Isoniazid Linked to Sulfonate Esters via Hydrazone Functionality: Design, Synthesis, and Evaluation of Antitubercular Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antitubercular Activity Evaluation and Cytotoxicity Assessment
2.3. Stability Studies in Water and DMSO
2.4. InhA Inhibition
2.5. Molecular Modeling Studies
2.5.1. Molecular Docking
2.5.2. In Silico Prediction of Drug-Likeness
3. Material and Methods
3.1. Chemistry
3.1.1. Experimental
3.1.2. Synthesis
3.2. Microplate Alamar Blue Assay (MABA) Protocol
3.3. Cytotoxicity Protocol
3.4. Stability Studies
3.5. InhA Inhibition
3.5.1. Production and Purification of InhA
3.5.2. Enzymatic Assay
3.6. In Silico Studies
3.6.1. Molecular Docking
3.6.2. Prediction of Drug-Likeness
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Migliori, G.B.; Ong, C.W.M.; Petrone, L.; D’ambrosio, L.; Centis, R.; Goletti, D. The definition of tuberculosis infection based on the spectrum of tuberculosis disease. Breathe 2021, 17, 210079. [Google Scholar] [CrossRef] [PubMed]
- WHO Global Tuberculosis Report. 2020. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2020 (accessed on 5 June 2022).
- Pontali, E.; Raviglione, M.C.; Migliori, G.B.; Akkerman, O.W.; Alffenaar, J.W.; Blanc, F.X.; Borisov, S.; Cirillo, D.M.; Dalcolmo, M.; Dheda, K.; et al. Regimens to treat multidrug-resistant tuberculosis: Past, present and future perspectives. Eur. Respir. Rev. 2019, 28, 190035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khawbung, J.L.; Nath, D.; Chakraborty, S. Drug resistant Tuberculosis: A review. Comp. Immunol. Microbiol. Infect. Dis. 2021, 74, 101574. [Google Scholar] [CrossRef] [PubMed]
- Vilchèze, C.; Jacobs, W.R. The Isoniazid Paradigm of Killing, Resistance, and Persistence in Mycobacterium tuberculosis. J. Mol. Biol. 2019, 431, 3450–3461. [Google Scholar] [CrossRef] [PubMed]
- Reingewertz, T.H.; Meyer, T.; McIntosh, F.; Sullivan, J.; Meir, M.; Chang, Y.F.; Behr, M.A.; Barkana, D. Differential sensitivity of mycobacteria to isoniazid is related to differences in katg-mediated enzymatic activation of the drug. Antimicrob. Agents Chemother. 2020, 64, e01899-19. [Google Scholar] [CrossRef]
- de Ávila, M.B.; Bitencourt-Ferreira, G.; de Azevedo, W.F. Structural Basis for Inhibition of Enoyl-[Acyl Carrier Protein] Reductase (InhA) from Mycobacterium tuberculosis. Curr. Med. Chem. 2018, 27, 745–759. [Google Scholar] [CrossRef]
- Bollela, V.R.; Namburete, E.I.; Feliciano, C.S.; Macheque, D.; Harrison, L.H.; Caminero, J.A. Detection of katG and inhA mutations to guide isoniazid and ethionamide use for drug-resistant tuberculosis. Int. J. Tuberc. Lung Dis. 2016, 20, 1099–1104. [Google Scholar] [CrossRef] [Green Version]
- Belete, T.M. Recent Progress in the Development of Novel Mycobacterium Cell Wall Inhibitor to Combat Drug-Resistant Tuberculosis. Microbiol. Insights 2022, 15, 117863612210998. [Google Scholar] [CrossRef]
- Upton, A.M.; Mushtaq, A.; Victor, T.C.; Sampson, S.L.; Sandy, J.; Smith, D.-M.; van Helden, P.V.; Sim, E. Arylamine N-acetyltransferase of Mycobacterium tuberculosis is a polymorphic enzyme and a site of isoniazid metabolism. Mol. Microbiol. 2001, 42, 309–317. [Google Scholar] [CrossRef]
- Kinzig-Schippers, M.; Tomalik-Scharte, D.; Jetter, A.; Scheidel, B.; Jakob, V.; Rodamer, M.; Cascorbi, I.; Doroshyenko, O.; Sörgel, F.; Fuhr, U. Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob. Agents Chemother. 2005, 49, 1733–1738. [Google Scholar] [CrossRef]
- Sharma, P.C.; Sharma, D.; Sharma, A.; Saini, N.; Goyal, R.; Ola, M.; Chawla, R.; Thakur, V.K. Hydrazone comprising compounds as promising anti-infective agents: Chemistry and structure-property relationship. Mater. Today Chem. 2020, 18, 100349. [Google Scholar] [CrossRef]
- Koçak Aslan, E.; Krishna, V.S.; Armaković, S.J.; Armaković, S.; Şahin, O.; Tønjum, T.; Gündüz, M.G. Linking azoles to isoniazid via hydrazone bridge: Synthesis, crystal structure determination, antitubercular evaluation and computational studies. J. Mol. Liq. 2022, 354, 118873. [Google Scholar] [CrossRef]
- Vavříková, E.; Polanc, S.; Kočevar, M.; Horváti, K.; Bősze, S.; Stolaříková, J.; Vávrová, K.; Vinšová, J. New fluorine-containing hydrazones active against MDR-tuberculosis. Eur. J. Med. Chem. 2011, 46, 4937–4945. [Google Scholar] [CrossRef] [PubMed]
- Vergara, F.M.F.; Lima, C.H.d.S.; das Graças de Oliveira Henriques, M.; Candéa, A.L.P.; Lourenço, M.C.S.; de Lima Ferreira, M.; Kaiser, C.R.; de Souza, M.V.N. Synthesis and antimycobacterial activity of N′-[(E)-(monosubstituted-benzylidene)]-2-pyrazinecarbohydrazide derivatives. Eur. J. Med. Chem. 2009, 44, 4954–4959. [Google Scholar] [CrossRef] [PubMed]
- Ivasiv, V.; Albertini, C.; Gonçalves, A.E.; Rossi, M.; Bolognesi, M.L. Molecular hybridization as a tool for designing multitarget drug candidates for complex diseases. Curr. Top. Med. Chem. 2019, 19, 1694–1711. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C., Jr.; Eliezer, J.B.; Manssour Fraga, C.A. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr. Med. Chem. 2007, 14, 1829–1852. [Google Scholar] [CrossRef]
- Stagg, H.R.; Lipman, M.C.; McHugh, T.D.; Jenkins, H.E. Isoniazid-resistant tuberculosis: A cause for concern? Int. J. Tuberc. Lung Dis. 2017, 21, 129–139. [Google Scholar] [CrossRef]
- Tonge, P.; Kisker, C.; Slayden, R. Development of Modern InhA Inhibitors to Combat Drug Resistant Strains of Mycobacterium tuberculosis. Curr. Top. Med. Chem. 2007, 7, 489–498. [Google Scholar] [CrossRef]
- Li, P.; Wang, B.; Fu, L.; Guo, K.; Ma, C.; Wang, B.; Lin, Z.; Li, G.; Huang, H.; Lu, Y. Identification of novel benzothiopyranones with ester and amide motifs derived from active metabolite as promising leads against Mycobacterium tuberculosis. Eur. J. Med. Chem. 2021, 222, 113603. [Google Scholar] [CrossRef]
- Joaquim, A.R.; Gionbelli, M.P.; Gosmann, G.; Fuentefria, A.M.; Lopes, M.S.; Fernandes De Andrade, S. Novel Antimicrobial 8-Hydroxyquinoline-Based Agents: Current Development, Structure-Activity Relationships, and Perspectives. J. Med. Chem. 2021, 64, 16349–16379. [Google Scholar] [CrossRef]
- Lima, P.C.; Lima, L.M.; Da Silva, K.C.M.; Léda, P.H.O.; De Miranda, A.L.P.; Fraga, C.A.M.; Barreiro, E.J. Synthesis and analgesic activity of novel N-acylarylhydrazones and isosters, derived from natural safrole. Eur. J. Med. Chem. 2000, 35, 187–203. [Google Scholar] [CrossRef]
- Belowich, M.E.; Stoddart, J.F. Dynamic imine chemistry. Chem. Soc. Rev. 2012, 41, 2003–2024. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.F.M.; Guidetti, B.; Chamayou, A.; André-Barrès, C.; Madacki, J.; Korduláková, J.; Mori, G.; Orena, B.S.; Chiarelli, L.R.; Pasca, M.R.; et al. Mechanochemical Synthesis and Biological Evaluation of Novel Isoniazid Derivatives with Potent Antitubercular Activity. Molecules 2017, 22, 1457. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.S.; Bhole, R.P.; Khedekar, P.B.; Chikhale, R.V. Mycobacterium enoyl acyl carrier protein reductase (InhA): A key target for antitubercular drug discovery. Bioorg. Chem. 2021, 115, 105242. [Google Scholar] [CrossRef]
- Rivière, E.; Whitfield, M.G.; Nelen, J.; Heupink, T.H.; Van Rie, A. Identifying isoniazid resistance markers to guide inclusion of high-dose isoniazid in tuberculosis treatment regimens. Clin. Microbiol. Infect. 2020, 26, 1332–1337. [Google Scholar] [CrossRef] [PubMed]
- Rožman, K.; Sosič, I.; Fernandez, R.; Young, R.J.; Mendoza, A.; Gobec, S.; Encinas, L. A new ‘golden age’ for the antitubercular target InhA. Drug Discov. Today 2017, 22, 492–502. [Google Scholar] [CrossRef]
- Guardia, A.; Gulten, G.; Fernandez, R.; Gómez, J.; Wang, F.; Convery, M.; Blanco, D.; Martínez, M.; Pérez-Herrán, E.; Alonso, M.; et al. N-Benzyl-4-((heteroaryl)methyl)benzamides: A New Class of Direct NADH-Dependent 2-trans Enoyl–Acyl Carrier Protein Reductase (InhA) Inhibitors with Antitubercular Activity. ChemMedChem 2016, 11, 687–701. [Google Scholar] [CrossRef]
- Chollet, A.; Maveyraud, L.; Lherbet, C.; Bernardes-Génisson, V. An overview on crystal structures of InhA protein: Apo-form, in complex with its natural ligands and inhibitors. Eur. J. Med. Chem. 2018, 146, 318–343. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Khan, S.R.; Manialawy, Y.; Siraki, A.G. Isoniazid and host immune system interactions: A proposal for a novel comprehensive mode of action. Br. J. Pharmacol. 2019, 176, 4599–4608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kjellsson, M.C.; Via, L.E.; Goh, A.; Weiner, D.; Low, K.M.; Kern, S.; Pillai, G.; Barry, C.E.; Dartois, V. Pharmacokinetic evaluation of the penetration of antituberculosis agents in rabbit pulmonary lesions. Antimicrob. Agents Chemother. 2012, 56, 446–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. J. Med. Chem. 2000, 43, 3714–3717. [Google Scholar] [CrossRef] [PubMed]
- Tokalı, F.S.; Demir, Y.; Demircioğlu, İ.H.; Türkeş, C.; Kalay, E.; Şendil, K.; Beydemir, Ş. Synthesis, biological evaluation, and in silico study of novel library sulfonates containing quinazolin-4(3H)-one derivatives as potential aldose reductase inhibitors. Drug Dev. Res. 2022, 83, 586–604. [Google Scholar] [CrossRef] [PubMed]
- Biava, M.; Porretta, G.C.; Poce, G.; Supino, S.; Deidda, D.; Pompei, R.; Molicotti, P.; Manetti, F.; Botta, M. Antimycobacterial agents. Novel diarylpyrrole derivatives of BM212 endowed with high activity toward Mycobacterium tuberculosis and low cytotoxicity. J. Med. Chem. 2006, 49, 4946–4952. [Google Scholar] [CrossRef]
- Atıcı, R.K.; Doğan, Ş.D.; Gündüz, M.G.; Krishna, V.S.; Chebaiki, M.; Homberset, H.; Lherbet, C.; Mourey, L.; Tønjum, T. Urea derivatives carrying a thiophenylthiazole moiety: Design, synthesis, and evaluation of antitubercular and InhA inhibitory activities. Drug Dev. Res. 2022, 83, 1292–1304. [Google Scholar] [CrossRef]
- Rodriguez, F.; Saffon, N.; Sammartino, J.C.; Degiacomi, G.; Pasca, M.R.; Lherbet, C. First triclosan-based macrocyclic inhibitors of InhA enzyme. Bioorg. Chem. 2020, 95, 103498. [Google Scholar] [CrossRef]
- Kuo, M.R.; Morbidoni, H.R.; Alland, D.; Sneddon, S.F.; Gourlie, B.B.; Staveski, M.M.; Leonard, M.; Gregory, J.S.; Janjigian, A.D.; Yee, C.; et al. Targeting Tuberculosis and Malaria through Inhibition of Enoyl Reductase. J. Biol. Chem. 2003, 278, 20851–20859. [Google Scholar] [CrossRef] [Green Version]
- Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 2005, 45, 160–169. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Schrödinger Release 2019-1: Maestro; Schrödinger, LLC: New York, NY, USA, 2019.
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
MIC (μM) | Toxicity * IC50 (µM) | ||||||
---|---|---|---|---|---|---|---|
Compound | R | H37Rv | inhA+ | katG+ | HEK293 | IMR-90 | BEAS-2B |
SIH1 | 4-methylphenyl | 0.31 | 1.56 | 50 | 57.21 | >100 | >100 |
SIH2 | 4-(tert-butyl)phenyl | 0.62 | 1.56 | 25 | >100 | 89.50 | >100 |
SIH3 | 2,4,6-trimethylphenyl | 0.62 | 6.25 | 50 | 100 | >100 | >100 |
SIH4 | 4-methoxyphenyl | 0.31 | 1.56 | 6.25 | 40.76 | >100 | >100 |
SIH5 | 4-bromophenyl | 0.62 | 3.12 | 25 | 100 | 90.32 | >100 |
SIH6 | 4-chlorophenyl | 0.62 | 3.12 | >100 | >100 | >100 | >100 |
SIH7 | 4-iodophenyl | 0.62 | 6.25 | >100 | >100 | 100 | >100 |
SIH8 | 2,5-dichlorophenyl | 0.62 | 3.12 | 12.5 | >100 | 100 | >100 |
SIH9 | 4-nitrophenyl | 0.62 | 3.12 | 25 | 100 | >100 | >100 |
SIH10 | 3-nitrophenyl | 0.62 | 3.12 | 12.5 | >100 | >100 | >100 |
SIH11 | 4-acetamidophenyl | 0.62 | 3.12 | 12.5 | >100 | >100 | >100 |
SIH12 | 1,1′-biphenyl | 0.31 | 3.12 | 12.5 | 52.40 | 57.7 | >100 |
SIH13 | quinoline-8-yl | 0.31 | 3.12 | 12.5 | 58.34 | 100 | >100 |
Isoniazid | 0.31 | 1.56 | 6.25 | NT | NT | NT |
Compound | % Inhibition | Compound | % Inhibition |
---|---|---|---|
SIH1 | 12 | SIH8 | NI |
SIH2 | 25 | SIH9 | 8 |
SIH3 | NI | SIH10 | 17 |
SIH4 | 5 | SIH11 | 10 |
SIH5 | 33 | SIH12 | 31 |
SIH6 | 23 | SIH13 | 22 |
SIH7 | 41 | TCL | 98 |
Compound | MW a | LogP b | HBD c | HBA d | NRB e | TPSA f | Lipinski’s Violation |
---|---|---|---|---|---|---|---|
SIH1 | 395.43 | 2.95 | 1 | 6 | 7 | 106.10 | 0 |
SIH2 | 437.51 | 3.87 | 1 | 6 | 8 | 106.10 | 0 |
SIH3 | 423.48 | 3.74 | 1 | 6 | 7 | 106.10 | 0 |
SIH4 | 411.43 | 2.70 | 1 | 7 | 8 | 115.33 | 0 |
SIH5 | 460.30 | 3.22 | 1 | 6 | 7 | 106.10 | 0 |
SIH6 | 415.85 | 3.15 | 1 | 6 | 7 | 106.10 | 0 |
SIH7 | 507.30 | 3.25 | 1 | 6 | 7 | 106.10 | 1 |
SIH8 | 450.30 | 3.61 | 1 | 6 | 7 | 106.10 | 0 |
SIH9 | 426.40 | 1.98 | 1 | 8 | 8 | 151.92 | 0 |
SIH10 | 426.40 | 2.04 | 1 | 8 | 8 | 151.92 | 0 |
SIH11 | 438.46 | 2.25 | 2 | 7 | 9 | 135.20 | 0 |
SIH12 | 457.50 | 3.94 | 1 | 6 | 8 | 106.10 | 0 |
SIH13 | 432.45 | 2.97 | 1 | 7 | 7 | 118.99 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koçak Aslan, E.; Han, M.İ.; Krishna, V.S.; Tamhaev, R.; Dengiz, C.; Doğan, Ş.D.; Lherbet, C.; Mourey, L.; Tønjum, T.; Gündüz, M.G. Isoniazid Linked to Sulfonate Esters via Hydrazone Functionality: Design, Synthesis, and Evaluation of Antitubercular Activity. Pharmaceuticals 2022, 15, 1301. https://doi.org/10.3390/ph15101301
Koçak Aslan E, Han Mİ, Krishna VS, Tamhaev R, Dengiz C, Doğan ŞD, Lherbet C, Mourey L, Tønjum T, Gündüz MG. Isoniazid Linked to Sulfonate Esters via Hydrazone Functionality: Design, Synthesis, and Evaluation of Antitubercular Activity. Pharmaceuticals. 2022; 15(10):1301. https://doi.org/10.3390/ph15101301
Chicago/Turabian StyleKoçak Aslan, Ebru, Muhammed İhsan Han, Vagolu Siva Krishna, Rasoul Tamhaev, Cagatay Dengiz, Şengül Dilem Doğan, Christian Lherbet, Lionel Mourey, Tone Tønjum, and Miyase Gözde Gündüz. 2022. "Isoniazid Linked to Sulfonate Esters via Hydrazone Functionality: Design, Synthesis, and Evaluation of Antitubercular Activity" Pharmaceuticals 15, no. 10: 1301. https://doi.org/10.3390/ph15101301
APA StyleKoçak Aslan, E., Han, M. İ., Krishna, V. S., Tamhaev, R., Dengiz, C., Doğan, Ş. D., Lherbet, C., Mourey, L., Tønjum, T., & Gündüz, M. G. (2022). Isoniazid Linked to Sulfonate Esters via Hydrazone Functionality: Design, Synthesis, and Evaluation of Antitubercular Activity. Pharmaceuticals, 15(10), 1301. https://doi.org/10.3390/ph15101301