Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = actual pore pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8032 KiB  
Article
Liquefaction Response and Reinforcement Effect of Saturated Soil Treated by Dynamic Compaction Based on Hydro-Mechanically Coupled Explicit Analysis
by Sihan Ma, Guo Zhao, Xiaoyuan Yang, Run Xu, Zhiqiang Weng, Jiawei Liu, Chong Zhou and Chao Li
Buildings 2025, 15(14), 2527; https://doi.org/10.3390/buildings15142527 - 18 Jul 2025
Viewed by 267
Abstract
In order to accurately analyze the liquefaction and the reinforcement effect of saturated silty and sandy soils treated by dynamic compaction, a hydro-mechanically coupled explicit analysis method was proposed. The method, in combination with the cap model, was carried out using the Abaqus [...] Read more.
In order to accurately analyze the liquefaction and the reinforcement effect of saturated silty and sandy soils treated by dynamic compaction, a hydro-mechanically coupled explicit analysis method was proposed. The method, in combination with the cap model, was carried out using the Abaqus finite element software. Then, parametric analysis was carried out by means of the development and dissipation of excess pore water pressure, effective soil stress and the relative reinforcement degree. And the effects of the drop energy, tamper radius and soil permeability on the liquefaction zone and soil improvement of saturated soil were examined. The results demonstrated that the liquefaction zone and the effective reinforcement were determined by the drop energy rather than the permeability or tamper radius. A 2.5-times increase in drop energy can increase the maximum liquefaction depth by 1.1 m (4.6 m to 5.7 m) and the effective reinforcement depth (Ir ≥ 0.08) by 0.6 m (1.2 m to 1.8 m). It is recommended that the reinforcement effect should be improved by a lower drop energy with a low drop height and a heavy tamper in actual projects. It should also be noted that a smaller tamper radius was conducive to local soil improvement but also generated higher localized excess pore water pressures. Soil permeability critically controls liquefaction potential and excess pore water pressure dissipation. Low permeability soils experienced significant liquefaction depths and slower consolidation, whereas high permeability gravels (k = 10−2 m/s) showed minimal liquefaction and great improvements in depth. To diminish the effect of the underground water, the gravel cushions should be used to drain pore water out before dynamic compaction. Full article
Show Figures

Figure 1

22 pages, 4046 KiB  
Article
Research on the Adsorption Characteristics and Adsorption Capacity Predictions of Supercritical Methane in Deep Coal Seams
by Xuan Chen, Chao Wu, Hua Zhang, Shiqi Liu, Xinggang Wang, Hongwei Li, Zongsen Yao, Kaisaer Wureyimu, Fansheng Huang and Zhongliang Cao
Processes 2025, 13(7), 2186; https://doi.org/10.3390/pr13072186 - 8 Jul 2025
Viewed by 295
Abstract
In the development of deep coalbed methane (CBM) resources, the adsorption behavior of supercritical methane is a key factor restricting reserve evaluation and development efficiency. This study integrates scanning electron microscopy (SEM), low-temperature CO2 adsorption (LTCO2A), mercury intrusion porosimetry (MIP), [...] Read more.
In the development of deep coalbed methane (CBM) resources, the adsorption behavior of supercritical methane is a key factor restricting reserve evaluation and development efficiency. This study integrates scanning electron microscopy (SEM), low-temperature CO2 adsorption (LTCO2A), mercury intrusion porosimetry (MIP), high-temperature and high-pressure CH4 adsorption experiments (HTHP-CH4A), and theoretical models to reveal the pore–fracture structure of deep coal seams and the adsorption characteristics of supercritical methane. Based on a predictive model for supercritical methane adsorption capacity, the adsorption capacity of deep methane was predicted. Results show that micro-pores are well-developed in deep coal rocks, but pore connectivity is generally poor, predominantly consisting of fine bottleneck pores and semi-closed pores, with a certain proportion of open pores. The fractal dimension (Dm) of micro-pore structures in deep coal samples ranges from 2.0447 to 2.2439, indicating high micro-pore surface roughness and a large specific surface area, which provide favorable sites for methane adsorption. Pores larger than 100 nm exhibit fractal values between 2.6459 and 2.8833, suggesting that the pore surfaces in deep coal seams approach a three-dimensional pore space with rough surfaces and complex pore structures. As temperature and pressure enter the supercritical region, the adsorption capacity shows an abnormal trend of “first increasing and then decreasing” with increasing pressure. The deep coal rock–supercritical methane adsorption system exhibits two scenarios in low-pressure and high-pressure regions, corresponding to self-adsorption driven by strong methane adsorption potential and external force adsorption or overpressure micro-pore adsorption, respectively. The supercritical adsorption prediction model considering temperature and methane adsorption phase density has extremely low deviation (1.11–1.25%) and high accuracy. The average dispersion between predicted and actual values ranges from 0.44 cm3/g to 0.48 cm3/g, with small error fluctuations and no significant deviation. This study provides theoretical support for the recoverability evaluation and efficient development of deep CBM resources. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

31 pages, 5844 KiB  
Article
Cyclic Triaxial Testing: A Primer
by Carmine Polito
J 2025, 8(3), 25; https://doi.org/10.3390/j8030025 - 7 Jul 2025
Viewed by 373
Abstract
Cyclic triaxial tests are frequently used in the laboratory to assess the liquefaction susceptibility of soils. This paper will serve a two-fold purpose: First, it will serve to explain how the mechanics of the tests represent the stresses that occur in the field. [...] Read more.
Cyclic triaxial tests are frequently used in the laboratory to assess the liquefaction susceptibility of soils. This paper will serve a two-fold purpose: First, it will serve to explain how the mechanics of the tests represent the stresses that occur in the field. Topics covered include the differences in the stress paths for the soil in the field and in the lab, the differences in the actual stresses applied in the lab and the field, the differences between stress-controlled and strain-controlled tests, and the effects of other aspects of the testing methodology. The development of adjustment factors for converting the laboratory test results to the field is also briefly discussed. The second purpose of the paper is to serve as a guide to interpreting cyclic triaxial test results. The topics covered will include an examination of the two main liquefaction modes and the impact that the failure criteria selected have on the analysis, the differences between stress-controlled and strain-controlled test results, energy dissipation, and pore pressure generation. The author has run more than 1500 cyclic triaxial tests over the course of his career. He has found that, while the test is fairly straightforward to perform, it requires a much deeper understanding of the test mechanics and data interpretation in order to maximize the information gained from performing the test. This paper is intended as a guide, helping engineers to gain further insights into the test and its results. It has a target audience encompassing both those who are running their first tests and those who are looking to increase their understanding of the tests they have performed. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

24 pages, 6457 KiB  
Article
Material Balance Equation for Fractured Vuggy Reservoirs with Aquifer Multiples: Case Study of Fuman Oilfield
by Xingliang Deng, Zhiliang Liu, Peng Wang, Zhouhua Wang, Peng Wang, Hanmin Tu, Jun Li and Yao Ding
Energies 2025, 18(13), 3550; https://doi.org/10.3390/en18133550 - 4 Jul 2025
Viewed by 265
Abstract
Accurate dynamic reserve estimation is essential for effective reservoir development, particularly in fractured vuggy carbonate reservoirs characterized by complex pore structures, multiple spatial scales, and pronounced heterogeneity. Traditional reserve evaluation methods often struggle to account for the coupled behavior of pores, fractures, and [...] Read more.
Accurate dynamic reserve estimation is essential for effective reservoir development, particularly in fractured vuggy carbonate reservoirs characterized by complex pore structures, multiple spatial scales, and pronounced heterogeneity. Traditional reserve evaluation methods often struggle to account for the coupled behavior of pores, fractures, and vugs, leading to limited reliability. In this study, a modified material balance equation is proposed that explicitly considers the contributions of matrix pores, fractures, and vugs, as well as the influence of varying aquifer multiples. To validate the model, physical experiments were conducted using cores with different fracture–vug configurations under five distinct aquifer multiples. A field case analysis was also performed using production data from representative wells in the Fuman Oilfield. The results demonstrate that the proposed model achieves a fitting accuracy exceeding 94%, effectively capturing the dynamics of fractured vuggy systems with active water drive. The model enables quantitative evaluation of single-well reserves and aquifer multiples, providing a reliable basis for estimating effective recoverable reserves. Furthermore, by comparing simulated formation pressures (excluding aquifer effects) with actual static pressures, the contribution of external aquifer support to reservoir energy can be quantitatively assessed. This approach offers a practical and robust framework for reserve estimation, pressure diagnosis, and development strategy optimization in strongly water-driven fractured vuggy reservoirs. Full article
Show Figures

Figure 1

28 pages, 2766 KiB  
Article
Parameter Analysis of Pile Foundation Bearing Characteristics Based on Pore Water Pressure Using Rapid Load Test
by Jing-Jie Su, Xue-Liang Zhao, Qing Guo, Wei-Ming Gong, Yu-Chen Wang and Tong-Xing Zeng
Infrastructures 2025, 10(7), 159; https://doi.org/10.3390/infrastructures10070159 - 26 Jun 2025
Viewed by 250
Abstract
A novel approach for determining the bearing capacity of pile foundations using rapid load testing is suggested to rectify the inaccuracies arising from the presumption of a constant damping coefficient and excess pore water pressure during the evaluation of pile foundation bearing capacity [...] Read more.
A novel approach for determining the bearing capacity of pile foundations using rapid load testing is suggested to rectify the inaccuracies arising from the presumption of a constant damping coefficient and excess pore water pressure during the evaluation of pile foundation bearing capacity in soil. This research focuses on the characteristics associated with the segmented damping coefficient of pile foundations and the permeability coefficient of sand at the pile terminus, resulting in a long pulse vibration equation derived from dynamic effects. A numerical model incorporating the damping coefficient and permeability coefficient is developed, yielding the time history features of load, displacement, and acceleration. The findings indicate that (1) the long pulse vibration equation, predicated on dynamic effects, aligns more closely with the actual bearing capacity of pile foundations than traditional detection theory; (2) in the rapid load test method, the maximum load applied to sand pile foundations occurs prior to peak displacement, while the ultimate bearing capacity, after accounting for inertial forces, corresponds to the maximum displacement value; (3) the permeability coefficient significantly influences the ultra-static pore water pressure, and the testing error regarding the bearing capacity of low permeability sand pile foundations using the rapid loading method is elevated. Full article
Show Figures

Figure 1

25 pages, 6129 KiB  
Article
Application of Mercury Intrusion Porosimetry in Coal Pore Structure Characterization: Conformance Effect and Compression Effect Correction
by Shiqi Liu, Yu Liang, Shuxun Sang, He Wang, Wenkai Wang, Jianbo Sun and Fukang Li
Energies 2025, 18(12), 3185; https://doi.org/10.3390/en18123185 - 17 Jun 2025
Viewed by 340
Abstract
Mercury intrusion porosimetry (MIP) is commonly used to characterize coal pore structures, but conformance effect and compression effect can overestimate pore volume. This study uses MIP data from coal with varying metamorphic degrees in China to compare existing correction methods and propose a [...] Read more.
Mercury intrusion porosimetry (MIP) is commonly used to characterize coal pore structures, but conformance effect and compression effect can overestimate pore volume. This study uses MIP data from coal with varying metamorphic degrees in China to compare existing correction methods and propose a new approach based on apparent and true density for pore volume correction under no confining pressure. The study also analyzes the impact of conformance and compression effects on MIP data. Correctly identifying the “actual initial intrusion pressure” and “closure pressure” is essential for accurate data correction. The fractal dimension method offers a more robust theoretical foundation, while the conformance and intrusion pressure identification method is simpler. The stage correction method is reliable but requires repeated MIP tests, adding to the workload. The new method, which corrects both coal matrix and mercury volume compression, provides a simpler and reliable solution. Results show that conformance volume accounts for 9.91–83.26% of the apparent mercury intrusion volume and increases with coal metamorphism. Coal matrix volume compression represents 99.86–99.90% of the corrected total volume, with mercury volume compression being negligible. The corrected pore volume decreases as coal metamorphism increases, indicating the effectiveness and simplicity of the proposed method. Full article
Show Figures

Figure 1

41 pages, 10272 KiB  
Article
Recent Advances in Stimulation Techniques for Unconventional Oil Reservoir and Simulation of Fluid Dynamics Using Predictive Model of Flow Production
by Charbel Ramy, Razvan George Ripeanu, Salim Nassreddine, Maria Tănase, Elias Youssef Zouein, Alin Diniță and Constantin Cristian Muresan
Processes 2025, 13(4), 1138; https://doi.org/10.3390/pr13041138 - 10 Apr 2025
Cited by 1 | Viewed by 829
Abstract
This research makes a strong focus on improving fluid dynamics inside the reservoir after stimulation for enhancing oil and gas well performance, particularly in terms of increasing the Gas–oil ratio (GOR) and injectivity leading to a better productivity index (PI). Advanced stimulation operation [...] Read more.
This research makes a strong focus on improving fluid dynamics inside the reservoir after stimulation for enhancing oil and gas well performance, particularly in terms of increasing the Gas–oil ratio (GOR) and injectivity leading to a better productivity index (PI). Advanced stimulation operation using new formulated emulsified acid treatment greatly improves the reservoir permeability, allowing for better fluid movement and less formation damage. This, in turn, results in injectivity increases of at least 2.5 times and, in some situations, up to five times the original rate, which is critical for sustaining reservoir pressure and ensuring effective hydrocarbon recovery. The emulsified acid outperforms typical 15% HCl treatments in terms of dissolving and corrosion rates, as it is tuned for the reservoir’s pressure, temperature, permeability, and porosity. This dual-phase technology increases injectivity by five times while limiting the environmental and material consequences associated with spent and waste acid quantities. Field trials reveal significant improvements in injection pressure and a marked reduction in circulation pressure during stimulation, underscoring the treatment’s efficient penetration within the rock pores to enhance oil flow and sweep. This increase in performance is linked to the creation of the wormholing impact of the emulsified acid, resulting in improved fluid dynamics and optimized reservoir efficiency, as shown by the enhanced gas–oil ratio (GOR) in the four mentioned cases. A critical component of attaining such improvements is the capacity to effectively analyze and forecast reservoir behavior prior to executing the stimulation in real life. Engineers can accurately forecast injectivity gains and improve fluid injection tactics by constructing an advanced predictive model with low error margins, decreasing the need for time-consuming and costly trial-and-error approaches. Importantly, the research utilizes sophisticated neural network modeling to forecast stimulation results with minimal inaccuracies. This predictive ability not only diminishes the dependence on expensive and prolonged trial-and-error methods but also enables the proactive enhancement of treatment designs, thereby increasing efficiency and cost-effectiveness. This modeling approach based on several operational and reservoir factors, combines real-time field data, historical well performance records, and fluid flow simulations to verify that the expected results closely match the actual field outcomes. A well-calibrated prediction model not only reduces uncertainty but also improves decision making, allowing operators to create stimulation treatments based on unique reservoir features while minimizing unnecessary costs. Furthermore, enhancing fluid dynamics through precise modeling helps to improve GOR management by keeping gas output within appropriate limits while optimizing liquid hydrocarbon recovery. Finally, by employing data-driven modeling tools, oil and gas operators can considerably improve reservoir performance, streamline operational efficiency, and achieve long-term production growth through optimal resource usage. This paper highlights a new approach to optimizing reservoir productivity, aligning with global efforts to minimize environmental impacts in oil recovery processes. The use of real-time monitoring has boosted the study by enabling for exact measurement of post-injectivity performance and oil flow rates, hence proving the efficacy of these advanced stimulation approaches. The study offers unique insights into unconventional reservoir growth by combining numerical modeling, real-world data, and novel treatment methodologies. The aim is to investigate novel simulation methodology, advanced computational tools, and data-driven strategies for improving the predictability, reservoir performance, fluid behavior, and sustainability of heavy oil recovery operations. Full article
(This article belongs to the Special Issue Recent Advances in Heavy Oil Reservoir Simulation and Fluid Dynamics)
Show Figures

Figure 1

16 pages, 10697 KiB  
Article
Effect of Curing Temperature on Crack Resistance of Low-Heat Portland Cement Hydraulic Lining Concrete
by Shujun Chen, Xiangzhi Kong, Shuangxi Li and Bo Wei
Materials 2025, 18(7), 1618; https://doi.org/10.3390/ma18071618 - 2 Apr 2025
Viewed by 513
Abstract
As part of this study, mechanical property tests were carried out at different stages with different curing temperatures to elucidate the effect of temperature on the mechanical properties of concrete. The curing temperatures were laboratory curing temperature (standard curing at 20 °C) and [...] Read more.
As part of this study, mechanical property tests were carried out at different stages with different curing temperatures to elucidate the effect of temperature on the mechanical properties of concrete. The curing temperatures were laboratory curing temperature (standard curing at 20 °C) and variable temperature curing (simulated site ambient temperature curing) according to the actual temperature of previous construction sites. The compressive strength, split tensile strength, axial tensile strength, and modulus of elasticity values were tested, and the growth rates were calculated. According to previous experiments, the maturity indexes under two kinds of maintenance conditions were calculated based on the N-S maturity formula, F-P equivalent age calculation formula, and D-L equivalent age calculation formula proposed by the maturity theory. Moreover, logarithmic function, exponential function, and hyperbolic function fitting were carried out using the fitting software to study the developmental relationship between strength and maturity. The physical phase analysis of low-heat cement was performed using XRD and simultaneous thermal analysis, and pore structure analysis was conducted using the mercuric pressure method (MIP). We also conducted an SEM analysis of hydration products and the micromorphology of low-heat cement with 25% fly ash. Energetic spectroscopy analyzed the elemental content. In this study, it was found that temperature has a significant effect on the mechanical properties of concrete, with temperature having the greatest effect on splitting tensile strength. The strength of low-heat silicate cement concrete increases with maturity. The highest correlation coefficient was based on the hyperbolic function fit in the F-P equivalent age. The improved development of concrete strength in the later stages of the two curing conditions in this test indicates that low-heat cement is suitable for use in hydraulic tunnels. The low-heat cement generates a large number of C-S-H gels via C2S in the late stage, filling the internal pores, strengthening the concrete densification to make the structure more stable, guaranteeing the late development of concrete strength, and imparting a micro-expansive effect, which is effective for long-term crack resistance in hydraulic lining structures. Full article
Show Figures

Figure 1

13 pages, 2333 KiB  
Article
Deformation Study of Strongly Structured Clays Considering Damage Effects
by Yansong Shi, Bin Tang, Yinchuan Wang and Yanhua Xie
Appl. Sci. 2025, 15(6), 2969; https://doi.org/10.3390/app15062969 - 10 Mar 2025
Viewed by 533
Abstract
Settlement values calculated per the current “Code for Design of Building Foundations” demonstrate significant discrepancies when compared to the actual measured settlement values observed after disturbing a strong, cohesive soil foundation. This inconsistency introduces uncertainties in engineering design. To investigate the deformation behavior [...] Read more.
Settlement values calculated per the current “Code for Design of Building Foundations” demonstrate significant discrepancies when compared to the actual measured settlement values observed after disturbing a strong, cohesive soil foundation. This inconsistency introduces uncertainties in engineering design. To investigate the deformation behavior of highly structured clay, which is particularly sensitive to disturbances, this study employed a shaking table to subject undisturbed soil samples to various disturbance levels. The shaking frequencies were set at 20 Hz, 35 Hz, and 50 Hz, with durations of 30, 60, 90, and 120 min. One-dimensional compression tests were performed to examine the relationship between soil deformation parameters and overburden pressure, alongside an analysis of the deformation process and pore structure damage in the highly structured clay. A fitting process using Origin software was utilized to develop a deformation modulus calculation model that accounted for disturbance and damage effects, aiming to enhance the accuracy of foundation settlement predictions. The results indicate that the proposed empirical formula for the deformation modulus is highly reliable, which is essential for improving the precision of foundation settlement calculations and ensuring engineering safety. Full article
Show Figures

Figure 1

20 pages, 4403 KiB  
Article
Pressure Relief-Type Overpressure Prediction in Sand Body Based on BP Neural Network
by Yanfang Gao, Yanchao Li, Hongyan Yu, Shijie Shen, Zupeng Chen, Dengke Li, Xuelin Liang and Zhi Huang
Processes 2025, 13(3), 616; https://doi.org/10.3390/pr13030616 - 21 Feb 2025
Viewed by 535
Abstract
With the gradual depletion of global oil and gas resources, accurate prediction of anomaly formation pressure caused by pressure relief from other sources has become increasingly crucial in oil and gas exploration and development. The anomaly formation pressure caused by pressure relief affects [...] Read more.
With the gradual depletion of global oil and gas resources, accurate prediction of anomaly formation pressure caused by pressure relief from other sources has become increasingly crucial in oil and gas exploration and development. The anomaly formation pressure caused by pressure relief affects the well’s stability and significantly impacts the safety and economy of drilling operations. However, traditional methods for predicting anomaly formation pressure, such as Bowers’ method, may not accurately identify the complex relationship between parameters and pore pressure. In contrast, the BP neural network (BPNN) can learn the complex relationship between input and output from data, which has a significant advantage in accurately identifying anomaly formation pressures caused by pressure relief from other sources. This study proposes a neural network-based method for accurately predicting anomaly formation pressure caused by pressure relief from other sources. The high quality of input data is ensured through meticulous preprocessing related to anomaly formation pressure caused by pressure relief from other sources, including data cleaning, standardization, and correlation analysis. Subsequently, model training was conducted to fully utilize its powerful nonlinear fitting ability and capture the complex changes in formation pressure caused by anomaly pressure relief from other sources. This method collects and organizes the parameters of the formation, including Gamma-ray (Gr), Delta-T (Dt), wave velocity (Vp), and Resistivity (R10), to train a BPNN model for predicting pressure relief type anomaly formations. The trained model has a Bayesian regularized backpropagation function, and the average absolute percentage error (AAPE) and correlation coefficient (R) of predicting pore pressure in well A are 4.22% and 0.875, respectively. To verify the proposed model’s effectiveness, it was applied to a blind dataset of adjacent B wells and successfully predicted pore pressure with AAPE of 5.44% and R of 0.864. We compare and analyze the formation pore pressure predicted by the traditional Bowers model and support vector machine (SVM) model. The prediction results of the BPNN model have more minor errors and are closer to the actual pressure coefficient. This study demonstrates the accuracy of the proposed model in predicting pressure relief type anomaly formation pressure using drilling data. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 7905 KiB  
Article
Study on Soil and Water Loss on Slope Surface and Slope Stability Under Rainfall Conditions
by Fengzhan Hou, Zhenqiang Ni, Shihao Wang, Hangeng Sun, Fengxiao Zhao, Wei Zhong and Yongsheng Zhang
Water 2024, 16(24), 3643; https://doi.org/10.3390/w16243643 - 18 Dec 2024
Cited by 3 | Viewed by 1251
Abstract
For a binary structure slope with a soil layer on the top and a rock layer on the bottom, during the rainfall process, surface runoff will cause soil and water loss on the slope surface and damage to the slope environment. When rainwater [...] Read more.
For a binary structure slope with a soil layer on the top and a rock layer on the bottom, during the rainfall process, surface runoff will cause soil and water loss on the slope surface and damage to the slope environment. When rainwater infiltrates into the slope, the pore water pressure in the soil gradually increases, the shear strength of the soil decreases, and a weak zone is formed at the soil–rock interface, which has a significant impact on the stability of the slope. Therefore, to study the soil and water loss on the slope surface and the stability of the slope under rainfall conditions, we used theoretical analysis, indoor model tests, and numerical simulations to conduct a comprehensive exploration of this issue, and the following conclusions were formed: the pore water pressure in the shallow layer is greater than that in the deep layer, and the pore water pressure at the toe of the slope is greater than that at the top of the slope; as the slope gradient increases, the time when the pore water pressure at the toe of the slope begins to respond gradually speeds up; the slope displacement first occurs at the lower part of the slope, then in the middle, and finally at the upper part; the time when the displacement at each point on the slope surface begins to respond gradually speeds up with the increase in the slope; the damage form at a small slope gradient is mainly flow sliding, and the damage process is continuous; the damage form at a large slope gradient is mainly flow sliding and overall sliding, and the damage process is continuous and sudden; when the binary structure slope fails, the sliding surface includes the internal sliding surface of the soil and the sliding surface at the soil–rock interface, but when the slope gradient is small, the relative sliding at the soil–rock interface is small, and a continuous sliding surface cannot be formed; and when the slope gradients are small (30° and 40°), the displacement decreases continuously from top to bottom, and no overall sliding surface is formed. The larger values of plastic strain mainly occur in the upper and middle parts of the slope, there is no formation of a continuous plastic strain zone, and the damage mode is flow sliding; when the slope gradients are large (50° and 60°), the displacement is the largest in the upper part, and a large displacement also occurs in the lower part, forming a sliding surface that penetrates through the soil–soil and rock–soil layers. The larger values of plastic strain occur in the upper, middle, and lower parts of the slope, a continuous plastic strain zone is formed, and the damage modes are flow sliding and overall sliding; numerical simulations were carried out on a typical actual slope, and consistent results were obtained. Full article
(This article belongs to the Special Issue Water-Related Landslide Hazard Process and Its Triggering Events)
Show Figures

Figure 1

11 pages, 4319 KiB  
Article
Research on Monitoring Methods for Fluid Flow in Strata
by Feng Zhang
Processes 2024, 12(12), 2846; https://doi.org/10.3390/pr12122846 - 12 Dec 2024
Viewed by 674
Abstract
In many projects, it is important to monitor the direction of groundwater flow, but conventional methods make it difficult. Through streaming potential detection technology, under the action of external pressure, liquid can be forced to flow through solid pores to generate directional flow, [...] Read more.
In many projects, it is important to monitor the direction of groundwater flow, but conventional methods make it difficult. Through streaming potential detection technology, under the action of external pressure, liquid can be forced to flow through solid pores to generate directional flow, and a flow potential can be generated at both ends of solid pores. The phenomenon of different streaming potentials can help engineers determine the direction of fluid flow. In this study, tests were conducted using a core injection system and a streaming potential tester to carry out injections on sandstone samples of two different structures to study the effects of different injection pressures and different salinities on the variation in the streaming potential in sandstone. Moreover, a small-scale field water injection monitoring experiment was also carried out to observe the actual situation of the streaming potential generated during water injection in the field formation structure. The laboratory test results show that the flow potential is accompanied by the liquid injection process in the sandstone sample, and the flow potential produced by the sandstone with different porosities is obviously different, Therefore, the flow potential associated with the actual rock injection process can be used to infer porosity and permeability. This study provides a new method for monitoring underground fluids and is expected to improve the efficiency of oil extraction and geothermal development. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Processes: Control and Optimization)
Show Figures

Figure 1

15 pages, 4307 KiB  
Article
Exploring Similarities and Differences in Water Level Response to Earthquakes in Two Neighboring Wells Using Numerical Simulation
by Shuangshuang Lan, Zhengtan Mao, Daian Chen and Hongbiao Gu
Water 2024, 16(23), 3484; https://doi.org/10.3390/w16233484 - 3 Dec 2024
Viewed by 938
Abstract
The seismic effect of well water level is complex and variable, and even if both wells are located in an area with similar tectonic and hydrogeological conditions, they exhibit slightly varying response characteristics to the same earthquake. Wells BB and RC, located about [...] Read more.
The seismic effect of well water level is complex and variable, and even if both wells are located in an area with similar tectonic and hydrogeological conditions, they exhibit slightly varying response characteristics to the same earthquake. Wells BB and RC, located about 100 km apart in the southwest of the Huayingshan fault zone in the Sichuan and Chongqing regions, exhibited obvious similarities and differences in their co-seismically response and sustained recovery characteristics during the Wenchuan Ms8.0 earthquake. Based on the dislocation theory and fluid–solid coupling theory, this study developed the seismic stress–strain model and the response model of pore pressure to seismic stress using Coulomb 3.3 and COMSOL 6.3, respectively. Simulation findings indicate that both BB and RC are located in the expansion zone, where their water levels show a co-seismic step-down. The amplitudes of BB and RC water levels are 83 cm and 81 cm, which are approximately 10 cm smaller than the actual values. The recovery times are 60 d for BB and 3 h for RC, closely resembling the actual values. Furthermore, the numerical results from different scenarios show that the recovery time of pore pressure is reduced by several times when the permeability of the confining layer overlying the observed aquifer increases by one order of magnitude or the thickness decreases, and this change is more sensitive to the permeability. It is clear that the confining condition has an important impact in the response time of sustained changes in well water levels, which may also help to explain the variations in the characteristics of sustained changes in wells BB and RC. Full article
Show Figures

Figure 1

17 pages, 7897 KiB  
Article
Analysis of Fluid–Structure Coupling of Sudden Water Deformation in Tunnels Under Construction
by Zhongkai Wang, Jinyu Dong, Yawen Zhao and Zhongnan Wang
Water 2024, 16(23), 3479; https://doi.org/10.3390/w16233479 - 3 Dec 2024
Viewed by 989
Abstract
Analyzing the mechanisms of soil instability in tunnels due to sudden water ingress is essential for construction safety. This kind of problem belongs to the category of seepage deformation, mostly due to the near tunnel range of water pipeline blowing cracks and heavy [...] Read more.
Analyzing the mechanisms of soil instability in tunnels due to sudden water ingress is essential for construction safety. This kind of problem belongs to the category of seepage deformation, mostly due to the near tunnel range of water pipeline blowing cracks and heavy rainfall flooding rainwater into the tunnel. Distinguished from general infiltration behavior, the relevant problems have the characteristics of rapid occurrence and short action time. This study develops a 3D fluid–solid coupling model for soil deformation in tunnels with water ingress, grounded in Biot’s theory and Darcy’s law while considering water level variations within the tunnel. The governing equations are discretized in space and time, and the model’s accuracy is validated through comparison with actual measurements from a Zhengzhou subway project. The study analyzes pore pressure, stress-deformation responses, and surface settlement patterns in surrounding soil and rock mass under soil–water coupling. The findings show that (1) the tunnel cavern, as a seepage source, has minimal impact on the lateral settlement trough width, while seepage mainly affects the vertical deformation of surrounding rock; (2) pressure dissipation exhibits hysteresis in clay strata; (3) water ingress increases soil saturation and decreases effective stress, resulting in persistent surface settlement until drainage. There is a minimal discrepancy between model-calculated and measured settlements. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

19 pages, 8492 KiB  
Article
Simulation of Shale Gas Reservoir Production Considering the Effects of the Adsorbed Water Layer and Flow Differences
by Hua Yuan, Jianyi Liu, Qunchao Ding, Lu Jiang, Zhibin Liu, Wenting He and Yimin Wen
Processes 2024, 12(12), 2693; https://doi.org/10.3390/pr12122693 - 29 Nov 2024
Viewed by 911
Abstract
Accurately describing the behavior of a gas-water two-phase flow in shale gas reservoirs is crucial for analyzing production dynamics in the field. Current research generally lacks consideration of the differences in physical properties and adsorption characteristics between the oleophilic organic matrix and the [...] Read more.
Accurately describing the behavior of a gas-water two-phase flow in shale gas reservoirs is crucial for analyzing production dynamics in the field. Current research generally lacks consideration of the differences in physical properties and adsorption characteristics between the oleophilic organic matrix and the hydrophilic inorganic matrix. This study considers the organic matrix system as a single-phase gas flow, while the inorganic matrix and fracture systems involve a gas-water two-phase flow. Taking into account the impact of the adsorbed water layer on permeability at the surface of nanoscale pores in an inorganic matrix, the model comprehensively incorporates multiple mechanisms such as adsorption-desorption, the slippage effect, and Knudsen diffusion in the organic matrix and clay minerals. A multiscale gas-water two-phase comprehensive flow model for shale gas reservoirs has been established, and the results of the numerical model were validated against commercial software and actual field data. Simulation results over 1000 days indicate that early production from gas wells is primarily supplied by fractures, whereas free gas or desorbed gas from inorganic and organic matrices gradually contributes to the flow during the middle and later stages of production. As the Langmuir pressure and volume in the organic matrix and clay minerals increase, so does the corresponding gas production. The adsorbed water layer on the surface of inorganic nanopores reduces permeability, leading to a decrease in single-well cumulative gas production by 8.41%. The impact of the adsorbed water layer on gas production cannot be overlooked. The simulation method proposed in this study provides theoretical support for analyzing the gas-water two-phase flow behavior in shale gas reservoirs. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop