Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,244)

Search Parameters:
Keywords = active films

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3377 KB  
Article
Enhancing Osmotic Power Generation and Water Conservation with High-Performance Thin-Film Nanocomposite Membranes for the Mining Industry
by Sara Pakdaman and Catherine N. Mulligan
Water 2026, 18(2), 248; https://doi.org/10.3390/w18020248 (registering DOI) - 17 Jan 2026
Abstract
Recycling water offers a powerful way to lower the environmental water impact of mining activities. Pressure-retarded osmosis (PRO) represents a promising pathway for simultaneous water reuse and clean energy generation from salinity gradients. In this study, the performance of a thin-film nanocomposite (TFN) [...] Read more.
Recycling water offers a powerful way to lower the environmental water impact of mining activities. Pressure-retarded osmosis (PRO) represents a promising pathway for simultaneous water reuse and clean energy generation from salinity gradients. In this study, the performance of a thin-film nanocomposite (TFN) membrane containing functionalized multi-walled carbon nanotubes (fMWCNTs) within a polyacrylonitrile (PAN) support layer, followed by polydopamine (PDA) surface modification, was investigated under a PRO operation using pretreated gold mining wastewater as the feed solution. Unlike most previous studies that rely on synthetic feeds, this work evaluates the membrane performance under a PRO operation using a real mining wastewater stream. The membrane with fMWCNTs and PDA exhibited a maximum power density of 25.22 W/m2 at 12 bar, representing performance improvements of 23% and 68% compared with the pristine thin-film composite (TFC) and commercial cellulose triacetate (CTA) membranes, respectively. A high water flux of 75.6 L·m−2·h−1 was also obtained, attributed to enhanced membrane hydrophilicity and reduced internal concentration polarization. The optimized membrane, containing 0.3 wt% fMWCNTs in the support layer and a PDA coating on the active layer, produced a synergistic enhancement in the PRO performance, resulting in a lower reverse salt flux and an improved flux–selectivity trade-off. Furthermore, the ultrafiltration (UF) and nanofiltration (NF) pretreatment effectively reduced the hardness and ionic content, enabling a stable PRO operation with real mining wastewater over a longer period of time. Overall, this study demonstrates the feasibility of achieving both reusable water and enhanced osmotic power generation using modified TFN membranes under realistic mining wastewater conditions. Full article
Show Figures

Figure 1

15 pages, 1640 KB  
Article
Formulation and Characterization of Hydrogel Chitosan–Pectin Active Films Containing Silymarin
by Svetla Dyankova, Nadya Bozakova, Vanya Boneva, Ayten Solak and Veselin Ivanov
Molecules 2026, 31(2), 322; https://doi.org/10.3390/molecules31020322 (registering DOI) - 17 Jan 2026
Abstract
Silymarin—a standardized extract from the seeds of milk thistle (Silybum marianum L. Gaertn.)—is mainly used for the treatment of hepatitis and other liver diseases. In recent years, the attention of researchers has been directed to its use in dermatology and wound treatment. [...] Read more.
Silymarin—a standardized extract from the seeds of milk thistle (Silybum marianum L. Gaertn.)—is mainly used for the treatment of hepatitis and other liver diseases. In recent years, the attention of researchers has been directed to its use in dermatology and wound treatment. Despite the promising results, there are still many unresolved issues in this area. The aim of the present study is to develop and characterize hydrogel chitosan–pectin films containing silymarin as an active ingredient with potential medical application. Six variants of hydrogel films (control and silymarin-loaded) were obtained from chitosan and pectin solutions by the casting method and analyzed in terms of their physicochemical, structural, mechanical and optical properties, as well as the in vitro dissolution profile of silymarin. The highest tensile strength was measured for the chitosan-based films—23.35 ± 1.74 MPa (control) and 22.01 ± 2.67 MPa (silymarin-loaded), while the barrier properties to UV and visible light were the strongest for chitosan–pectin films with silymarin. The antioxidant potential of the films was determined by DPPH assay and it was found that the variants with silymarin have over 20 times higher antioxidant activity (from 2.020 ± 0.048 to 2.106 ± 0.190 mg TE/g) than the corresponding controls. The results showed that chitosan–pectin films with incorporated silymarin could find application as potential hydrogel dressings in the therapy of wounds and superficial burns. Full article
(This article belongs to the Special Issue Natural Extracts for Pharmaceutical Applications)
Show Figures

Figure 1

14 pages, 2317 KB  
Article
Shrimp-Derived Chitosan for the Formulation of Active Films with Mexican Propolis: Physicochemical and Functional Evaluation of the Biomaterial
by Alejandra Delgado-Lozano, Pedro Alberto Ledesma-Prado, César Leyva-Porras, Lydia Paulina Loya-Hernández, César Iván Romo-Sáenz, Carlos Arzate-Quintana, Manuel Román-Aguirre, María Alejandra Favila-Pérez, Alva Rocío Castillo-González and Celia María Quiñonez-Flores
Coatings 2026, 16(1), 124; https://doi.org/10.3390/coatings16010124 (registering DOI) - 17 Jan 2026
Abstract
The development of functional biomaterials based on natural polymers has gained increasing relevance due to the growing demand for sustainable and bioactive alternatives for biomedical and technological applications. In this study, chitosan was obtained from shrimp exoskeletons and used to formulate active films [...] Read more.
The development of functional biomaterials based on natural polymers has gained increasing relevance due to the growing demand for sustainable and bioactive alternatives for biomedical and technological applications. In this study, chitosan was obtained from shrimp exoskeletons and used to formulate active films enriched with Mexican propolis, aiming to evaluate the influence of the extract on the physicochemical and functional properties of the resulting biomaterial. Propolis was incorporated into the chitosan film-forming solution at a final concentration of 1.0% (v/v). The propolis employed met the requirements of the Mexican Official Standard NOM-003-SAG/GAN-2017 regarding flavonoid content, total phenolic compounds, and antimicrobial activity; additionally, it was evaluated through antioxidant activity, hemolysis, and acute toxicity (LD50) assays to provide a broader biological and safety assessment. The extracted chitosan exhibited a degree of deacetylation of 74% and characteristic FTIR spectral features comparable to those of commercial chitosan, confirming the quality of the obtained polymer. Chitosan–propolis films exhibited antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans, whereas pure chitosan films showed no inhibitory effect. Thermal analyses (TGA/DSC) revealed a slight reduction in thermal stability due to the incorporation of thermolabile polyphenolic compounds, along with increased thermal complexity of the system. SEM observations demonstrated reduced microbial adhesion and marked morphological damage in microorganisms exposed to the functionalized films. Overall, the incorporation of Mexican propolis enabled the development of a hybrid biomaterial with enhanced antimicrobial performance and potential application in wound dressings and bioactive coatings. Full article
(This article belongs to the Special Issue Coatings with Natural Products)
Show Figures

Graphical abstract

27 pages, 2808 KB  
Article
Application of Brassica juncea and Raphanus sativus Sprout Extracts as Active Agents in Chitosan-Based Edible Coatings: Evaluation of Physicochemical and Biological Properties
by Arash Moeini, Roméo Arago Dougué Kentsop, Aspen Beals, Monica Mattana, Massimiliano Marvasi, Lucie Coquard, Marianna Gregorio, Judyta Cielecka-Piontek, Annamaria Genga, Aleksandra Nesic, Giovanna Lo Vecchio, Sarai Agustin Salazar, Thomas Becker and Pierfrancesco Cerruti
Polymers 2026, 18(2), 252; https://doi.org/10.3390/polym18020252 (registering DOI) - 16 Jan 2026
Viewed by 35
Abstract
The use of natural bioactive compounds in edible coatings provides a sustainable approach to reducing food spoilage and meeting consumer demand for safer food preservation. In this study, bioactive extracts from Brassica juncea (green mustard, GM) and Raphanus sativus (radish tango, RT) sprouts [...] Read more.
The use of natural bioactive compounds in edible coatings provides a sustainable approach to reducing food spoilage and meeting consumer demand for safer food preservation. In this study, bioactive extracts from Brassica juncea (green mustard, GM) and Raphanus sativus (radish tango, RT) sprouts were encapsulated into zein/chitosan (Z/CH) microparticles (MPs) using a complex coacervation–based encapsulation approach. The encapsulated microparticles (MPs), characterized by FTIR and UV-Vis spectroscopy, demonstrated a high loading efficiency of up to 90% and maintained their antioxidant activity for up to 168 h. TGA and SEM tests confirmed that the edible films produced by incorporating these microparticles (MPs) into polyvinyl alcohol (PVA) and chitosan (CH) matrices had a more uniform microstructure and enhanced heat stability. The Z/CH/RT6:PVA (1:2) and Z/CH/GM6:CH (1:1) formulations of the films showed significant antioxidant and antibacterial action, with up to 22.4% DPPH inhibition and a 1-log decrease in Salmonella enterica CFU, respectively. Overall, the results underscore the promise of sprout-derived microparticles as components for developing active, biodegradable packaging films with improved functional properties. Full article
26 pages, 4292 KB  
Article
Mechanism of Long-Term Corrosion Protection for Silicone Epoxy Coatings Reinforced by BN-PDA-CeO2 Ternary Composites in Harsh Environments
by Xianlian Mu, Tao Jin, Pengfei Xie, Rongcao Yu, Bin Li and Xin Yuan
Nanomaterials 2026, 16(2), 121; https://doi.org/10.3390/nano16020121 - 16 Jan 2026
Viewed by 42
Abstract
Corrosion in harsh environments causes global economic losses exceeding 3 trillion US dollars annually. Traditional silicone epoxy (SE) coatings are prone to failure due to insufficient physical barrier properties and lack of active protection. In this study, cerium dioxide (CeO2) was [...] Read more.
Corrosion in harsh environments causes global economic losses exceeding 3 trillion US dollars annually. Traditional silicone epoxy (SE) coatings are prone to failure due to insufficient physical barrier properties and lack of active protection. In this study, cerium dioxide (CeO2) was in situ grown on the surface of hexagonal boron nitride (h-BN) mediated by polydopamine (PDA) to prepare BN-PDA-CeO2 ternary nanocomposites, which were then incorporated into SE coatings to construct a multi-scale synergistic corrosion protection system. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) confirmed the successful preparation of the composites, where PDA inhibited the agglomeration of h-BN and CeO2 was uniformly loaded. Electrochemical tests showed that the corrosion inhibition efficiency of the extract of this composite for 2024 aluminum alloy reached 99.96%. After immersing the composite coating in 3.5 wt% NaCl solution for 120 days, the coating resistance (Rc) and charge transfer resistance (Rct) reached 8.5 × 109 Ω·cm2 and 1.2 × 1010 Ω·cm2, respectively, which were much higher than those of pure SE coatings and coatings filled with single/binary fillers. Density functional theory (DFT) calculations revealed the synergistic mechanisms: PDA enhanced interfacial dispersion (adsorption energy of −0.58 eV), CeO2 captured Cl (adsorption energy of −4.22 eV), and Ce3+ formed a passive film. This study provides key technical and theoretical support for the design of long-term corrosion protection coatings in harsh environments such as marine and petrochemical industries. Full article
(This article belongs to the Special Issue Research and Applications of Anti-Corrosion Nanocoatings)
Show Figures

Figure 1

21 pages, 4861 KB  
Article
Synthesis and Characterization of ITO Films via Forced Hydrolysis for Surface Functionalization of PET Sheets
by Silvia del Carmen Madrigal-Diaz, Laura Cristel Rodríguez-López, Isaura Victoria Fernández-Orozco, Saúl García-López, Cecilia del Carmen Díaz-Reyes, Claudio Martínez-Pacheco, José Luis Cervantes-López, Ibis Ricárdez-Vargas and Laura Lorena Díaz-Flores
Coatings 2026, 16(1), 120; https://doi.org/10.3390/coatings16010120 - 16 Jan 2026
Viewed by 54
Abstract
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a [...] Read more.
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a low-cost, reproducible alternative. SnO2 nanoparticles were synthesized by forced hydrolysis at 180 °C for 3 h and 6 h, yielding crystalline nanoparticles with a cassiterite phase and an average crystallite size of 20.34 nm. The process showed high reproducibility, enabling consistent structural properties without complex equipment or high-temperature treatments. The SnO2 sample obtained at 3 h was incorporated into commercial In2O3 to form a mixed In–Sn–O oxide, which was subsequently deposited onto PET substrates by spin coating onto UV-activated PET. The resulting 1.1 µm ITO films demonstrated good adhesion (4B according to ASTM D3359), a low resistivity of 1.27 × 10−6 Ω·m, and an average optical transmittance of 80% in the visible range. Although their resistivity is higher than vacuum-processed films, this route provides a superior balance of mechanical robustness, featuring a hardness of (H) of 3.8 GPa and an elastic modulus (E) of 110 GPa. These results highlight forced hydrolysis as a reproducible route for producing ITO/PET thin films. The thickness was strategically optimized to act as a structural buffer, preventing crack propagation during bending. Forced hydrolysis-driven PET sheet functionalization is an effective route for producing durable ITO/PET electrodes that are suitable for flexible sensors and solar cells. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

17 pages, 6454 KB  
Article
High-Temperature Oxidation Behavior of TiAlCrSiNbY Coating on γ-TiAl Alloy
by Jing Qu, Faqin Xie, Xiangqing Wu, Guangrui Gao and Dong Han
Coatings 2026, 16(1), 116; https://doi.org/10.3390/coatings16010116 - 15 Jan 2026
Viewed by 152
Abstract
A TiAlCrSiNbY coating was fabricated on γ-TiAl alloy by arc ion plating. The coating exhibits a dense, crack-free microstructure with a thickness of 5 ± 0.5 μm and strong interfacial bonding with the substrate. The characteristic power law correlations between mass gain and [...] Read more.
A TiAlCrSiNbY coating was fabricated on γ-TiAl alloy by arc ion plating. The coating exhibits a dense, crack-free microstructure with a thickness of 5 ± 0.5 μm and strong interfacial bonding with the substrate. The characteristic power law correlations between mass gain and oxidation time were obtained for the uncoated and the coated samples at 850 °C with rate exponents of 2.38 and 2.14, respectively. After oxidation at 850 °C for 200 h, a continuous and dense oxide layer primarily composed of α-Al2O3 with a low oxidation reaction rate was formed, and the mass gain of the coated sample was 1/9 times that of the uncoated sample. Additionally, the addition of Cr and Nb in the TiAlCrSiNbY coating can increase the activity of Al and promoted the formation of stable and dense Al2O3 oxide films, the presence of a strong high-temperature stability Ti5Si3 phase inhibited the affinity of Ti and O, which maintained structural integrity and enhanced high-temperature oxidation resistance. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

22 pages, 1324 KB  
Article
Dissolvable Face Mask with Liposomal Licorice Extract and Kojic Acid: An Innovative Approach for Skin Brightening
by Theerada Taesotikul, Supusson Pengnam, Thapakorn Charoenying, Boonnada Pamornpathomkul, Prin Chaksmithanont, Prasopchai Patrojanasophon and Chaiyakarn Pornpitchanarong
Cosmetics 2026, 13(1), 21; https://doi.org/10.3390/cosmetics13010021 - 14 Jan 2026
Viewed by 86
Abstract
This study developed a biodegradable dissolvable face mask incorporating liposomal kojic acid (KA) and licochalcone A from licorice extract (LE) to enhance skin delivery and performance. Liposomes were prepared by thin-film hydration method. The film matrix, composed of PVA/PVP/PEG400/HA, was optimized using factorial [...] Read more.
This study developed a biodegradable dissolvable face mask incorporating liposomal kojic acid (KA) and licochalcone A from licorice extract (LE) to enhance skin delivery and performance. Liposomes were prepared by thin-film hydration method. The film matrix, composed of PVA/PVP/PEG400/HA, was optimized using factorial design to achieve suitable mechanical strength and rapid dissolution. The optimized mask, containing liposomal KA (1% w/v) and licochalcone A (0.025% w/v), was evaluated for antioxidant activity, ex vivo skin deposition, and short-term efficacy (Approval from the Institutional Review Board of Silpakorn University, Thailand; Ethics Approval No. REC 67.1001-146-7726/COA 68.0320-013 Date of registration: 20 March 2025). The optimized liposomes exhibited a mean particle size of 66–72 nm, entrapment efficiency above 65%, and a zeta potential of −12.5 mV (licochalcone A) and −1.67 mV (KA). Liposomal licochalcone A and KA showed potent antioxidant activity compared to their native forms. The optimized film dissolved within approximately 15 min on moist skin and showed favorable handling properties. Ex vivo studies revealed significantly higher skin deposition of both KA and licochalcone A from the liposomal mask compared with free and liposomal dispersions (p < 0.05). In a 7-day clinical evaluation, the mask significantly improved skin hydration and reduced melanin index (p < 0.05). No irritation or adverse reactions were observed, and user satisfaction was high. This liposomal dissolvable mask offered an effective, well-tolerated, and eco-friendly approach to enhancing skin brightness and hydration, supporting its potential as a sustainable cosmeceutical innovation. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Graphical abstract

15 pages, 3324 KB  
Article
Tuning Oxygen Reduction Kinetics in LaSrCoO4 with Strained Epitaxial Thin Films and Wrinkled Freestanding Membranes
by Habib Rostaghi Chalaki, Ebenezer Seesi, Mohammad El Loubani and Dongkyu Lee
Ceramics 2026, 9(1), 7; https://doi.org/10.3390/ceramics9010007 - 14 Jan 2026
Viewed by 153
Abstract
Sluggish oxygen reduction reaction (ORR) remains a critical barrier to advancing intermediate-temperature electrochemical energy devices. Here, we demonstrate that strain engineering in two platforms, epitaxial thin films and freestanding membranes, systematically tunes ORR kinetics in Ruddlesden-Popper LaSrCoO4. In epitaxial films, film [...] Read more.
Sluggish oxygen reduction reaction (ORR) remains a critical barrier to advancing intermediate-temperature electrochemical energy devices. Here, we demonstrate that strain engineering in two platforms, epitaxial thin films and freestanding membranes, systematically tunes ORR kinetics in Ruddlesden-Popper LaSrCoO4. In epitaxial films, film thickness is varied to control in-plane tensile strain, whereas in freestanding membranes strain relaxation during the release step using water-soluble sacrificial layers produces flat or wrinkled architectures. Electrochemical impedance spectroscopy analysis reveals more than an order of magnitude increase in the oxygen surface exchange coefficient for tensile-strained films relative to relaxed films, together with a larger oxygen vacancy concentration. Wrinkled freestanding membranes provide a further increase in oxygen surface exchange kinetics and a lower activation energy, which are attributed to increased active surface area and local strain variation. These results identify epitaxial tensile strain and controlled wrinkling as practical design parameters for optimizing ORR activity in Ruddlesden-Popper oxides. Full article
(This article belongs to the Special Issue Nanoceramics and Two-Dimensional Ceramic Materials)
Show Figures

Figure 1

19 pages, 14468 KB  
Article
Kinetics and Potential Mechanisms of LDPE and PBAT Microplastics Biodeterioration by Soil Bacteria Bacillus cereus L6
by Jiayang Hu, Tianyu Liu, Jinpeng Zhang, Yong Yu, Jincai Ma and Yanjun Li
Microorganisms 2026, 14(1), 179; https://doi.org/10.3390/microorganisms14010179 - 14 Jan 2026
Viewed by 126
Abstract
Low-density polyethylene (LDPE) and poly (butylene adipate-co-terephthalate) (PBAT) agricultural films are major components of microplastics (MPs) and their contamination in agriculture due to their difficulty to recycle. However, potential degradation mechanisms of MPs from LDPE and PBAT in agricultural soils are still unclear. [...] Read more.
Low-density polyethylene (LDPE) and poly (butylene adipate-co-terephthalate) (PBAT) agricultural films are major components of microplastics (MPs) and their contamination in agriculture due to their difficulty to recycle. However, potential degradation mechanisms of MPs from LDPE and PBAT in agricultural soils are still unclear. Here, we isolated a strain of Bacillus cereus L6 from long-term agricultural MP-contaminated soil and analyzed its potential biochemical pathways involved in LDPE and PBAT turnover through functional prediction from shotgun genome sequencing. After 28 days of incubation with MPs, Bacillus cereus L6 caused a net mass loss of 0.99% LDPE-MPs/28 days and 3.58% PBAT-MPs/28 days. The surfaces of LDPE and PBAT degraded in bioassays added with Bacillus cereus L6 showed wrinkles, cracks, and pits, accompanied by an increase in roughness. The crystallinity and thermal stability of both LDPE- and PBAT-MPs were decreased and the hydrophobicity of PBAT-MPs was reduced. Whole-genome sequencing analysis showed that Bacillus cereus L6 potentially encoded genes for enzymes related to the biodeterioration of additives in LDPE and PBAT. Moreover, genomic CAZymes predictive analysis showed that genes related to oxygenases and lyases were annotated in the strain L6 Auxiliary Activities family. These findings offer a theoretical foundation for deeper exploration into the degradation and metabolic processes of MPs from discarded agricultural plastics in the environment. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

24 pages, 11848 KB  
Article
Evaluation of the Biodegradability Potential of Antibacterial Poly(lactic acid)/Glycero-(9,10-trioxolane)-trialeate Films in Soil
by Olga V. Alexeeva, Yulia V. Tertyshnaya, Sergey S. Kozlov, Vyacheslav V. Podmasterev, Valentina Siracusa, Olga K. Karyagina, Sergey M. Lomakin, Tuyara V. Petrova, Levon Yu. Martirosyan, Anna B. Nikolskaia and Alexey L. Iordanskii
Polymers 2026, 18(2), 216; https://doi.org/10.3390/polym18020216 - 13 Jan 2026
Viewed by 214
Abstract
Glycerol-(9,10-trioxolane) trioleate (OTOA) is a promising material that combines good plasticizing properties for PLA with profound antimicrobial activity, which makes it suitable for application in state-of-the-art biomedical and packaging materials with added functionality. In this study, the biodegradation kinetics of PLA + OTOA [...] Read more.
Glycerol-(9,10-trioxolane) trioleate (OTOA) is a promising material that combines good plasticizing properties for PLA with profound antimicrobial activity, which makes it suitable for application in state-of-the-art biomedical and packaging materials with added functionality. In this study, the biodegradation kinetics of PLA + OTOA mixed films under soil conditions was assessed over 180 days. Structural and morphological changes that occurred on the surface and in the volume of the films during degradation were scrutinized using DSC, X-ray diffraction, IR, and UV spectroscopy. Morphological changes were assessed using optical and confocal microscopes. The different behavior of the PLA + OTOA blend films during decomposition in soil is explained by their structure and the rate of release of antibacterial OTOA from the PLA matrix. The decomposition rate constants were determined for all films, where kd for PLA samples is 28 µm·year−1, for samples containing 10% and 30% OTOA kd is 2 µm·year−1, and for PLA + 50% OTOA samples kd = 34 µm·year−1. This is explained by changes in the structure and degree of crystallinity of materials during the process of aging in the soil. These results clarify the biodegradation processes of biomaterials containing antibacterial agents in their structure. Full article
Show Figures

Figure 1

13 pages, 2867 KB  
Article
Facile Fabrication of Moderate Sensitivity SERS Substrate Using Cu-Plasma Polymer Fluorocarbon Nanocomposite Thin Film
by Sejin Cho, Sung Hyun Kim, Joowon Lee and Sang-Jin Lee
Coatings 2026, 16(1), 108; https://doi.org/10.3390/coatings16010108 - 13 Jan 2026
Viewed by 190
Abstract
Herein, we propose a simple and cost-effective method for fabricating moderate-sensitivity surface-enhanced Raman scattering (SERS) substrates using Cu-plasma polymer fluorocarbon (Cu-PPFC) nanocomposite films fabricated through RF sputtering. The use of a composite target composed of carbon nanotube (CNT), Cu, and polytetrafluoroethylene (PTFE) powders [...] Read more.
Herein, we propose a simple and cost-effective method for fabricating moderate-sensitivity surface-enhanced Raman scattering (SERS) substrates using Cu-plasma polymer fluorocarbon (Cu-PPFC) nanocomposite films fabricated through RF sputtering. The use of a composite target composed of carbon nanotube (CNT), Cu, and polytetrafluoroethylene (PTFE) powders (5:60–80:35–15 wt%) offers the advantage of the simple fabrication of moderate-sensitivity SERS substrates with a single cathode compared to co-sputtering. X-ray photoelectron spectroscopy (XPS) revealed that the film surface was partially composed of metallic Cu with Cu-F bonds and Cu–O bonds, confirming the coexistence of the conducting and plasmon-active domains. UV-VIS spectroscopy revealed a distinct absorption peak at approximately 680 nm, indicating the excitation of localized surface plasmon resonances in the Cu nanoclusters embedded in the plasma polymer fluorocarbon (PPFC) matrix. Atomic force microscopy and grazing incidence small-angle X-ray scattering analyses confirmed that the Cu nanoparticles were uniformly distributed with interparticle distances of 20–35 nm. The Cu-PPFC nanocomposite film with the highest Cu content (80 wt%) exhibited a Raman enhancement factor of 2.18 × 104 for rhodamine 6G, demonstrating its potential as a moderate-sensitivity SERS substrate. Finite-difference time-domain (FDTD) simulations confirmed the strong electromagnetic field localization at the Cu-Cu nanogaps separated by the PPFC matrix, corroborating the experimentally observed SERS enhancement. These results suggest that a Cu-PPFC nanocomposite film, easily fabricated using a composite target, provides an efficient and scalable route for fabricating reproducible, inexpensive, and moderate-sensitivity SERS substrates suitable for practical sensing applications. Full article
(This article belongs to the Special Issue Advanced Optical Film Coating)
Show Figures

Figure 1

15 pages, 3234 KB  
Article
Optically Transparent Frequency Selective Surfaces for Electromagnetic Shielding in Cybersecurity Applications
by Pierpaolo Usai, Gabriele Sabatini, Danilo Brizi and Agostino Monorchio
Appl. Sci. 2026, 16(2), 821; https://doi.org/10.3390/app16020821 - 13 Jan 2026
Viewed by 257
Abstract
With the widespread diffusion of personal Internet of Things (IoT) devices, Electromagnetic Side-Channel Attacks (EM-SCAs), which exploit electromagnetic emissions to uncover critical data such as cryptographic keys, are becoming extremely common. Existing shielding approaches typically rely on bulky or opaque materials, which limit [...] Read more.
With the widespread diffusion of personal Internet of Things (IoT) devices, Electromagnetic Side-Channel Attacks (EM-SCAs), which exploit electromagnetic emissions to uncover critical data such as cryptographic keys, are becoming extremely common. Existing shielding approaches typically rely on bulky or opaque materials, which limit integration in modern IoT environments; this motivates the need for a transparent, lightweight, and easily integrable solution. Thus, to address this threat, we propose the use of electromagnetic metasurfaces with shielding capabilities, fabricated with an optically transparent conductive film. This film can be easily integrated into glass substrates, offering a novel and discrete shielding solution to traditional methods, which are typically based on opaque dielectric media. The paper presents two proof-of-concept case studies for shielding against EM-SCAs. The first one investigates the design and fabrication of a passive metasurface aimed at shielding emissions from chip processors in IoT devices. The metasurface is conceived to attenuate a specific frequency range, characteristic of the considered IoT processor, with a target attenuation of 30 dB. At the same time, the metasurface ensures that signals from 4G and 5G services are not affected, thus preserving normal wireless communication functioning. Conversely, the second case study introduces an active metasurface for dynamic shielding/transmission behavior, which can be modulated through diodes according to user requirements. This active metasurface is designed to block undesired electromagnetic emissions within the 150–465 MHz frequency range, which is a common band for screen gleaning security threats. The experimental results demonstrate an attenuation of approximately 10 dB across the frequency band when the shielding mode is activated, indicating a substantial reduction in signal transmission. Both the case studies highlight the potential of transparent metasurfaces for secure and dynamic electromagnetic shielding, suggesting their discrete integration in building windows or other environmental structural elements. Full article
(This article belongs to the Special Issue Cybersecurity: Novel Technologies and Applications)
Show Figures

Figure 1

11 pages, 1238 KB  
Article
Advanced Green Materials: Sustainable Cellulose–Lignin Composite Films Prepared via Ionic Liquid Processing
by Witold Madaj, Michał Puchalski, Konrad Sulak, Dariusz Wawro and Ewelina Pabjańczyk-Wlazło
Polymers 2026, 18(2), 211; https://doi.org/10.3390/polym18020211 - 13 Jan 2026
Viewed by 188
Abstract
The article presents the preparation method of a green composite material composed of cellulose and lignin using an ionic liquid as a solvent. In the process, cellulose and lignin are dissolved in the ionic liquid and subsequently regenerated into a composite film via [...] Read more.
The article presents the preparation method of a green composite material composed of cellulose and lignin using an ionic liquid as a solvent. In the process, cellulose and lignin are dissolved in the ionic liquid and subsequently regenerated into a composite film via coagulation in ethanol/water bath. The research focused on evaluating the mechanical properties of the resulting composite, which exhibited a high tensile strength exceeding 100 MPa, demonstrating its robustness and potential for various applications. Importantly, the simultaneous integration of lignin enabled a favorable balance between high mechanical strength and enhanced biodegradability, addressing a common trade-off in sustainable materials. Additionally, the biodegradation behavior of the composite in soil was investigated, showing that it gradually decomposes, making it environmentally friendly. Toxicity tests on soil bacteria indicated that the composite does not adversely affect microbial activity, supporting its suitability for ecological use. Furthermore, the gas permeability and water vapor transmission of the composite film was assessed, providing insight into its barrier properties. Overall, the study highlights the potential of cellulose-lignin composites produced via ionic liquids as sustainable and biodegradable materials with promising mechanical and environmental properties. Full article
(This article belongs to the Special Issue Cellulose and Its Composites: Preparation and Applications)
Show Figures

Graphical abstract

44 pages, 10841 KB  
Article
Study on Dual-Targeted Liposomes Containing Curcumin-Copper Chelate in the Treatment of Triple-Negative Breast Cancer
by Lina Wu, Xueli Guo and Pan Guo
Pharmaceuticals 2026, 19(1), 135; https://doi.org/10.3390/ph19010135 - 13 Jan 2026
Viewed by 162
Abstract
Background: Triple-negative breast cancer (TNBC) remains primarily treated with chemotherapy due to the lack of effective therapeutic targets, but this approach carries significant systemic toxicity and a high risk of drug resistance. Curcumin (Cur), despite its multifaceted antitumor activity, faces limitations in [...] Read more.
Background: Triple-negative breast cancer (TNBC) remains primarily treated with chemotherapy due to the lack of effective therapeutic targets, but this approach carries significant systemic toxicity and a high risk of drug resistance. Curcumin (Cur), despite its multifaceted antitumor activity, faces limitations in clinical application due to poor water solubility and weak targeting properties. This study aims to develop a folate/mitochondria dual-targeted curcumin–copper chelate liposome (Cu-Cur DTLPs) formulation that enables copper accumulation within tumor cells and induces copper-mediated cell death, thereby providing an effective and relatively low-toxicity therapeutic strategy for triple-negative breast cancer. Methods: Curcumin–copper chelates (Cu-Cur) were first synthesized and characterized using mass spectrometry, NMR, and infrared spectroscopy. Subsequently, dual-targeted liposomes (Cu-Cur DTLPs) were prepared via the thin-film dispersion method, with systematic evaluation of particle size, zeta potential, encapsulation efficiency, and in vitro release profiles. In vitro cytotoxicity was assessed against 4T-1 and MDA-MB-231 cells using the MTT assay. In a 4T-1 tumor-bearing BALB/c mouse model, comprehensive evaluation of targeting efficiency, antitumor efficacy, and mechanisms of action was conducted via in vivo imaging, tumor volume monitoring, immunohistochemistry (detecting FDX1 and DLAT proteins), and TUNEL staining. Results: Cu-Cur DTLPs with a uniform particle size of approximately 104.4 nm were successfully synthesized. In vitro and in vivo studies demonstrated that compared to free curcumin and conventional liposomes, Cu-Cur DTLPs significantly enhanced drug accumulation in tumor tissues and exhibited effective tumor growth inhibition. Mechanistic studies confirmed that this formulation specifically accumulates copper ions within tumor cells, upregulates FDX1, promotes DLAT oligomerization, and induces mitochondrial dysfunction, thereby driving copper death. TUNEL staining ruled out apoptosis as the primary mechanism. Safety evaluation revealed no significant toxicity in major organs. Conclusions: The Cu-Cur DTLPs developed in this study effectively induce copper-mediated death in TNBC through a dual-targeted delivery system, significantly enhancing antitumor activity with favorable safety profiles. This establishes a highly promising novel nanotherapeutic strategy for TNBC treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop