Rf 0.55 (AcOEt/
Hexanes 1:1), red powder, 0.93 mmol, 93%, mp 207.9–209.8 ◦C (from dioxane/H2O 1:1);
IR (KBr, νmax cm−1): 3174 (CONH), 3056 (Ar CH), 2991 (aliphatic CH), 1643 (C=O), 1600
(C=C), 1559 (C=N); 1H NMR (400 MHz; DMSO-d6, δH ppm, ≈7:3 rotamers mixture):11.4 (s,
1H, CONH, and minor), 8.15 (s, 1H, N=CH), 7.89 (s, N=CH minor), 7.43–7.29 (m, 4H, Ar
H-3,4,5,6, and minor), 4.64 (s, 2H, N=CH-Cp H-2,5), 4.44 (s, 2H, N=CH-Cp H-3,4), 4.36 (s,
N=CH-Cp H-2,5 minor), 4.31 (s, N=CH-Cp H-3,4 minor), 4.23 (s, 5H, Cp-H), 4.17 (s, Cp-H
minor), 2.38 (s, 3H, CH3), 2.30 (s, CH3 minor); 13C NMR (100 MHz; DMSO-d6, δC ppm,
≈7:3 rotamers mixture): 170.5 (CONH minor), 164.4 (1C, CONH), 148.4 (1C, N=CH), 144.0
(N=CH minor), 136.1, 135.6, 135.4, 134.4, 130.4, 129.6, 129.4, 128.7, 127.24, 127.17, 125.4,
124.9 (6C, Ar, and minor), 78.9 (N=CH-Cp C-1 minor), 78.8 (1C, N=CH-Cp C-1), 70.0 (2C,
N=CH-Cp C-3,4), 69.6 (N=CH-Cp C-3,4 minor), 68.8 (5C, Cp), 68.7 (Cp minor), 67.4 (2C,



Molecules 2022, 27, 8343 16 of 22

N=CH-Cp C-2,5), 67.0 (N=CH-Cp C-2,5 minor), 19.23 (CH3 minor), 19.18 (1C, CH3); Anal
Calcd for C19H18FeN2O: C, 65.92; H, 5.24; N, 8.09; found: C, 65.99; H, 5.20; N, 8.15.

(E)-N′-(Ferrocenylmethylidene)-2-bromobenzohydrazide SintMed149: Rf 0.70 (AcOEt/
Hexanes 1:1), red powder, 0.87 mmol, 87%, mp 163.4–165.8 ◦C (dec, from dioxane/H2O 1:1);
IR (KBr, νmax cm−1): 3190 (CONH), 3055 (Ar CH), 1656 (C=O), 1600 (C=C), 1562 (C=N);
1H NMR (400 MHz; DMSO-d6, δH ppm, ≈2:1 rotamers mixture): 11.6 (s, CONH minor),
11.5 (s, 1H, CONH), 8.11 (s, 1H, N=CH), 7.87 (s, N=CH minor), 7.71 (d, 1H, 3J = 8.0 Hz,
Ar H-6), 7.68 (d, 3J = 8.0 Hz, Ar H-6 minor), 7.54–7.37 (m, 3H, Ar H-3,4,5, and minor),
4.66 (s, 2H, N=CH-Cp H-2,5), 4.46 (s, 2H, 3J = 2.8 Hz, N=CH-Cp H-3,4), 4.34 (s, N=CH-Cp
H-2,5 minor), 4.31 (s, N=CH-Cp H-3,4 minor), 4.24 (s, 5H, Cp-H), 4.16 (s, Cp-H minor); 13C
NMR (100 MHz; DMSO-d6, δC ppm): 162.5 (1C, CONH), 149.0 (1C, N=CH), 144.4 (N=CH
minor), 137.5, 132.7, 131.9, 131.2, 130.2, 129.2, 128.5, 127.6, 127.1 (5C, Ar C-1,3,4,5,6, and
minor), 119.4 (1C, Ar C-2), 78.9 (N=CH-Cp C-1 minor), 78.6 (1C, N=CH-Cp C-1), 70.2 (2C,
N=CH-Cp C-3,4), 69.7 (N=CH-Cp C-3,4 minor), 68.91 (5C, Cp), 68.86 (Cp minor), 67.6 (2C,
N=CH-Cp C-2,5), 67.1 (N=CH-Cp C-2,5 minor); Anal Calcd for C18H15FeN2BrO: C, 52.59;
H, 3.68; N, 6.81; found: C, 52.52; H, 3.71; N, 6.90.

(E)-N′-(Ferrocenylmethylidene)-2-phenoxybenzohydrazide SintMed150: Rf 0.65 (AcOEt/
Hexanes 1:1), red powder, 0.83 mmol, 83%, mp 177.9–179.5 ◦C (dec, from dioxane/H2O 1:1);
IR (KBr, νmax cm−1): 3308 (CONH), 3060 (Ar CH), 1661 (C=O), 1602 (C=C), 1541 (C=N); 1H
NMR (400 MHz; DMSO-d6, δH ppm, ≈7:3 rotamers mixture): 11.45 (s, CONH minor), 11.38
(s, 1H, CONH), 8.14 (s, 1H, N=CH), 7.84 (s, N=CH minor), 7.67–6.98 (m, 9H, Ar and OPh,
and minor), 4.62 (s, 2H, N=CH-Cp H-2,5), 4.42 (s, 2H, N=CH-Cp H-3,4), 4.39 (s, N=CH-Cp
H-2,5 minor), 4.32 (s, N=CH-Cp H-3,4 minor), 4.20 (s, 5H, Cp-H), 4.12 (s, Cp-H minor); 13C
NMR (100 MHz; DMSO-d6, δC ppm, ≈7:3 rotamers mixture): 167.9 (CONH minor), 161.1
(1C, CONH), 156.5, 153.0 (2C, Ar), 148.4 (1C, N=CH), 144.2 (N=CH minor), 131.7, 130.4,
130.2, 129.8, 129.6, 128.8, 128.6, 127.5, 123.6, 123.4, 123.1, 122.9, 120.1, 119.1, 118.4, 118.3,
118.0 (10C, Ar, OPh, and minor), 78.9 (N=CH-Cp C-1 minor), 78.7 (1C, N=CH-Cp C-1), 70.1
(2C, N=CH-Cp C-3,4), 69.7 (N=CH-Cp C-3,4 minor), 68.8 (5C, Cp), 68.7 (Cp minor), 67.5
(2C, N=CH-Cp C-2,5), 67.1 (N=CH-Cp C-2,5 minor); Anal Calcd for C24H20FeN2O2: C,
67.94; H, 4.75; N, 6.60; found: C, 67.87; H, 4.82; N, 6.65.

(E)-N′-(Ferrocenylmethylidene)-3,4,5-trihydroxybenzohydrazide SintMed151: Rf 0.10
(AcOEt), red powder, 0.96 mmol, 96%, mp 305.3–306.0 ◦C (dec, from dioxane/H2O 1:1);
IR (KBr, νmax cm−1): 3552–3000 (br, OH), 3225 (CONH), 3084 (Ar CH), 1633 (C=O), 1608
(C=C), 1570 (C=N); 1H NMR (300 MHz; DMSO-d6, δH ppm): 11.2 (s, 1H, CONH), 9.13
(s, 2H, 3,5-OH), 8.77 (s, 1H, 4-OH), 8.23 (s, 1H, N=CH), 6.90 (s, 2H, Ar H-2,6), 4.62 (s, 2H,
N=CH-Cp H-2,5), 4.42 (s, 2H, N=CH-Cp H-3,4), 4.21 (s, 5H, Cp-H); 13C NMR (75 MHz;
DMSO-d6, δC ppm): 162.5 (1C, C=O), 147.8 (1C, N=CH), 145.4 (2C, Ar C-3,5), 136.6 (1C, Ar
C-4), 123.6 (1C, Ar C-1), 106.9 (2C, Ar C-2,6), 79.2 (1C, N=CH-Cp C-1), 69.9 (2C, N=CH-Cp
C-3,4), 68.9 (5C, Cp), 67.4 (2C, N=CH-Cp C-2,5); Anal Calcd for C18H16FeN2O4: C, 56.87; H,
4.24; N, 7.37; found: C, 56.82; H, 4.31; N, 7.32.

(E)-N′-(Ferrocenylmethylidene)-3,4,5-trimethoxybenzohydrazide SintMed152: Rf 0.18
(AcOEt/Hexanes 1:1), red powder, 0.90 mmol, 90%, mp 237.8–239.5 ◦C (dec, from dioxane/H2O
1:1); IR (KBr, νmax cm−1): 3235 (CONH), 3083 (Ar CH), 2942 (aliphatic CH), 1646 (C=O),
1608 (C=C), 1582 (C=N); 1H NMR (400 MHz, DMSO-d6, δH ppm): 11.4 (s, 1H, CONH), 8.32
(s, 1H, N=CH), 7.23 (s, 2H, Ar H-2,6), 4.66 (s, 2H, N=CH-Cp H-2,5), 4.45 (s, 2H, N=CH-Cp
H-3,4), 4.23 (s, 5H, Cp-H), 3.86 (s, 6H, 3,5-OCH3), 3.73 (s, 3H, 4-OCH3); 13C NMR (100 MHz,
DMSO-d6, δC ppm): 161.8 (1C, C=O), 152.6 (2C, Ar C-3,5), 149.1 (1C, N=CH), 140.2 (1C, Ar
C-4), 128.7 (1C, Ar C-1), 105.0 (2C, Ar C-2,6), 78.8 (1C, N=CH-Cp C-1), 70.1 (2C, N=CH-Cp
C-3,4), 68.9 (5C, Cp), 67.5 (2C, N=CH-Cp C-2,5), 60.0 (1C, 4-OCH3), (2C, 3,5-OCH3); Anal
Calcd for C21H22FeN2O4: C, 59.73; H, 5.25; N, 6.63; found: C, 59.65; H, 5.22; N, 6.70.

(E)-N′-(Ferrocenylmethylidene)-3,4,5-trimethoxybenzohydrazide SintMed153: Rf 0.18
(AcOEt/Hexanes 1:1), yellow powder, yield 86%, mp 221.4–222.6 ◦C (dec, from dioxane/H2O
1:1); IR (KBr, νmax cm−1): 3379, 3328, 3255 (CONH, OH), 3095 (Ar CH), 1630 (C=O), 1558
(C=N); 1H NMR (400 MHz; DMSO-d6, δH ppm, ≈2:1 rotamers mixture): 13.6 (s, 1H,
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CONH), 9.23 (s, 1H, Ar H-6), 9.11 (s, Ar H-6 minor), 8.37 and 8.35 (2s, 1H, Ar H-4 major
and minor), 8.12 (s, 1H, N=CH), 7.34 (s, 1H, Ar H-3), 4.50 (s, 2H, N=CH-Cp H-2,5), 4.38 (s,
2H, N=CH-Cp H-3,4), 4.16 (s, 5H, Cp-H); 13C NMR (100 MHz; DMSO-d6, δC ppm): 167.1
(1C, CONH), 149.0 (1C, N=CH), 136.1 (1C, Ar C-2), 134.4 (1C, Ar C-5), 128.1 (1C, Ar C-4),
127.4 (1C, Ar C-6), 126.3 (1C, Ar C-1), 120.9 (1C, Ar C-3), 78.7 (1C, N=CH-Cp C-1), 69.9 (2C,
N=CH-Cp C-3,4), 68.8 (5C, Cp), 67.5 (2C, N=CH-Cp C-2,5); Anal Calcd for C18H15FeN3O4:
C, 54.99; H, 3.85; N, 10.69; found: C, 54.92; H, 3.84; N, 10.74.

(E)-N′-(Ferrocenylmethylidene)-3-chlorobenzohydrazide SintMed154: Rf 0.53 (AcOEt/
Hexanes 3:7), red powder, yield 98%, mp 225.7–228.2 ◦C (dec, from dioxane/H2O 1:1); IR
(KBr, νmax cm−1): 3196 (CONH), 3063 (Ar CH), 1643 (C=O), 1608 (C=C), 1568 (C=N); 1H
NMR (400 MHz, DMSO-d6, δH ppm): 11.6 (s, 1H, CONH), 8.29 (s, 1H, N=CH), 7.95 (s,
1H, Ar H-2), 7.86 (d, 1H, 3J = 6.8 Hz, Ar H-6), 7.65 (d, 1H, 3J = 7.6 Hz, Ar H-4), 7.55 (t, 1H,
3J = 7.6 Hz, Ar H-5), 4.67 (s, 2H, N=CH-Cp H-2,5), 4.46 (s, 2H, N=CH-Cp H-3,4), 4.23 (s,
5H, Cp); 13C NMR (100 MHz, DMSO-d6, δC ppm): 160.8 (C=O), 149.7 (N=CH), 135.6 (1C,
Ar C-3), 133.1 (1C, Ar C-1), 131.2 (1C, Ar C-4), 130.3 (1C, Ar C-5), 127.1 (1C, Ar C-2), 126.2
(1C, Ar C-6), 78.6 (1C, N=CH-Cp C-1), 70.2 (2C, N=CH-Cp C-3,4), 68.9 (5C, Cp), 67.5 (2C,
N=CH-Cp C-2,5); Anal Calcd for C18H15FeN2ClO: C, 58.97; H, 4.12; N, 7.64; found: C, 59.04;
H, 4.09; N, 7.58.

(E)-N′-(Ferrocenylmethylidene)-1-naphtylcarbohydrazide SintMed155: Rf 0.68 (AcOEt/
Hexanes 1:1), red powder, yield 93%, mp 233.0–234.4 ◦C (dec, from dioxane/H2O 1:1); IR
(KBr, νmax cm−1): 3185 (CONH), 3035 (Ar CH), 2977, 2845 (aliphatic CH), 1636 (C=O), 1617
(C=C), 1564 (C=N); 1H NMR (400 MHz; DMSO-d6, δH ppm): 11.7 (s, 1H, CONH), 8.24–8.22
(m, 1H, Naphtyl), 8.20 (s, 1H, N=CH), 8.08 (d, 1H, 3J = 8.0 Hz, Naphtyl), 8.03–8.00 (m,
1H, Naphtyl), 7.74 (d, 1H, 3J = 7.2 Hz, Naphtyl), 7.61–7.58 (m, 3H, Naphtyl), 4.68 (s, 2H,
N=CH-Cp H-2,5), 4.47 (s, 2H, N=CH-Cp H-3,4), 4.26 (s, 5H, Cp-H); 13C NMR (100 MHz;
DMSO-d6, δC ppm): 163.9 (C=O), 148.9 (N=CH), 133.1, 133.0, 130.2, 130.0, 128.2, 126.8, 126.3,
125.6, 125.1, 124.9 (10C, Naphtyl), 78.8 (1C, N=CH-Cp C-1), 70.1 (2C, N=CH-Cp C-3,4), 68.9
(5C, Cp), 67.5 (2C, N=CH-Cp C-2,5); Anal Calcd for C22H18FeN2O: C, 69.13; H, 4.75; N,
7.33; found: C, 69.21; H, 4.73; N, 7.36.

(E)-N′-(Ferrocenylmethylidene)-2,4-dimethoxybenzohydrazide SintMed156: Rf 0.32
(AcOEt/Hexanes 1:1), red powder, yield 87%, mp 123.9–126.6 ◦C (dec, from dioxane/H2O
1:1); IR (KBr, νmax cm−1): 3223 (CONH), 3083 (Ar CH), 2836 (aliphtic CH), 1641 (C=O),
1603 (C=C), 1561 (C=N); 1H NMR (400 MHz; DMSO-d6, δH ppm): 11.4 (s, 1H, CONH), 8.30
(s, 1H, N=CH), 7.55 (d, 1H, 3J = 8.0 Hz, Ar H-5), 7.48 (s, 1H, Ar H-3), 7.07 (d, 1H, 3J = 8.8 Hz,
Ar H-6), 4.65 (s, 2H, N=CH-Cp H-2,5), 4.44 (s, 2H, N=CH-Cp H-3,4), 4.23 (s, 5H, Cp-H), 3.84
(s, 3H, OCH3), 3.83 (s, 3H, OCH3); 13C NMR (100 MHz; DMSO-d6, δC ppm): 161.8 (C=O),
151.4 (1C, Ar C-4), 148.5 (1C, Ar C-2), 148.2 (N=CH), 125.6 (Ar C-1), 120.7 (1C, Ar C-5), 110.9
(1C, Ar C-6), 110.7 (1C, Ar C-3), 79.0 (1C, N=CH-Cp C-1), 70.0 (2C, N=CH-Cp C-3,4), 68.9
(5C, Cp), 67.4 (2C, N=CH-Cp C-2,5), 55.5 (2C, 2xOCH3); Anal Calcd for C20H20FeN2O3: C,
61.24; H, 5.14; N, 7.14; found: C, 61.16; H, 5.15; N, 7.09.

4.6. X-ray Crystallographic Analysis

Single crystals of compound SintMed149 were grown by slow evaporation of
an acetone/dichloromethane (1:1) solution. The X-ray diffraction experiment was per-
formed at 100 K on a Rigaku Synergy-S diffractometer (Applied Rigaku Technologies, Inc.,
Austin, TX, USA) with Mo Kα radiation (λ = 0.71073 Å). The CrysAlisPro 1.171.42.67a pro-
gram (CrysAlisPRO, Oxford Diffraction /Agilent Technologies UK Ltd., Yarnton, UK) was
used for data collection, cell refinement, data reduction, and gaussian method absorption
correction. The structure was solved and refined using the software SHELXT2015 [47]
and refined by SHELXL2015 [48] hosted on the OLEX2 program [49]. All atoms, except
hydrogen, were identified and refined by least-squares full matrix F2 with anisotropic
thermal parameters. The crystallographic tables and the structure representations were
generated by OLEX2. Details of the single-crystal X-ray diffraction experiment can be found
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in the Supplementary Materials as well as on the CCDC database (www.ccdc.cam.ac.uk/,
accessed on 12 September 2022) free of charge under deposit number 2214776.

4.7. Drugs

Dexamethasone (Sigma-Aldrich, St Louis, MO, USA), a synthetic glucocorticoid, was
used as a positive control in immunomodulatory assays. Gentian violet (Synth, São Paulo,
SP, Brazil) was used as a positive control in the cytotoxicity assays. All compounds
were solubilized in dimethylsulfoxide (DMSO; PanReac, Barcelona, Spain) and diluted in
Dulbecco’s modified Eagle medium (DMEM; Life Technologies, GIBCO-BRL; Waltham,
MA, USA) for use in the in vitro assays. The final concentration of DMSO was less than
0.1% in all in vitro experiments. For in vivo assays, the compounds were solubilized in
a solution containing 30% sorbitol (Sigma-Aldrich), 10% Tween 80 (Sigma-Aldrich), and
60% saline.

4.8. Animals

Male BALB/c mice, aged between 4–8 weeks, were provided by the animal breeding
facility of Gonçalo Moniz Institute, Salvador, Brazil, and maintained in sterilized cages
with controlled temperature (22 ± 2 ◦C) and humidity (55 ± 10%), water ad libitum, and
receiving a balanced diet for rodent. The experiments and procedures with animals were
approved by the institution’s committee on the ethical handling of laboratory animals
(approved number: L-IGM-018/15).

4.9. Cytotoxicity to Mammalian Cells

J774 macrophages were seeded into 96-well plates at a cell density of 1× 104 cells/well
in a DMEM medium supplemented with 10% fetal bovine serum (FBS; GIBCO) and
50 µg/mL of gentamicin (Life Technologies, Carlsbad, CA, USA) and incubated for 24 h
at 37 ◦C and 5% CO2. After that time, each compound was added in six concentrations
(50–1.56 µM), in triplicate, and incubated for 72 h. At the end of treatment, 20 µL/well
of Alamar Blue (Invitrogen) was added to the plates for 4 h. using a SpectraMax 190
Microplate Reader (Molecular Devices, Sunnyvale, CA, USA).

As a positive control, gentian violet was used at concentrations ranging from 0.04 to
10 µM. CC50 values were calculated using data from three independent experiments.

The second set of experiments was performed using peritoneal macrophages activated
with LPS (500 ng/mL, Sigma-Aldrich) and IFNγ (5 ng/mL; Sigma-Aldrich).

Peritoneal exudate macrophages were obtained by washing, with a cold DMEM
medium, the peritoneal cavity of BALB/c mice 4–5 days after injection of 3% thioglycolate
(Sigma-Aldrich) in saline (1.5 mL per mouse). Cells were seeded into 96-well plates at
a cell density of 1 × 105 cells/well in a DMEM medium supplemented with 10% FBS and
50 µg/mL of gentamicin and incubated for 24 h at 37 ◦C and 5% CO2. After that time,
each sample was added (12.5, 25, and 50 µM), in triplicate and incubated for 72 h. At the
end of treatment, 20 µL/well of Alamar Blue (Invitrogen) were added to the plates for
10 h. Colorimetric readings were performed at 570 and 600 nm using a SpectraMax 190
Microplate Reader (Molecular Devices, Sunnyvale, CA, USA).

4.10. Macrophage Cultures

Immortalized J774 macrophages (2 × 105 cells/well) or peritoneal macrophages
(2 × 105 cells/well) were incubated in 96-well plates in a DMEM medium supplemented
with 10% FBS and 50 µg/mL of gentamicin, in triplicate, stimulated or not with LPS
(500 ng/mL) and IFN-γ (5 ng/mL), and treated or not with different concentrations of the
evaluated ferrocenyl-N-acyl hydrazones. The cells were incubated for 4 or 24 h at 37 ◦C
and 5% CO2. Cell-free supernatants were collected after 4 h (for TNFα measurement) and
24 h (for IL-1β, TNFα, and nitrite quantifications), and kept at −80 ◦C until use.

www.ccdc.cam.ac.uk/
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4.11. Splenocyte Cultures

BALB/c splenocyte suspensions were prepared in a DMEM medium supplemented
with FBS and gentamicin. Splenocytes (5 × 106 cells/well) were plated in 24-well plates, in
triplicate, and stimulated or not with concanavalin A (Con A; 5 µg/mL, Sigma-Aldrich).
To evaluate lymphocyte function, splenocytes were activated in the absence or presence of
various concentrations of SintMed149 and SintMed150 (10, 20, and 40 µM). After 24 h of
treatment, cell-free supernatants were collected and kept at −80 ◦C until use.

4.12. Assessment of Cytokine and Nitric Oxide Production

The dosage of cytokines IFN-γ, IL-1β, IL-2, IL-4, and TNFα was performed from the
supernatant of peritoneal macrophages or splenocytes were determined by enzyme-linked
immunosorbent assay (ELISA), using DuoSet kits from R&D Systems, according to the
manufacturer’s instructions. Nitric oxide production was estimated in macrophage culture
supernatants harvested at 24 h using the Griess method for nitrite quantification [50].

4.13. Acute Toxicity in Mice

Male BALB/c mice (6–8 weeks of age; n = 6/group) were randomized into three groups
and treated orally with a single dose of SintMed150 (50 or 100 mg/kg) or vehicle (solution
containing 30% sorbitol, 10 % Tween 80, and 60% saline). Animals were monitored for
signs of general toxicity for 2 weeks after treatment. Observations involved changes in
eyes, fur, and skin, and the occurrence of tremors, salivation, convulsions, diarrhea, sleep,
lethargy, and coma. Body weights were taken and recorded at days 0, 7, and 14.

4.14. LPS-Induced Endotoxin Shock

Groups of five male BALB/c mice (4 weeks of age) were used for the LPS lethality
assays. Mice were treated with different doses of SintMed150 (50 or 100 mg/kg), dexam-
ethasone (25 mg/kg), or vehicle (solution containing 30% sorbitol, 10% Tween 80, and 60%
saline), by intraperitoneal (i.p.) route. Ninety minutes later, animals were challenged with
600 µg of LPS (from serotype 0111:B4 Escherichia coli, Sigma-Aldrich) in saline, by i.p. route.
The survival rate was then monitored daily during 4 days.

4.15. Induction of Acute Peritonitis in Mice

Male BALB/c mice (6–8 weeks of age; n = 6/group) were randomized into three
groups and treated orally with SintMed150 (100 mg/kg), dexamethasone (25 mg/kg),
or vehicle (solution containing 30% sorbitol, 10 % Tween 80, and 60% saline) 24 and 1 h
before the challenge. Next, animals were challenged with a 250 µL injection of carrageenan
(1 mg/mL; intraperitoneal route). After 4 h, animals were euthanized and peritoneal
exudates were harvested by peritoneal lavage using 2.5 mL of saline solution. Cells were
centrifuged at 400× g for 10 min, at 4 ◦C. The pellet was resuspended in saline (1 mL).
Total leukocytes in the peritoneal fluid were determined in a Neubauer chamber after
dilution in Trypan blue stain. Differential counting of neutrophils was carried out in rapid
panotype-stained cytospin preparations. A differential count of 300 cells was made in
a blinded fashion and according to standard morphologic criteria.

4.16. Statistical Analysis

To determine the cytotoxicity concentration of 50% of J774 macrophages (CC50), we
used non-linear regression. One-way analysis of variance and Newman–Keuls multiple
comparison tests were employed by using Graph Pad Prism version 8.0.1 (Graph Pad
Software; San Diego, CA, USA). Differences were considered significant when the values of
p were < 0.05. The data are representative of at least two or three experiments.

5. Conclusions

The investigation of the immunomodulatory potential of the series Fc-NAH has led to
the successful discovery of 16 new bioactive molecules designed on the basis of molecular
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hybridization, while some structure–activity relationships (SAR) have arisen from the analy-
sis of the outcomes. A structural pattern seems to be closely associated with the most active
compounds, namely the ortho substitution at the phenyl ring. Additionally, the presence of
a phenyl ring appears to be essential for achieving better biological responses. The data
presented here demonstrate that SintMed molecules can modulate the immune response
in inflammatory conditions by decreasing the production of inflammatory mediators such
as IFN-γ, IL-1β, IL-2, nitric oxide, and TNF-α, without affecting cell viability. Furthermore,
oral administration of the SintMed150 derivative significantly increased the survival rate
of mice in a model of endotoxic shock induced by LPS and decreased inflammatory cell
migration in a peritonitis model induced by carrageenan. These findings suggest that the
class of ferrocene-N-acyl hydrazones has therapeutic potential and may be useful in the
development of drugs to treat inflammatory conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27238343/s1, S2–S9: Characterization of the ferrocenyl-N-
acyl hydrazones SintMed(141–156), S10–S44: Spectroscopic data: NMR and IR spectra of Fc-NAH
SintMed(141–156), S45–S47: X-ray crystallographic data of SintMed149.
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