Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (664)

Search Parameters:
Keywords = actinomycete

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3121 KiB  
Article
Seasonal Changes in the Soil Microbiome on Chernozem Soil in Response to Tillage, Fertilization, and Cropping System
by Andrea Balla Kovács, Evelin Kármen Juhász, Áron Béni, Costa Gumisiriya, Magdolna Tállai, Anita Szabó, Ida Kincses, Tibor Novák, András Tamás and Rita Kremper
Agronomy 2025, 15(8), 1887; https://doi.org/10.3390/agronomy15081887 - 5 Aug 2025
Abstract
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem [...] Read more.
Soil microbial communities are crucial for ecosystem services, soil fertility, and the resilience of agroecosystems. This study investigated how long-term (31 years) agronomic practices—tillage, NPK fertilization, and cropping system—along with measured environmental variables influence the microbial biomass and its community composition in Chernozem soil under corn cultivation. The polyfactorial field experiment included three tillage treatments ((moldboard (MT), ripped (RT), strip (ST)), two fertilization regimes (NPK (N: 160; P: 26; K: 74 kg/ha), and unfertilized control) and two cropping systems (corn monoculture and corn–wheat biculture). The soil samples (0–30 cm) were collected in June and September 2023. Microbial biomass and community structure were quantified using phospholipid fatty acid (PLFA) analysis, which allowed the estimation of total microbial biomass and community composition (arbuscular mycorrhizal (AM) fungi, fungi, Gram-negative (GN) and Gram-positive (GP) bacteria, actinomycetes). Our results showed that microbial biomass increased from June to September, rising by 270% in unfertilized plots and by 135% in NPK-fertilized plots, due to higher soil moisture. Reduced tillage, especially ST, promoted significantly higher microbial biomass, with biomass reaching 290% and 182% of that in MT plots in June and September, respectively. MT had a higher ratio of bacteria-to-fungi compared to RT and ST, indicating a greater sensitivity of fungi to disturbance. NPK fertilization lowered soil pH by about one unit (to 4.1–4.8) and reduced microbial biomass—by 2% in June and 48% in September—compared to the control, with the particular suppression of AM fungi. The cropping system had a smaller overall effect on microbial biomass. Full article
Show Figures

Figure 1

35 pages, 698 KiB  
Review
Mechanistic Role of Heavy Metals in Driving Antimicrobial Resistance: From Rhizosphere to Phyllosphere
by Rahul Kumar, Tanja P. Vasić, Sanja P. Živković, Periyasamy Panneerselvam, Gustavo Santoyo, Sergio de los Santos Villalobos, Adeyemi Nurudeen Olatunbosun, Aditi Pandit, Leonard Koolman, Debasis Mitra and Pankaj Gautam
Appl. Microbiol. 2025, 5(3), 79; https://doi.org/10.3390/applmicrobiol5030079 - 4 Aug 2025
Abstract
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis [...] Read more.
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis on the underlying molecular mechanisms and ecological ramifications. Common environmental metals, including arsenic, mercury, cadmium, and lead, exert substantial selective pressures on microbial communities. These induce oxidative stress and DNA damage, potentially leading to mutations that enhance antibiotic resistance. Key microbial responses include the overexpression of efflux pumps that expel both metals and antibiotics, production of detoxifying enzymes, and formation of protective biofilms, all of which contribute to the emergence of multidrug-resistant strains. In the soil environment, particularly the rhizosphere, heavy metals disrupt plant–microbe interactions by inhibiting beneficial organisms, such as rhizobacteria, mycorrhizal fungi, and actinomycetes, thereby impairing nutrient cycling and plant health. Nonetheless, certain microbial consortia can tolerate and detoxify heavy metals through sequestration and biotransformation, rendering them valuable for bioremediation. Advances in biotechnology, including gene editing and the development of engineered metal-resistant microbes, offer promising solutions for mitigating the spread of metal-driven AMR and restoring ecological balance. By understanding the interplay between metal pollution and microbial resistance, we can more effectively devise strategies for environmental protection and public health. Full article
Show Figures

Graphical abstract

24 pages, 1488 KiB  
Article
Assessment of the Agricultural Effectiveness of Biodegradable Mulch Film in Onion Cultivation
by Hyun Hwa Park, Young Ok Kim and Yong In Kuk
Plants 2025, 14(15), 2286; https://doi.org/10.3390/plants14152286 - 24 Jul 2025
Viewed by 278
Abstract
This study conducted a comprehensive evaluation of the effects of biodegradable (BD) mulching film in onion cultivation, with a focus on plant growth, yield, soil environment, weed suppression, and film degradation, in comparison to conventional polyethylene (PE) film and non-mulching (NM) treatment across [...] Read more.
This study conducted a comprehensive evaluation of the effects of biodegradable (BD) mulching film in onion cultivation, with a focus on plant growth, yield, soil environment, weed suppression, and film degradation, in comparison to conventional polyethylene (PE) film and non-mulching (NM) treatment across multiple regions and years (2023–2024). The BD and PE films demonstrated similar impacts on onion growth, bulb size, yield, and weed suppression, significantly outperforming NM, with yield increases of over 13%. There were no consistent differences in soil pH, electrical conductivity, and physical properties in crops that used either BD or PE film. Soil temperature and moisture were also comparable regardless of which film type was used, confirming BD’s viability as an alternative to PE. However, areas that used BD film had soils which exhibited reduced microbial populations, particularly Bacillus and actinomycetes which was likely caused by degradation by-products. BD film degradation was evident from 150 days post-transplantation, with near-complete decomposition at 60 days post-burial, whereas PE remained largely intact (≈98%) during the same period. These results confirm that BD film can match the agronomic performance of PE while offering the advantage of environmentally friendly degradation. Further research should optimize BD film durability and assess its cost-effectiveness for large-scale sustainable agriculture. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

19 pages, 2530 KiB  
Article
Soil Microbiome Drives Depth-Specific Priming Effects in Picea schrenkiana Forests Following Labile Carbon Input
by Kejie Yin, Lu Gong, Xinyu Ma, Xiaochen Li and Xiaonan Sun
Microorganisms 2025, 13(8), 1729; https://doi.org/10.3390/microorganisms13081729 - 24 Jul 2025
Viewed by 311
Abstract
The priming effect (PE), a microbially mediated process, critically regulates the balance between carbon sequestration and mineralization. This study used soils from different soil depths (0–20 cm, 20–40 cm, and 40–60 cm) under Picea schrenkiana forest in the Tianshan Mountains as the research [...] Read more.
The priming effect (PE), a microbially mediated process, critically regulates the balance between carbon sequestration and mineralization. This study used soils from different soil depths (0–20 cm, 20–40 cm, and 40–60 cm) under Picea schrenkiana forest in the Tianshan Mountains as the research object. An indoor incubation experiment was conducted by adding three concentrations (1% SOC, 2% SOC, and 3% SOC) of 13C-labelled glucose. We applied 13C isotope probe-phospholipid fatty acid (PLFA-SIP) technology to investigate the influence of readily labile organic carbon inputs on soil priming effect (PE), microbial community shifts at various depths, and the mechanisms underlying soil PE. The results indicated that the addition of 13C-labeled glucose accelerated the mineralization of soil organic carbon (SOC); CO2 emissions were highest in the 0–20 cm soil layer and decreased trend with increasing soil depth, with significant differences observed across different soil layers (p < 0.05). Soil depth had a positive direct effect on the cumulative priming effect (CPE); however, it showed negative indirect effects through physico-chemical properties and microbial biomass. The CPE of the 0–20 cm soil layer was significantly positively correlated with 13C-Gram-positive bacteria, 13C-Gram-negative bacteria, and 13C-actinomycetes. The CPE of the 20–40 cm and 40–60 cm soil layers exhibited a significant positive correlation with cumulative mineralization (CM) and microbial biomass carbon (MBC). Glucose addition had the largest and most significant positive effect on the CPE. Glucose addition positively affected PLFAs and particularly microbial biomass. This study provides valuable insights into the dynamics of soil carbon pools at varying depths following glucose application, advancing the understanding of forest soil carbon sequestration. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

24 pages, 3329 KiB  
Article
Isolation of a Novel Streptomyces sp. TH05 with Potent Cyanocidal Effects on Microcystis aeruginosa
by Xuhan Wang, Siqi Zhu, Shenchen Tao, Shaoyong Zhang, Ruijun Wang and Liqin Zhang
Toxins 2025, 17(7), 354; https://doi.org/10.3390/toxins17070354 - 17 Jul 2025
Viewed by 482
Abstract
In this paper, cultivable actinobacteria were isolated, cultured, and identified from the heavily algal-bloomed waters of Taihu Lake using 16S rRNA gene sequencing. Among the isolates, a single strain exhibiting vigorous cyanocidal activity against Microcystis aeruginosa FACHB-905 was selected for further investigation. The [...] Read more.
In this paper, cultivable actinobacteria were isolated, cultured, and identified from the heavily algal-bloomed waters of Taihu Lake using 16S rRNA gene sequencing. Among the isolates, a single strain exhibiting vigorous cyanocidal activity against Microcystis aeruginosa FACHB-905 was selected for further investigation. The cyanocidal efficacy and underlying mechanisms of this strain, designated TH05, were assessed through using chlorophyll content, cyanobacterial inhibition rate, and cyanobacterial cell morphology measurements. In addition, oxidative stress responses, expression of key functional genes in FACHB-905, and variations in microcystin concentrations were comprehensively evaluated. Cyanobacterial blooms caused by Microcystis aeruginosa pose serious ecological and public health threats due to the release of microcystins (MCs). In this study, we evaluated the cyanocidal activity and mechanism of a novel actinomycete strain, Streptomyces sp. TH05. Optimization experiments revealed that a light–dark cycle of 12 h/12 h, temperature of 25 °C, and pH 7 significantly enhanced cyanocidal efficacy. Under these conditions, TH05 achieved an 84.31% inhibition rate after seven days of co-cultivation with M. aeruginosa. Scanning electron microscopy revealed two distinct cyanocidal modes: direct physical attachment of TH05 mycelia to cyanobacterial cells, causing cell wall disruption, and indirect membrane damage via extracellular bioactive compounds. Biochemical analyses showed increased levels of malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) during the first five days, peaking at 2.47-, 2.12-, and 1.91-fold higher than control levels, respectively, indicating elevated oxidative stress. Gene expression analysis using elf-p as a reference showed that TH05 modulated key genes associated with photosynthesis (PsaB, PstD1, PstD2, RbcL), DNA repair and stress response (RecA, FtsH), and microcystin biosynthesis (McyA, McyD). All genes were upregulated except for RbcL, which was downregulated. In parallel, microcystin content peaked at 32.25 ng/L on day 1 and decreased to 16.16 ng/L by day 9, which was significantly lower than that of the control group on day 9 (29.03 ng/L). These findings suggest that strain TH05 exhibits potent and multifaceted cyanocidal activity, underscoring its potential for application in the biological control of cyanobacterial blooms. Full article
Show Figures

Figure 1

18 pages, 2538 KiB  
Article
Harnessing Streptomyces for the Management of Clubroot Disease of Chinese Cabbage (Brassica rapa subsp. Pekinensis)
by Shan Chen, Yang Zheng, Qing Wang, Rong Mu, Xianchao Sun, Guanhua Ma, Liezhao Liu, Jiequn Ren, Kuo Huang and Guokang Chen
Plants 2025, 14(14), 2195; https://doi.org/10.3390/plants14142195 - 16 Jul 2025
Viewed by 325
Abstract
Clubroot, caused by Plasmodiophora brassicae Woronin, poses a major threat to Chinese cabbage (Brassica rapa subsp. pekinensis) production worldwide, significantly impacting crop yield, quality, and economic value. Biological control represents a promising approach since it is non-toxic and eco-friendly, and it [...] Read more.
Clubroot, caused by Plasmodiophora brassicae Woronin, poses a major threat to Chinese cabbage (Brassica rapa subsp. pekinensis) production worldwide, significantly impacting crop yield, quality, and economic value. Biological control represents a promising approach since it is non-toxic and eco-friendly, and it reduces the risk of pathogen resistance development. In this study, our objective was to screen for actinomycetes that can effectively inhibit clubroot. We screened 13 actinomycete strains, identifying 2, XDS3-6 and CD1-1, with substantial in vivo inhibitory effects, achieving infection suppression rates above 64% against P. brassicae. Phylogenetic analysis classified XDS3-6 and CD1-1 as Streptomyces virginiae and Streptomyces cinnamonensis, respectively. Both strains exhibited protease and glucanase production capabilities, essential for pathogenic suppression. Additionally, these strains induced host defense responses, as evidenced by increased jasmonic acid (JA) and salicylic acid (SA) accumulation and elevated activities of defense-related enzymes. Colonization studies of XDS3-6 and CD1-1 mutant strains in cabbage roots indicated sustained root colonization, with peak colony-forming units (CFUs) at 20 days post-inoculation, reaching 11.0 × 104 CFU/g and 8.5 × 104 CFU/g, respectively, and persisting for at least 30 days. Overall, these findings underscore the potential of Streptomyces strains XDS3-6 and CD1-1 as effective biocontrol agents, providing a theoretical foundation for their application in managing clubroot in Chinese cabbage. Full article
(This article belongs to the Collection Plant Disease Diagnostics and Surveillance in Plant Protection)
Show Figures

Figure 1

7 pages, 788 KiB  
Case Report
Nocardia cyriacigeorgica in a Mallard (Anas platyrhynchos) from Arizona, USA
by Susan Knowles, Brenda M. Berlowski-Zier, Anne Justice-Allen, Barbara L. Bodenstein and Jeffrey M. Lorch
Pathogens 2025, 14(7), 698; https://doi.org/10.3390/pathogens14070698 - 15 Jul 2025
Viewed by 307
Abstract
Nocardia spp. are opportunistic pathogens of humans, domestic animals, and wildlife that can cause high levels of morbidity and mortality. Here, we present a unique case of nocardial airsacculitis in a free-ranging mallard (Anas platyrhynchos) from Arizona, USA, and compare it [...] Read more.
Nocardia spp. are opportunistic pathogens of humans, domestic animals, and wildlife that can cause high levels of morbidity and mortality. Here, we present a unique case of nocardial airsacculitis in a free-ranging mallard (Anas platyrhynchos) from Arizona, USA, and compare it to the hosts, geographic distribution, diagnostic methodology, and infection site of known nocardiosis cases in birds. A gross necropsy, histopathology, and bacterial culture were performed. There were no gross findings associated with the nocardiosis. Histopathology showed multiple granulomas expanding the air sac with intralesional filamentous bacteria that were Grocott’s methenamine silver-positive, Fite–Faraco and Ziehl–Neelsen acid-fast, positive with the Periodic acid–Schiff reaction, and variably Gram-positive. The organism was isolated in culture and identified as Nocardia cyriacigeorgica based on the sequencing of a 463 bp portion of the 16S rRNA gene. While reports of nocardiosis in the class Aves are rare and some are possibly misdiagnosed due to limited diagnostics, cases are reported globally, sometimes resulting in epizootics. More information is needed to understand whether immunosuppression plays a role in disease development in birds. Known to be an emerging pathogen in humans, N. cyriacigeorgica can be considered as a differential diagnosis for pulmonary and potentially cutaneous or disseminated infections in birds. Full article
Show Figures

Figure 1

27 pages, 5530 KiB  
Article
The Lipid- and Polysaccharide-Rich Extracellular Polymeric Substances of Rhodococcus Support Biofilm Formation and Protection from Toxic Hydrocarbons
by Anastasiia Krivoruchko, Daria Nurieva, Vadim Luppov, Maria Kuyukina and Irina Ivshina
Polymers 2025, 17(14), 1912; https://doi.org/10.3390/polym17141912 - 10 Jul 2025
Viewed by 357
Abstract
Extracellular polymeric substances (EPS) are multifunctional biopolymers that have significant biotechnological potential. In this study, forty-seven strains of Rhodococcus actinomycetes were screened for EPS production and the content of its main components: carbohydrates, lipids, proteins, and nucleic acids. The Rhodococcus strains produced lipid-rich [...] Read more.
Extracellular polymeric substances (EPS) are multifunctional biopolymers that have significant biotechnological potential. In this study, forty-seven strains of Rhodococcus actinomycetes were screened for EPS production and the content of its main components: carbohydrates, lipids, proteins, and nucleic acids. The Rhodococcus strains produced lipid-rich EPS (15.6 mg·L−1 to 71.7 mg·L−1) with carbohydrate concentrations varying from 0.6 mg·L−1 to 58.2 mg·L−1 and low amounts of proteins and nucleic acids. Biofilms of R. ruber IEGM 231 were grown on nitrocellulose filters in the presence of n-hexane, n-hexadecane, or diesel fuel. The distribution of β-polysaccharides, glycoconjugates, and proteins between cells and the extracellular matrix was examined using fluorescence microscopy. The observed release of β-polysaccharides into the biofilm matrix in the presence of n-hexane and diesel fuel was regarded as an adaptation to the assimilation of these toxic hydrocarbons by Rhodococcus cells. Atomic force microscopy of the dried EPS film revealed adhesion forces between 1.0 and 20.0 nN, while some sites were highly adhesive (Fa ≥ 20.0 nN). EPS biosynthetic genes were identified, with two glycosyltransferases correlating with an increase in carbohydrate production. The production of EPS by Rhodococcus cells exhibited strain-specific rather than species-specific patterns, reflecting a high genetic diversity of these bacteria. Full article
(This article belongs to the Special Issue Advances in Biocompatible and Biodegradable Polymers, 4th Edition)
Show Figures

Graphical abstract

19 pages, 2149 KiB  
Article
Feather Waste Biodegradation and Biostimulant Potential of Gordonia alkanivorans S7: A Novel Keratinolytic Actinobacterium for Sustainable Waste Valorization
by Katarzyna Struszczyk-Świta, Piotr Drożdżyński, Paweł Marcinkowski, Aleksandra Nadziejko, Magdalena Rodziewicz, Bartłomiej Januszewicz, Magdalena Gierszewska and Olga Marchut-Mikołajczyk
Int. J. Mol. Sci. 2025, 26(13), 6494; https://doi.org/10.3390/ijms26136494 - 5 Jul 2025
Viewed by 406
Abstract
The poultry industry produces significant quantities of keratin-rich waste, primarily feathers, whose traditional disposal methods—incineration or chemical treatment—result in environmental damage and resource depletion. This research introduces a sustainable biotechnological method for the valorization of feather waste utilizing Gordonia alkanivorans S7, an actinomycete [...] Read more.
The poultry industry produces significant quantities of keratin-rich waste, primarily feathers, whose traditional disposal methods—incineration or chemical treatment—result in environmental damage and resource depletion. This research introduces a sustainable biotechnological method for the valorization of feather waste utilizing Gordonia alkanivorans S7, an actinomycete strain extracted from petroleum plant sludge. This is the inaugural publication illustrating keratinolytic activity in the Gordonia genus. The optimization of the degradation process via the Taguchi approach led to the effective biodegradation of untreated home chicken feathers, achieving dry mass loss of up to 99% after 168 h in a mineral medium. The agricultural potential of the obtained keratin hydrolysate, which was high in organic components (C 31.2%, N 8.9%, H 5.1%, and S 1.7%), was assessed. Phytotoxicity tests demonstrated that the feather hydrolysate led to better growth of the indicator plants—Sorghum saccharatum and Lepidium sativum. The highest values of root growth stimulation were 26% for S. saccharatum and 31% for L. sativum, at a dose of 0.01%. Shoot growth stimulation was noted only for L. sativum, reaching 38% (0.01%), 53% (0.05%), and 37% (0.1%), as compared to the control sample. These results demonstrate the process’s combined economic and environmental benefits, providing a fresh approach to the production of bio-based plant biostimulants and sustainable keratin waste management. Full article
(This article belongs to the Special Issue Microbial Enzymes for Biotechnological Applications: 2nd Edition)
Show Figures

Figure 1

16 pages, 7038 KiB  
Article
Responses of Different Soil Microbial Communities to the Addition of Nitrogen into the Soil of Larix gmelinii var. principis-rupprechtii (Mayr) Pilg. Plantations
by Yanlong Jia, Ziyi Wang, Hongna Cui, Liu Yang, Jinping Lu, Jiaojiao Ma, Zhongqi Xu and Honglin He
Forests 2025, 16(7), 1096; https://doi.org/10.3390/f16071096 - 2 Jul 2025
Viewed by 190
Abstract
The increasing rate of atmospheric nitrogen (N) deposition caused by human activities is a global concern. A rise in N deposition can alter the soil microbial community, as demonstrated by most long-term N addition experiments. Nevertheless, it remains unknown how short-term N addition [...] Read more.
The increasing rate of atmospheric nitrogen (N) deposition caused by human activities is a global concern. A rise in N deposition can alter the soil microbial community, as demonstrated by most long-term N addition experiments. Nevertheless, it remains unknown how short-term N addition influences the early succession of the soil microbial community in forests. In this study, the responses of the soil microbial community to multi-level and short-term (one-year) N addition in the soil of Larix gmelinii var. principis-rupprechtii (Mayr) Pilg. plantations in the Yanshan Mountains were explored. We used high-throughput sequencing technology to analyze the 16S rRNA of bacteria, the ITS gene of fungi, and the nifH functional gene of N-fixing bacteria. The results revealed a decrease in N-fixing functional gene abundance (such as nifH) and a slight rise in fungal and bacterial copy number due to N addition. N addition influenced the N-fixing bacterial community but had no influence on the fungal and bacterial communities in general. It drastically decreased the diversity of N-fixing microbial communities while having little impact on the diversity of fungi and bacteria. The NO3-N concentration exhibited a negative connection with the Shannon–Wiener index of the N-fixing microbial community when it exceeded a specific limit. Actinomycetes and N-fixing bacteria were significantly negatively correlated. The changes in soil NO3-N concentration and abundance of actinomycetes were the main reasons for the decrease in N-fixing microbial community diversity. The results of this study set the groundwork for exploring the initial succession mechanisms of soil microorganisms after N addition. This study offers a scientific theoretical basis for precise management of plantations under N deposition. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

29 pages, 1089 KiB  
Article
Bacterial Community in Foam-Sand Filter Media in Domestic Sewage Treatment: A Case Study of Elevated Ammonium Nitrogen Content
by Ewa Dacewicz
Water 2025, 17(13), 1957; https://doi.org/10.3390/w17131957 - 30 Jun 2025
Viewed by 253
Abstract
The structure of microbial communities in sponge-sand filters, used for the treatment of real domestic sewage with elevated ammonium nitrogen concentrations (approximately 155 mg·dm−3), was characterized using 16S rRNA gene sequencing. Analyses using the Illumina technique allowed us to perform a [...] Read more.
The structure of microbial communities in sponge-sand filters, used for the treatment of real domestic sewage with elevated ammonium nitrogen concentrations (approximately 155 mg·dm−3), was characterized using 16S rRNA gene sequencing. Analyses using the Illumina technique allowed us to perform a comparison of filters by layer (two or three layers) and type of fill (waste PUR foams with 95% open porosity, sand). Proteobacteria, actinobacteria, and firmicutes were shown to be the most abundant phyla. The number and type of fill layers had a significant impact on the diversity of nitrifying bacteria. The presence of Nitrosomonas and Nitrospira was observed in every sponge fill sample, but the abundance of autotrophic nitrifiers was negligible in the two-layer filter. The conditions there proved more favorable for the growth of aerobic heterotrophic bacteria. Also in the Schmutzdecke layer, a dominance of heterotrophic nitrifiers was found. The abundance of bacteria with nitrifying activity (AOB, comammox, HNAD) in the biomass of spongy fill placed in casings was 1.7 times lower than in foams without casings. In addition, anammox bacteria (unidentified Planctomycetes), found mainly in the sponge fill and Schmutzdecke of the three-layer filters, may have been responsible for NH4+-N removal exceeding 70%. In the case of the two-layer filter, the removal of this pollutant reached 92%. Burkholderia and Sphingopyxis were identified as the predominant denitrifying bacteria. The foam-filled filter in the casings showed an increase in o_Caldilineaceae, involved in nitrate removal as non-denitrifiers. Actinomycetes Pseudonocardia and Amycolatopsis, as well as Proteobacteria Devosia, Acinetobacter, and Bdellovibrio, were found to be involved in phosphorus removal in the waste PUR foams. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 468 KiB  
Article
Inhibitory Activity of Compounds Obtained from Streptomyces Against Trypanosoma cruzi
by Jorge Andrés Delgado-Garduño, Lucio Galaviz-Silva, Ma Guadalupe Rojas-Verde, Joel Horacio Elizondo-Luevano, Lidia Baylón-Pacheco, José Luis Rosales-Encina, Guadalupe Gutiérrez-Soto and Zinnia Judith Molina-Garza
Pathogens 2025, 14(7), 638; https://doi.org/10.3390/pathogens14070638 - 26 Jun 2025
Viewed by 669
Abstract
Chagas disease (ChD) caused by Trypanosoma cruzi remains a major public health concern, affecting approximately 8 million people worldwide. However, the number of undiagnosed cases is likely much higher. Existing treatments rely on benznidazole and nifurtimox which, despite their efficacy during the acute [...] Read more.
Chagas disease (ChD) caused by Trypanosoma cruzi remains a major public health concern, affecting approximately 8 million people worldwide. However, the number of undiagnosed cases is likely much higher. Existing treatments rely on benznidazole and nifurtimox which, despite their efficacy during the acute phase of infection, are often associated with severe side effects that can be life-threatening. As a promising alternative, actinomycetes—which are renowned for producing pharmacologically and industrially relevant metabolites—have demonstrated potent antimicrobial properties; however, their antiparasitic potential remains largely unexplored. This study evaluated the anti-trypanocidal activities of extracellular metabolites produced by Streptomyces thermocarboxydus strain Chi-43 (ST-C43) and Streptomyces sp. strain Chi-104 (S-C104) against epimastigote, trypomastigote, and amastigote forms of T. cruzi. The strains were cultured in ISP2 broth, and their extracellular metabolites were assessed via antiparasitic diffusion assays in microplates. The 50% lethal concentration (LC50) values ranged from 102 to 116 μg/mL against epimastigotes and trypomastigotes. The antiparasitic activity was confirmed through 3-(4,5-dimetiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based spectrophotometric assays and optical microscopy. Toxicity assays revealed that the extracellular metabolites were non-toxic to Artemia salina, non-cytotoxic to Huvecs, and non-hemolytic to human erythrocytes. Dose–response regression analysis showed statistically significant differences (p ≤ 0.05). LC-MS/MS analysis identified amphomycin and K-252c aglycone staurosporine as the active antiparasitic compounds. These findings highlight the potential of Streptomyces-derived extracellular metabolites as novel, selective, and safe anti-T. cruzi agents. Nevertheless, further studies in murine or preclinical models are needed to validate their efficacy and support future clinical applications for the treatment of ChD. Full article
(This article belongs to the Special Issue Trypanosoma cruzi Infection: Cellular and Molecular Basis)
Show Figures

Figure 1

13 pages, 1399 KiB  
Article
Genome Annotation and Catalytic Profile of Rhodococcus rhodochrous IEGM 107, Mono- and Diterpenoid Biotransformer
by Natalia A. Plotnitskaya, Polina Yu. Maltseva and Irina B. Ivshina
Genes 2025, 16(7), 739; https://doi.org/10.3390/genes16070739 - 26 Jun 2025
Viewed by 391
Abstract
Background/Objectives: Rhodococcus rhodochrous IEGM 107 cells exhibit pronounced catalytic activity toward mono- and diterpenoids. However, the genetics and enzymatic foundations underlying this activity remain poorly understood. Methods: Using new-generation sequencing, the R. rhodochrous IEGM 107 whole genome was sequenced. Bioinformatic analysis [...] Read more.
Background/Objectives: Rhodococcus rhodochrous IEGM 107 cells exhibit pronounced catalytic activity toward mono- and diterpenoids. However, the genetics and enzymatic foundations underlying this activity remain poorly understood. Methods: Using new-generation sequencing, the R. rhodochrous IEGM 107 whole genome was sequenced. Bioinformatic analysis and PCR were employed to identify and characterize genes, with a focus on cytochromes P450 (CYP450s). Results: The catalytic potential of R rhodochrous IEGM 107 was revealed. Its CYP450 genes were detected and analyzed, providing information on the enzymatic base of the strain related to the biotransformation of terpenoids. Conclusions: These findings enhance the understanding of the molecular and genetic basis for terpenoid transformations in R. rhodochrous actinomycetes. The results provide a foundation for future studies on gene expression and enzyme characterization aimed at developing efficient and selective biocatalysts for mono- and diterpenoid transformations. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

16 pages, 2501 KiB  
Article
Phenotypic Characterization and Whole-Genome Analysis Revealing the Promising Metabolic Potential of a Newly Isolated Streptomyces sp. CH6
by Chung Thanh Nguyen, Huong Thi Nguyen, Van Thi Hong Dao, Khanh Phuong Do and Thuy Thi Thu Ta
Appl. Sci. 2025, 15(13), 7126; https://doi.org/10.3390/app15137126 - 25 Jun 2025
Viewed by 341
Abstract
Streptomyces spp. are considered a prolific resource of bioactive and structurally diverse secondary metabolites for natural product drug discovery. In this study, 20 out of 56 actinomycetes from soils showed antibacterial activity against at least one tested bacterium. Among them, the CH6 isolate [...] Read more.
Streptomyces spp. are considered a prolific resource of bioactive and structurally diverse secondary metabolites for natural product drug discovery. In this study, 20 out of 56 actinomycetes from soils showed antibacterial activity against at least one tested bacterium. Among them, the CH6 isolate could be a potential source of antibacterial compounds, as indicated by inhibition zone diameters (11.1–32.0 mm) and MIC values (from 8 to 128 µg/mL) against microbial pathogens. The extract showed moderate antioxidant activity against DPPH, hydroxyl, and superoxide anion radicals. Notably, CH6 extract displayed strong inhibitory effects on cancer cells, including MCF-7, A549, HepG2, and HT29, with IC50 values ranging from 18.0 to 73.4 µg/mL, without cytotoxic activity against non-cancerous HEK-293 cells. The genome of CH6 consists of a 6,936,977 bp linear chromosome with a 73.0% GC content, 5831 protein-coding genes, and 13 biosynthetic gene clusters (BGCs). The highest dDDH and ANI values between CH6 and the most closely related type strain, Streptomyces evansiae DSM 41979T, were 45.8% and 92.6%, respectively, which suggests that CH6 is a novel species. Interestingly, cluster 2, with a size of 133,857 bp, comprised both guangnanmycin and scabichelin clusters, which have been reported for the first time. These findings showed that Streptomyces sp. CH6 could be a novel species and a producer of guangnanmycin and even new secondary metabolites, particularly those with antibacterial and anticancer activities. Full article
Show Figures

Figure 1

26 pages, 2941 KiB  
Article
A Fungi-Driven Sustainable Circular Model Restores Saline Coastal Soils and Boosts Farm Returns
by Fei Bian, Yonghui Wang, Haixia Ren, Luzhang Wan, Huidong Guo, Yuxue Jia, Xia Liu, Fanhua Ning, Guojun Shi and Pengfei Ren
Horticulturae 2025, 11(7), 730; https://doi.org/10.3390/horticulturae11070730 - 23 Jun 2025
Viewed by 435
Abstract
Agricultural production in the saline–alkaline soils of the Yellow River Delta faces persistent challenges in waste recycling and soil improvement. We developed a three-stage circular agriculture model integrating “crop straw–edible mushrooms–vegetables,” enabling simultaneous waste utilization and soil remediation within one year (two mushroom [...] Read more.
Agricultural production in the saline–alkaline soils of the Yellow River Delta faces persistent challenges in waste recycling and soil improvement. We developed a three-stage circular agriculture model integrating “crop straw–edible mushrooms–vegetables,” enabling simultaneous waste utilization and soil remediation within one year (two mushroom and two vegetable cycles annually). Crop straw was first used to cultivate Pleurotus eryngii, achieving 80% biological efficiency and reducing substrate costs by ~36.3%. The spent mushroom substrate (SMS) was then reused for Ganoderma lucidum and vegetable cultivation, maximizing the resource efficiency. SMS application significantly improved soil properties: organic matter increased 11-fold (from 14.8 to 162.78 g/kg) and pH decreased from 8.34 to ~6.75. The available phosphorus and potassium contents increased several-fold compared to untreated soil. Metagenomic analysis showed the enrichment of beneficial decomposer bacteria (Hyphomicrobiales, Burkholderiales, and Streptomyces) and functional genes involved in glyoxylate metabolism, nitrogen cycling, and lignocellulose degradation. These changes shifted the microbial community from a stress-tolerant to a nutrient-cycling profile. The vegetable yield and quality improved markedly: cabbage and cauliflower yields increased by 34–38%, and the tomato lycopene content rose by 179%. Economically, the system generated 1,695,000–1,962,881.4 CNY per hectare annually and reduced fertilizer costs by ~450,000 CNY per hectare. This mushroom–vegetable rotation addresses ecological bottlenecks in saline–alkaline lands through lignin-driven carbon release, organic acid-mediated pH reduction, and actinomycete-dominated decomposition, offering a sustainable agricultural strategy for coastal regions. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

Back to TopTop