Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (470)

Search Parameters:
Keywords = active irrigation systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2278 KiB  
Article
Interplay Between Vegetation and Urban Climate in Morocco—Impact on Human Thermal Comfort
by Noura Ed-dahmany, Lahouari Bounoua, Mohamed Amine Lachkham, Mohammed Yacoubi Khebiza, Hicham Bahi and Mohammed Messouli
Urban Sci. 2025, 9(8), 289; https://doi.org/10.3390/urbansci9080289 - 25 Jul 2025
Viewed by 413
Abstract
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as [...] Read more.
This study examines diurnal surface temperature dynamics across major Moroccan cities during the growing season and explores the interaction between urban and vegetated surfaces. We also introduce the Urban Thermal Impact Ratio (UTIR), a novel metric designed to quantify urban thermal comfort as a function of the surface urban heat island (SUHI) intensity. The analysis is based on outputs from a land surface model (LSM) for the year 2010, integrating high-resolution Landsat and MODIS data to characterize land cover and biophysical parameters across twelve land cover types. Our findings reveal moderate urban–vegetation temperature differences in coastal cities like Tangier (1.8 °C) and Rabat (1.0 °C), where winter vegetation remains active. In inland areas, urban morphology plays a more dominant role: Fes, with a 20% impervious surface area (ISA), exhibits a smaller SUHI than Meknes (5% ISA), due to higher urban heating in the latter. The Atlantic desert city of Dakhla shows a distinct pattern, with a nighttime SUHI of 2.1 °C and a daytime urban cooling of −0.7 °C, driven by irrigated parks and lawns enhancing evapotranspiration and shading. At the regional scale, summer UTIR values remain below one in Tangier-Tetouan-Al Hoceima, Rabat-Sale-Kenitra, and Casablanca-Settat, suggesting that urban conditions generally stay within thermal comfort thresholds. In contrast, higher UTIR values in Marrakech-Safi, Beni Mellal-Khénifra, and Guelmim-Oued Noun indicate elevated heat discomfort. At the city scale, the UTIR in Tangier, Rabat, and Casablanca demonstrates a clear diurnal pattern: it emerges around 11:00 a.m., peaks at 1:00 p.m., and fades by 3:00 p.m. This study highlights the critical role of vegetation in regulating urban surface temperatures and modulating urban–rural thermal contrasts. The UTIR provides a practical, scalable indicator of urban heat stress, particularly valuable in data-scarce settings. These findings carry significant implications for climate-resilient urban planning, optimized energy use, and the design of public health early warning systems in the context of climate change. Full article
Show Figures

Figure 1

24 pages, 836 KiB  
Article
Effect of Farming System and Irrigation on Physicochemical and Biological Properties of Soil Under Spring Wheat Crops
by Elżbieta Harasim and Cezary A. Kwiatkowski
Sustainability 2025, 17(14), 6473; https://doi.org/10.3390/su17146473 - 15 Jul 2025
Viewed by 295
Abstract
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: [...] Read more.
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: A. organic system (control)—without the use of chemical plant protection products and NPK mineral fertilization; B. conventional system—the use of plant protection products and NPK fertilization in the range and doses recommended for spring wheat; C. integrated system—use of plant protection products and NPK fertilization in an “economical” way—doses reduced by 50%. The second experimental factor was irrigation strategy: 1. no irrigation—control; 2. double irrigation; 3. multiple irrigation The aim of the research was to determine the physical, chemical, and enzymatic properties of loess soil under spring wheat crops as influenced by the factors listed above. The highest organic C content of the soil (1.11%) was determined in the integrated system with multiple irrigation of spring wheat, whereas the lowest one (0.77%)—in the conventional system without irrigation. In the conventional system, the highest contents of total N (0.15%), P (131.4 mg kg−1), and K (269.6 mg kg−1) in the soil were determined under conditions of multiple irrigation. In turn, the organic system facilitated the highest contents of Mg, B, Cu, Mn, and Zn in the soil, especially upon multiple irrigation of crops. It also had the most beneficial effect on the evaluated physical parameters of the soil. In each farming system, the multiple irrigation of spring wheat significantly increased moisture content, density, and compaction of the soil and also improved its total sorption capacity (particularly in the integrated system). The highest count of beneficial fungi, the lowest population number of pathogenic fungi, and the highest count of actinobacteria were recorded in the soil from the organic system. Activity of soil enzymes was the highest in the integrated system, followed by the organic system—particularly upon multiple irrigation of crops. Summing up, the present study results demonstrate varied effects of the farming systems on the quality and health of loess soil. From a scientific point of view, the integrated farming system ensures the most stable and balanced physicochemical and biological parameters of the soil due to the sufficient amount of nutrients supplied to the soil and the minimized impact of chemical plant protection products on the soil. The multiple irrigation of crops resulting from indications of soil moisture sensors mounted on plots (indicating the real need for irrigation) contributed to the improvement of almost all analyzed soil quality indices. Multiple irrigation generated high costs, but in combination with fertilization and chemical crop protection (conventional and integrated system), it influenced the high productivity of spring wheat and compensated for the incurred costs (the greatest profit). Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Figure 1

20 pages, 2627 KiB  
Article
Automated Detection of Center-Pivot Irrigation Systems from Remote Sensing Imagery Using Deep Learning
by Aliasghar Bazrafkan, James Kim, Rob Proulx and Zhulu Lin
Remote Sens. 2025, 17(13), 2276; https://doi.org/10.3390/rs17132276 - 3 Jul 2025
Viewed by 455
Abstract
Effective detection of center-pivot irrigation systems is crucial in understanding agricultural activity and managing groundwater resources for sustainable uses, especially in semi-arid regions such as North Dakota, where irrigation primarily depends on groundwater resources. In this study, we have adopted YOLOv11 to detect [...] Read more.
Effective detection of center-pivot irrigation systems is crucial in understanding agricultural activity and managing groundwater resources for sustainable uses, especially in semi-arid regions such as North Dakota, where irrigation primarily depends on groundwater resources. In this study, we have adopted YOLOv11 to detect the center-pivot irrigation systems using multiple remote sensing datasets, including Landsat 8, Sentinel-2, and NAIP (National Agriculture Imagery Program). We developed an ArcGIS custom tool to facilitate data preparation and large-scale model execution for YOLOv11, which was not included in the ArcGIS Pro deep learning package. YOLOv11 was compared against other popular deep learning model architectures such as U-Net, Faster R-CNN, and Mask R-CNN. YOLOv11, using Landsat 8 panchromatic data, achieved the highest detection accuracy (precision: 0.98; recall: 0.91; and F1-score: 0.94) among all tested datasets and models. Spatial autocorrelation and hotspot analysis revealed systematic prediction errors, suggesting a need to adjust training data regionally. Our research demonstrates the potential of deep learning in combination with GIS-based workflows for large-scale irrigation system analysis, adopting precision agricultural technologies for sustainable water resource management. Full article
(This article belongs to the Special Issue Remote Sensing of Agricultural Water Resources)
Show Figures

Figure 1

15 pages, 992 KiB  
Article
Influence of Irrigant Activation Techniques on External Root Temperature Rise and Irrigation Penetration Depth in 3D-Printed Tooth Model: An In Vitro Study
by Ali Addokhi, Ahmed Rahoma, Neveen M. A. Hanna, Faisal Alonaizan, Faraz Farooqi and Shimaa Rifaat
Dent. J. 2025, 13(7), 295; https://doi.org/10.3390/dj13070295 - 29 Jun 2025
Viewed by 393
Abstract
Introduction: Successful root canal therapy relies on thorough cleaning and disinfection to eliminate microorganisms and residual pulp tissue. Advanced irrigation activation techniques, including Sonic, Ultrasonic, and Diode Laser activation, have improved cleaning efficacy, bacterial reduction, smear layer removal, and irrigant hydrodynamics. On the [...] Read more.
Introduction: Successful root canal therapy relies on thorough cleaning and disinfection to eliminate microorganisms and residual pulp tissue. Advanced irrigation activation techniques, including Sonic, Ultrasonic, and Diode Laser activation, have improved cleaning efficacy, bacterial reduction, smear layer removal, and irrigant hydrodynamics. On the other hand, these irrigation activation techniques may lead to a temperature rise that may risk the surrounding periodontal tissue. Thus, this study aimed to investigate the temperature rise during different irrigation activation techniques at various time intervals and evaluate the efficacy of these techniques in removing biofilm-mimicking hydrogel BMH of a simulated root canal system in 3D-printed tooth models. Methods: Ten extracted human mandibular premolars, prepared to size 40/0.04 taper, and a hundred 3D-printed resin premolars with simulated main (0.25 mm) and lateral canals (0.15 mm at 3, 7, 11 mm from apex) were used; 50 of them were filled with biofilm-mimicking hydrogel (BMH). Five irrigation activation techniques were evaluated: Diode Laser, Ultrasonic, Sonic, XP-Finisher, and Control (n = 10). Temperature rises were measured on the extracted premolars after 30 and 60 s of activation using a thermographic camera in a controlled environment (23 ± 2 °C). Irrigant penetration, with and without BMH, was assessed in 3D-printed premolars using a 2.5% sodium hypochlorite-contrast medium mixture, visualized with a CMOS radiographic sensor. Penetration was scored (main canal: 3 points; lateral canals: 0–2 points) and analyzed with non-parametric tests. Results: Diode Laser activation technique resulted in the highest temperature rise on the external root surface, followed by the Ultrasonic, with no statistically significant difference observed among the remaining groups. In terms of efficacy, Ultrasonic and Sonic activation achieved significantly greater irrigant penetration in samples without BMH, and greater BMH removal in samples with BMH, compared to Diode Laser, XP-Finisher, and Control groups. Conclusions: In this in vitro study, Diode Laser caused the highest temperature rise, followed by Ultrasonic, with significant increases from 30 to 60 s. Temperature rise did not significantly affect penetration or BMH removal. Ultrasonic and Sonic irrigation techniques achieved the highest depth of penetration (without BMH) and biofilm-mimicking Hydrogel removal (with BMH) compared to Diode Laser, XP-Finisher, and Control. Full article
Show Figures

Figure 1

18 pages, 1601 KiB  
Article
Dual Role of Iron Oxides in Stabilizing Particulate and Mineral-Associated Organic Carbon Under Field Management in Paddies
by Hang Guo, Linxian Liao, Junzeng Xu, Wenyi Wang, Peng Chen, Zhihui Min, Yajun Luan, Yu Han and Keke Bao
Agriculture 2025, 15(13), 1385; https://doi.org/10.3390/agriculture15131385 - 27 Jun 2025
Viewed by 320
Abstract
The interactions between iron oxides and organic carbon within the particulate organic matter (POM) and mineral-associated organic matter (MAOM) fractions in paddy soils remain insufficiently understood, yet they are likely crucial for unlocking the carbon sequestration potential of these systems. In this study, [...] Read more.
The interactions between iron oxides and organic carbon within the particulate organic matter (POM) and mineral-associated organic matter (MAOM) fractions in paddy soils remain insufficiently understood, yet they are likely crucial for unlocking the carbon sequestration potential of these systems. In this study, we investigated the distribution of soil iron oxides and organic carbon within POM and MAOM fractions following 10 years of continuous irrigation and organic amendment management. We also examined the relationship between iron oxide transformation and these two SOC (soil organic carbon) fractions. Our results demonstrated that, under both flooded irrigation and controlled irrigation regimes, straw return or manure application effectively enhanced soil carbon sequestration, as evidenced by increases in both POM-C (POM-associated organic carbon) and MAOM-C (MAOM-associated organic carbon) contents. Meanwhile, exogenous carbon inputs promoted the transformation of crystalline iron oxides into short-range ordered iron oxides and iron oxide colloids, thereby enhancing the activation and complexation degree of soil iron oxides and facilitating the formation of Fe-bound organic carbon. Further regression analysis revealed that the activation degree of iron oxides had a stronger influence on POM-C, whereas the complexation degree had a greater effect on MAOM-C. This implies that exogenous carbon inputs are effective in promoting soil carbon sequestration in both flooded and water-saving irrigated rice paddies and that iron oxide transformation plays a key role in mediating this effect. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 6551 KiB  
Article
Monitoring the Impacts of Human Activities on Groundwater Storage Changes Using an Integrated Approach of Remote Sensing and Google Earth Engine
by Sepide Aghaei Chaleshtori, Omid Ghaffari Aliabad, Ahmad Fallatah, Kamil Faisal, Masoud Shirali, Mousa Saei and Teodosio Lacava
Hydrology 2025, 12(7), 165; https://doi.org/10.3390/hydrology12070165 - 26 Jun 2025
Viewed by 516
Abstract
Groundwater storage refers to the water stored in the pore spaces of underground aquifers, which has been increasingly affected by both climate change and anthropogenic activities in recent decades. Therefore, monitoring their changes and the factors that affect it is of great importance. [...] Read more.
Groundwater storage refers to the water stored in the pore spaces of underground aquifers, which has been increasingly affected by both climate change and anthropogenic activities in recent decades. Therefore, monitoring their changes and the factors that affect it is of great importance. Although the influence of natural factors on groundwater is well-recognized, the impact of human activities, despite being a major contributor to its change, has been less explored due to the challenges in measuring such effects. To address this gap, our study employed an integrated approach using remote sensing and the Google Earth Engine (GEE) cloud-free platform to analyze the effects of various anthropogenic factors such as built-up areas, cropland, and surface water on groundwater storage in the Lake Urmia Basin (LUB), Iran. Key anthropogenic variables and groundwater data were pre-processed and analyzed in GEE for the period from 2000 to 2022. The processes linking these variables to groundwater storage were considered. Built-up area expansion often increases groundwater extraction and reduces recharge due to impervious surfaces. Cropland growth raises irrigation demand, especially in semi-arid areas like the LUB, leading to higher groundwater use. In contrast, surface water bodies can supplement water supply or enhance recharge. The results were then exported to XLSTAT software2019, and statistical analysis was conducted using the Mann–Kendall (MK) non-parametric trend test on the variables to investigate their potential relationships with groundwater storage. In this study, groundwater storage refers to variations in groundwater storage anomalies, estimated using outputs from the Global Land Data Assimilation System (GLDAS) model. Specifically, these anomalies are derived as the residual component of the terrestrial water budget, after accounting for soil moisture, snow water equivalent, and canopy water storage. The results revealed a strong negative correlation between built-up areas and groundwater storage, with a correlation coefficient of −1.00. Similarly, a notable negative correlation was found between the cropland area and groundwater storage (correlation coefficient: −0.85). Conversely, surface water availability showed a strong positive correlation with groundwater storage, with a correlation coefficient of 0.87, highlighting the direct impact of surface water reduction on groundwater storage. Furthermore, our findings demonstrated a reduction of 168.21 mm (millimeters) in groundwater storage from 2003 to 2022. GLDAS represents storage components, including groundwater storage, in units of water depth (mm) over each grid cell, employing a unit-area, mass balance approach. Although storage is conceptually a volumetric quantity, expressing it as depth allows for spatial comparison and enables conversion to volume by multiplying by the corresponding surface area. Full article
Show Figures

Figure 1

19 pages, 2927 KiB  
Article
Restoration, Indicators, and Participatory Solutions: Addressing Water Scarcity in Mediterranean Agriculture
by Enrico Vito Perrino, Pandi Zdruli, Lea Piscitelli and Daniela D’Agostino
Agronomy 2025, 15(7), 1517; https://doi.org/10.3390/agronomy15071517 - 22 Jun 2025
Viewed by 497
Abstract
Agricultural water resource management is increasingly challenged by climate variability, land degradation, and socio-economic pressures, particularly in the Mediterranean region. This study, conducted in 2023–2024 within the REACT4MED project (PRIMA initiative), addresses sustainable water use through a comparative analysis of organic and conventional [...] Read more.
Agricultural water resource management is increasingly challenged by climate variability, land degradation, and socio-economic pressures, particularly in the Mediterranean region. This study, conducted in 2023–2024 within the REACT4MED project (PRIMA initiative), addresses sustainable water use through a comparative analysis of organic and conventional farms in the Stornara and Tara area (Puglia, Italy). The research aimed to identify critical indicators for sustainable water management and develop ecosystem restoration strategies that can be replicated across similar Mediterranean agro-ecosystems. An interdisciplinary, participatory approach was adopted, combining technical analyses and stakeholder engagement through three workshops involving 30 participants from diverse sectors. Fieldwork and laboratory assessments included soil sampling and analysis of parameters such as pH, electrical conductivity, soil organic carbon, nutrients, and salinity. Cartographic studies of vegetation, land use, and pedological characterization supplemented the dataset. The key challenges identified were water loss in distribution systems, seawater intrusion, water pumping from unauthorized wells, and inadequate public policies. Soil quality was significantly influenced by salt stress, hence affecting crop productivity, while socio-economic factors affected farm income. Restoration strategies emphasized the need for water-efficient irrigation, less water-intensive crops, and green vegetation in infrastructure channels while incorporating also the native flora. Enhancing plant biodiversity through weed management in drainage channels proved beneficial for pathogen control. Proposed socio-economic measures include increased inclusion of women and youth in agricultural management activities. Integrated technical and participatory approaches are essential for effective water resource governance in Mediterranean agriculture. This study offers scalable, context-specific indicators and solutions for sustainable land and water management in the face of ongoing desertification and climate stress. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

25 pages, 744 KiB  
Review
Effectiveness of Irrigation Protocols in Endodontic Therapy: An Umbrella Review
by Manuel J. Orozco-Gallego, Eliana L. Pineda-Vélez, Wilder J. Rojas-Gutiérrez, Martha L. Rincón-Rodríguez and Andrés A. Agudelo-Suárez
Dent. J. 2025, 13(6), 273; https://doi.org/10.3390/dj13060273 - 18 Jun 2025
Viewed by 1469
Abstract
Background: With the inclusion of evidence-based dentistry, numerous systematic reviews (SRs) and meta-analyses (MAs) have been conducted in endodontics with the best available scientific evidence to improve diagnosis and treatment. Objective: To synthesize the scientific evidence on the effectiveness of irrigation protocols in [...] Read more.
Background: With the inclusion of evidence-based dentistry, numerous systematic reviews (SRs) and meta-analyses (MAs) have been conducted in endodontics with the best available scientific evidence to improve diagnosis and treatment. Objective: To synthesize the scientific evidence on the effectiveness of irrigation protocols in endodontic therapy. Methods: Following the umbrella review methodology (UR), a comprehensive literature search was conducted using scientific and grey literature databases. A quality evaluation and a descriptive analysis of the included SRs and MAs were conducted. Quantitative comparability between MAs was carried out. Results: Four descriptive SRs and nine MAs were included. Eight articles evidenced high methodological quality. Studies showed the effectiveness and efficacy depending on the study design, the findings of primary clinical trials, and factors related to the type of irrigant, concentration, volume, and irrigation systems. Variability between irrigants and protocols was observed. Follow-up periods extend from hours to years, and there were different study samples. SRs and MAs evidenced limitations regarding methodological aspects. Low overlap of the primary studies was found. Quantitative analyses indicated greater efficacy in microbial reduction and apical healing in favor of passive ultrasonic irrigation (PUI; RD −0.15; 95% CI −0.28, −0.01; p = 0.03; I2 = 60%; RD −0.09; 95% CI −0.16, −0.02; p = 0.01; I2 = 0%, respectively). Conclusions: This UR highlights the importance of root canal disinfection, emphasizing sodium hypochlorite (NaOCl) as the primary irrigant. Enhanced activation methods, such as PUI and lasers, improve irrigant efficiency, while alternatives like chlorhexidine (CHX) offer better biocompatibility. Standardized protocols and evidence-based clinical guidelines are needed. PROSPERO register: CRD42023409044. Full article
(This article belongs to the Special Issue Endodontics: From Technique to Regeneration)
Show Figures

Figure 1

15 pages, 2675 KiB  
Article
Aloe Vera as an Adjunct in Endodontic Irrigation: Impact on Dentin Bond Strength and Cytotoxicity
by Lucas David Galvani, Ester Alves Ferreira Bordini, Diana Gabriela Soares, Joatan Lucas de Sousa Gomes Costa, José Rodolfo Verbicário, Fernando Pozzi Semeghini Guastaldi, Milton Carlos Kuga and Luís Geraldo Vaz
Materials 2025, 18(12), 2874; https://doi.org/10.3390/ma18122874 - 18 Jun 2025
Viewed by 349
Abstract
This study evaluated the effects of mechanical agitation of Aloe vera Barbadensis Miller solution at different concentrations using passive ultrasonic irrigation (PUI), XP Endo Finisher (XPF), XP Clean (XPC), and Easy Clean (ECL), compared to conventional endodontic irrigation (CIE), on bond strength and [...] Read more.
This study evaluated the effects of mechanical agitation of Aloe vera Barbadensis Miller solution at different concentrations using passive ultrasonic irrigation (PUI), XP Endo Finisher (XPF), XP Clean (XPC), and Easy Clean (ECL), compared to conventional endodontic irrigation (CIE), on bond strength and adhesive failure patterns in the cervical, middle, and apical thirds of the root canal. Aloe vera solutions at 1%, 3%, and 5% were tested to reverse collagen fiber collapse induced by hypochlorous acid, a free radical released by 2.5% sodium hypochlorite, which impairs dentin hybridization and the light curing of resin cement. Fiberglass posts were cemented using an etch-and-rinse adhesive system (Ambar; FGM) and conventional dual resin cement (Allcem Core) in root dentin across all thirds. Human teeth underwent chemical–mechanical preparation, and the Aloe vera solution was agitated using the CIE, PUI, XPF, XPC, or ECL protocols. Slices from each root third were evaluated under a stereomicroscope at 10× magnification and subjected to the push-out test. Cytotoxicity was assessed by applying various Aloe vera concentrations to stem cells from the apical papilla (SCAPs) for 24 h, followed by analysis of cell metabolism (Alamar Blue), viability (Live/Dead), and proliferation (F-actin). Aloe vera demonstrated significant biological activity and enhanced bond strength, particularly at 3% and 5%, irrespective of the agitation method or root third. Thus, it can be concluded that using Aloe vera solution is an alternative for pre-treatment before the cementation of fiberglass posts with conventional dual-cure resin cement in endodontically treated dentin. Full article
Show Figures

Figure 1

17 pages, 222 KiB  
Article
Short-Season Direct-Seeded Cotton Cultivation Under Once-Only Irrigation Throughout the Growing Season: Investigating the Effects of Planting Density and Nitrogen Application
by Zhangshu Xie, Yeling Qin, Xuefang Xie, Xiaoju Tu, Aiyu Liu and Zhonghua Zhou
Plants 2025, 14(12), 1864; https://doi.org/10.3390/plants14121864 - 17 Jun 2025
Viewed by 492
Abstract
To identify optimal strategies for high-yield and high-efficiency cultivation under a “short-season direct-seeded cotton with once-only irrigation” regime, we conducted two-year field experiments (2022 and 2023) using a split-plot factorial design with three planting densities (30,000 (D1), 45,000 (D2), and 60,000 (D3) plants·ha [...] Read more.
To identify optimal strategies for high-yield and high-efficiency cultivation under a “short-season direct-seeded cotton with once-only irrigation” regime, we conducted two-year field experiments (2022 and 2023) using a split-plot factorial design with three planting densities (30,000 (D1), 45,000 (D2), and 60,000 (D3) plants·ha−1) and three nitrogen application rates (150 (N1), 180 (N2), and 210 (N3) kg·ha−1). Our study systematically examined how these treatment combinations influenced canopy architecture, physiological traits, yield components, and fiber quality. The results showed that increased planting density significantly enhanced plant height, the leaf area index (LAI), and the number of fruiting branches, with the highest density (D3) contributing to a more compact and efficient canopy. Moderate nitrogen input (N2) significantly increased peroxidase (POD) activity, reduced malondialdehyde (MDA) accumulation, delayed functional leaf senescence, and prolonged the canopy’s photosynthetic performance. A significant interaction between planting density and nitrogen application was observed. The D3N2 treatment (high density with moderate nitrogen) consistently achieved the highest fruiting branch count, boll number per plant, and yields of both seed cotton and lint in both years, while maintaining stable fiber quality. This indicates its strong capacity to balance high yield with quality and maintain physiological resilience. By contrast, the D1N1 treatment (low density and low nitrogen) exhibited a loose canopy, premature photosynthetic decline, and the lowest yield. The D3N3 treatment (high density and high nitrogen) promoted vigorous early growth but reduced stress tolerance during later growth stages, leading to yield instability. These findings demonstrate that moderately increasing planting density while maintaining appropriate nitrogen levels can effectively optimize canopy structure, improve stress resilience, and enhance yield under short-season direct-seeded cotton systems with once-only irrigation. This provides both theoretical underpinning and practical guidance for achieving stable and efficient cotton production under such systems. Full article
20 pages, 1160 KiB  
Article
Linking Almond Yield and Quality to the Production System and Irrigation Strategy Considering the Plantation Age in a Mediterranean Semiarid Environment
by Abel Calderón-Pavón, Iván Francisco García-Tejero, Luis Noguera-Artiaga, Leontina Lipan, Esther Sendra, Francisca Hernández, Juan Francisco Herencia-Galán, Ángel Antonio Carbonell-Barrachina and Víctor Hugo Durán Zuazo
Agronomy 2025, 15(6), 1448; https://doi.org/10.3390/agronomy15061448 - 13 Jun 2025
Viewed by 435
Abstract
Almond (Prunus dulcis Mill.) is characterized by its water stress tolerance and adaptability to diverse management strategies, allowing it to maintain or even enhance almond quality while achieving optimal yields. Limited research has been conducted to date on how almond production and [...] Read more.
Almond (Prunus dulcis Mill.) is characterized by its water stress tolerance and adaptability to diverse management strategies, allowing it to maintain or even enhance almond quality while achieving optimal yields. Limited research has been conducted to date on how almond production and quality vary across different water regimes and production systems, or how tree age modulates crop responses to deficit irrigation and organic practices. This study examines the effects of regulated deficit irrigation (RDI) under organic (OPS) and conventional (CPS) production systems, analyzing the impact on nut quality (physical and chemical parameters) and its sensorial properties in an almond orchard during seasons in 2019 and 2023, when the trees were 3-years old and when they were close to their yield potential at 7-years old, respectively. The PS and irrigation strategy affected the nut quality, yield, and tree growth. The OPS and RDI methods accumulated season-dependent yield losses in both studied periods. The kernel weight under OPS was lower than CPS in 2019, with these differences being less evident in 2023. The highest antioxidant activity and total phenolic compound values were obtained with the OPS and RDI methods in 2019, whereas the sugar and organic acid contents showed improvements under the OPS and the RDI strategy during 2019 and 2023, respectively. Finally, significant improvements were observed in relation to the fatty acids profile for nuts harvested under OPS in both seasons, especially in the latter season with RDI. Thus, almond quality can be enhanced by the integration of both OPSs and RDI strategies, although these improvements are dependent on tree age. Full article
Show Figures

Figure 1

34 pages, 7396 KiB  
Article
Sustainable Groundwater Management in the Coastal Aquifer of the Témara Plain, Morocco: A GIS-Based Hydrochemical and Pollution Risk Assessment
by Abdessamia El Alaoui, Imane Haidara, Nawal Bouya, Bennacer Moussaid, Khadeijah Yahya Faqeih, Somayah Moshrif Alamri, Eman Rafi Alamery, Afaf Rafi AlAmri, Youness Moussaid and Mohamed Ait Haddou
Sustainability 2025, 17(12), 5392; https://doi.org/10.3390/su17125392 - 11 Jun 2025
Viewed by 775
Abstract
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and [...] Read more.
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and anthropogenic pressures. This study aims to assess groundwater quality and its vulnerability to pollution risks and map the spatial distribution of key hydrochemical processes through an integrated approach combining Geographic Information System (GIS) techniques and multivariate statistical analysis, as well as applying the DRASTIC model to evaluate water vulnerability. A total of fifty-eight groundwater samples were collected across the plain and analyzed for major ions to identify dominant hydrochemical facies. Spatial interpolation using Inverse Distance Weighting (IDW) within GIS revealed distinct patterns of sodium chloride (Na-Cl) facies near the coastal areas with chloride concentrations exceeding the World Health Organization (WHO) drinking water guideline of 250 mg/L—indicative of seawater intrusion. In addition to marine intrusion, agricultural pollution constitutes a major diffuse pressure across the aquifer. Shallow groundwater zones in agricultural areas show heightened vulnerability to salinization and nitrate contamination, with nitrate concentrations reaching up to 152.3 mg/L, far surpassing the WHO limit of 45 mg/L. Furthermore, other anthropogenic pollution sources—such as wastewater discharges from septic tanks in peri-urban zones lacking proper sanitation infrastructure and potential leachate infiltration from informal waste disposal sites—intensify stress on the aquifer. Principal Component Analysis (PCA) identified three key factors influencing groundwater quality: natural mineralization due to carbonate rock dissolution, agricultural inputs, and salinization driven by seawater intrusion. Additionally, The DRASTIC model was used within the GIS environment to create a vulnerability map based on seven key parameters. The map revealed that low-lying coastal areas are most vulnerable to contamination. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

20 pages, 1908 KiB  
Article
Understanding the Impact of Climatic Events on Optimizing Agricultural Production in Northeast China
by Junfeng Gao, Bonoua Faye, Ronghua Tian, Guoming Du, Rui Zhang and Fabrice Biot
Atmosphere 2025, 16(6), 704; https://doi.org/10.3390/atmos16060704 - 11 Jun 2025
Viewed by 888
Abstract
Climatic events are expected to significantly impact global agricultural production, with China being particularly vulnerable. Research in China emphasizes the urgent need for sustainable agricultural practices that address climate change, implement effective management strategies to mitigate the impacts of climatic events, and ensure [...] Read more.
Climatic events are expected to significantly impact global agricultural production, with China being particularly vulnerable. Research in China emphasizes the urgent need for sustainable agricultural practices that address climate change, implement effective management strategies to mitigate the impacts of climatic events, and ensure food security. Therefore, this study examines the impact of climatic events on agricultural production optimization in Northeast China. To complete this objective, this study uses Method-of-Moments Quantile Regression (MM-QR) and data from 2003 to 2020. The main findings reveal that climatic factors, such as the Standardized Precipitation Index (SPI) and High-Temperature Days (HTDs), have a more pronounced effect on agricultural outcomes at higher production levels, particularly for larger producers. In addition, machinery power (TPAM) enhances productivity. Its role is more focused on risk mitigation than on expanding production. Insurance payouts (AIPE) increase grain production capacity at higher quantiles, while fertilizer use (FEU) has diminishing returns on capacity but encourages planting. Granger causality tests further demonstrate that management factors—such as machinery, irrigation, and insurance—play a more significant role in shaping agricultural outcomes than extreme climatic events. To improve agricultural sustainability in the context of climate change, policy recommendations include promoting climate-resilient crops, investing in smart irrigation systems, expanding affordable agricultural insurance, and encouraging sustainable fertilizer use through incentives and training. These strategies can help mitigate climate risks, enhance productivity, and reduce the environmental impact of agricultural activities. Full article
(This article belongs to the Special Issue Drought Monitoring, Prediction and Impacts (2nd Edition))
Show Figures

Figure 1

22 pages, 6401 KiB  
Article
Casual-Nuevo Alausí Landslide (Ecuador, March 2023): A Case Study on the Influence of the Anthropogenic Factors
by Luis Pilatasig, Francisco Javier Torrijo, Elias Ibadango, Liliana Troncoso, Olegario Alonso-Pandavenes, Alex Mateus, Stalin Solano, Francisco Viteri and Rafael Alulema
GeoHazards 2025, 6(2), 28; https://doi.org/10.3390/geohazards6020028 - 4 Jun 2025
Viewed by 936
Abstract
Landslides in Ecuador are one of the most common deadly events in natural hazards, such as the one on 26 March 2023. A large-scale landslide occurred in Alausí, Chimborazo province, causing 65 fatalities and 10 people to disappear, significant infrastructural damage, and the [...] Read more.
Landslides in Ecuador are one of the most common deadly events in natural hazards, such as the one on 26 March 2023. A large-scale landslide occurred in Alausí, Chimborazo province, causing 65 fatalities and 10 people to disappear, significant infrastructural damage, and the destruction of six neighborhoods. This study presents a detailed case analysis of the anthropogenic factors that could have contributed to the instability of the affected area. Field investigations and a review of historical, geological, and social information are the basis for analyzing the complex interactions between natural and human-induced conditions. Key anthropogenic contributors identified include unplanned urban expansion, ineffective drainage systems, deforestation, road construction without adequate geotechnical support, and changes in land use, particularly agricultural irrigation and wastewater disposal. These factors increased the area’s susceptibility to slope failure, which, combined with intense rainfall and past seismic activity, could have caused the rupture process’s acceleration. The study also emphasizes integrating geological, hydrological, and urban planning assessments to mitigate landslide risks in geologically sensitive regions such as Alausí canton. The findings conclude that human activity could be an acceleration factor in natural processes, and the pressure of urbanization amplifies the consequences. This research underscores the importance of sustainable land management, improved drainage infrastructure, and land-use planning in hazard-prone areas. The lessons learned from Alausí can inform risk reduction strategies across other mountainous and densely populated regions worldwide, like the Andean countries, which have similar social and environmental conditions to Ecuador. Full article
Show Figures

Figure 1

17 pages, 775 KiB  
Review
Ferrochrome Pollution and Its Consequences on Groundwater Ecosystems and Public Health
by Biswajit Patra, Mihir Tanay Das, Surya Narayan Pradhan, Soumya Ranjan Dash, Prajna Paramita Bhuyan and Biswajita Pradhan
Limnol. Rev. 2025, 25(2), 23; https://doi.org/10.3390/limnolrev25020023 - 2 Jun 2025
Viewed by 501
Abstract
Ferrochrome pollution, a by-product of the ferroalloy industry, is emerging as a significant environmental concern due to its potential to contaminate groundwater resources. This contamination occurs primarily through the leaching of heavy metals, such as chromium, into the soil and water systems. This [...] Read more.
Ferrochrome pollution, a by-product of the ferroalloy industry, is emerging as a significant environmental concern due to its potential to contaminate groundwater resources. This contamination occurs primarily through the leaching of heavy metals, such as chromium, into the soil and water systems. This review article presents a strategic framework for assessing environmental and health risks associated with the ferrochrome industry pollution rather than focusing on a case study. The suggested methodology is designed to guide future field investigations in areas impacted by ferrochrome industrial activities. The presence of chromium in groundwater poses serious risks to both ecosystems and human health. In aquatic ecosystems, elevated chromium levels can disrupt the balance of microbial communities, affect biodiversity, and harm aquatic organisms. For humans, long-term exposure to chromium-contaminated groundwater is associated with a range of health issues, including carcinogenic effects, skin rashes, respiratory problems, and potential damage to vital organs. The widespread use of groundwater for drinking, irrigation, and industrial purposes exacerbates the risks to public health. This paper explores the sources, pathways, and mechanisms of ferrochrome contamination, examines its impact on groundwater ecosystems, and highlights the health consequences for affected populations. Strategies for mitigating ferrochrome pollution, including treatment technologies and policy interventions, are also discussed to help safeguard both environmental and public health. Full article
Show Figures

Figure 1

Back to TopTop