Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,079)

Search Parameters:
Keywords = acting force

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4169 KiB  
Article
Magnetic Coil’s Performance Optimization with Nonsmooth Search Algorithms
by Igor Reznichenko, Primož Podržaj and Aljoša Peperko
Mathematics 2025, 13(15), 2490; https://doi.org/10.3390/math13152490 (registering DOI) - 2 Aug 2025
Abstract
This research is concerned with design optimization of control systems. Our case study deals with magnetic levitation, in which an essential part is a solenoid. Its dimensions, along with controller parameters, form the optimization variables. We present a novel way of writing the [...] Read more.
This research is concerned with design optimization of control systems. Our case study deals with magnetic levitation, in which an essential part is a solenoid. Its dimensions, along with controller parameters, form the optimization variables. We present a novel way of writing the explicit expression of the solenoid’s force acting on a magnetic dipole, as well as its first derivatives. Numerical tests using non-gradient search algorithms show the difference in optimal designs provided by these methods. Since such optimization depends on output signals, a comparison of step response analysis methods is presented. Full article
(This article belongs to the Special Issue Advances in Metaheuristic Optimization Algorithms)
Show Figures

Figure 1

14 pages, 2230 KiB  
Article
Complete Mitochondrial (mtDNA) Genome Analysis of Economically Significant Fish Cirrhinus cirrhosus in Bangladesh
by Tajmirul Huda, Md. Alamgir Kabir and Md. Golam Rabbane
Int. J. Mol. Sci. 2025, 26(15), 7473; https://doi.org/10.3390/ijms26157473 (registering DOI) - 2 Aug 2025
Abstract
Complete mitochondrial DNA genome annotation of an ecologically and commercially important fish species Cirrhinus cirrhosus was executed with next-generation sequencing (NGS) for nucleotide and phylogenetic analyses. The findings of this study showed that the Cirrhinus cirrhosus mitochondrial genome contained 16,593 bp, including 13 [...] Read more.
Complete mitochondrial DNA genome annotation of an ecologically and commercially important fish species Cirrhinus cirrhosus was executed with next-generation sequencing (NGS) for nucleotide and phylogenetic analyses. The findings of this study showed that the Cirrhinus cirrhosus mitochondrial genome contained 16,593 bp, including 13 protein-coding genes, 2 ribosomal RNA genes, 22 tRNA genes, and a D-loop region. The overall base composition was 32% adenine, 25% thiamine, 16% guanine, and 27% cytosine. This mitochondrial DNA exhibits an AT biasness, with 56% AT content in its genome. Significant fluctuations were identified in the AT and GC skew values of the ND6 gene, indicating that the selection and mutation forces acting on this gene might be different from those acting on other genes. The Ka/Ks ratios of most protein-coding genes were less than 1, indicating very strong natural selection pressure. Phylogenetic analysis of Cirrhinus cirrhosus with Cirrhinus mrigala and Bangana tungting suggested a closer evolutionary relationship among these species, which might have shared a more recent common ancestor. It has been also found that the genera Labeo and Cirrhinus are not monophyletic. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

27 pages, 5743 KiB  
Article
In-Field Load Acquisitions on a Variable Chamber Round Baler Using Instrumented Hub Carriers and a Dynamometric Towing Pin
by Filippo Coppola, Andrea Ruffin and Giovanni Meneghetti
Appl. Sci. 2025, 15(15), 8579; https://doi.org/10.3390/app15158579 (registering DOI) - 1 Aug 2025
Abstract
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately [...] Read more.
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately calibrated strain gauge bridges. Similarly, the baler was equipped with a dynamometric towing pin, instrumented with strain gauge sensors and calibrated in the laboratory, which replaced the original pin connecting the baler and the tractor during the in-field load acquisitions. In both cases, the calibration tests returned the relationship between applied forces and output signals of the strain gauge bridges. Multiple in-field load acquisitions were carried out under typical maneuvers and operating conditions. The synchronous acquisition of a video via an onboard camera and Global Positioning System (GPS) signal allowed to observe the behaviour of the baler in correspondence of particular trends of the vertical and horizontal loads and to point out the most demanding maneuver in view of the fatigue resistance of the baler. Finally, through the application of a rainflow cycle counting algorithm according to ASTM E1049-85, the load spectrum for each maneuver was derived. Full article
(This article belongs to the Section Mechanical Engineering)
19 pages, 15398 KiB  
Article
Particles in Homogeneous Isotropic Turbulence: Clustering and Relative Influence of the Forces Exerted on Particles
by Hamid Bellache, Pierre Chapelle and Jean-Sébastien Kroll-Rabotin
Fluids 2025, 10(8), 201; https://doi.org/10.3390/fluids10080201 (registering DOI) - 1 Aug 2025
Viewed by 35
Abstract
A combination of lattice Boltzmann method (LBM)-based computations and Lagrangian particle tracking simulations is presented to study the dispersion and clustering of inertial particles in a forced homogeneous and isotropic turbulent flow and to analyze the relative importance of the various forces acting [...] Read more.
A combination of lattice Boltzmann method (LBM)-based computations and Lagrangian particle tracking simulations is presented to study the dispersion and clustering of inertial particles in a forced homogeneous and isotropic turbulent flow and to analyze the relative importance of the various forces acting on particles. The particle dynamics are investigated across a wide range of particle-to-fluid density ratios (from 0.01 to 1000) and Stokes numbers (from 1.4 × 10−6 to 55.4), at a Taylor microscale Reynolds number of 33.6. Particle clustering is quantified using Voronoï tessellations. Results confirm that clustering intensity is maximized at Stokes numbers around unity, where particles preferentially accumulate in low-vorticity regions. Particle dynamics within the turbulent flow considered here vary fundamentally with density and size, even among tracer-like particles. Low-density and neutrally buoyant particles mimic tracers via either velocity matching or acceleration balance, while dense particles follow inertia-dominated dynamics. Full article
Show Figures

Figure 1

30 pages, 10011 KiB  
Article
Machine Learning Methods as a Tool for Analysis and Prediction of Impact Resistance of Rubber–Textile Conveyor Belts
by Miriam Andrejiova, Anna Grincova, Daniela Marasova and Zuzana Kimakova
Appl. Sci. 2025, 15(15), 8511; https://doi.org/10.3390/app15158511 (registering DOI) - 31 Jul 2025
Viewed by 82
Abstract
Rubber–textile conveyor belts are an important element of large-scale transport systems, which in many cases are subjected to excessive dynamic loads. Assessing the impact resistance of them is essential for ensuring their reliability and longevity. The article focuses on the use of machine [...] Read more.
Rubber–textile conveyor belts are an important element of large-scale transport systems, which in many cases are subjected to excessive dynamic loads. Assessing the impact resistance of them is essential for ensuring their reliability and longevity. The article focuses on the use of machine learning methods as one of the approaches to the analysis and prediction of the impact resistance of rubber–textile conveyor belts. Based on the data obtained from the design properties of conveyor belts and experimental testing conditions, four models were created (regression model, decision tree regression model, random forest model, ANN model), which are used to analyze and predict the impact force of the force acting on the conveyor belt during material impact. Each model was trained on training data and validated on test data. The performance of each model was evaluated using standard metrics and model indicators. The results of the model analysis show that the most powerful model, ANN, explains up to 99.6% of the data variability. The second-best model is the random forest model and then the regression model. The least suitable choice for predicting the impact force is the regression tree. Full article
Show Figures

Figure 1

9 pages, 159 KiB  
Article
The Mask and the Giant: Shakespearean Acting and Reputation Management
by Darren Tunstall
Humanities 2025, 14(8), 159; https://doi.org/10.3390/h14080159 - 31 Jul 2025
Viewed by 101
Abstract
I use Shakespeare to teach acting to students. A key to my work is impression management: what Shakespeare called reputation. I view the management of reputation as a route into Shakespearean character, which I present to students as a mask attuned to sacred [...] Read more.
I use Shakespeare to teach acting to students. A key to my work is impression management: what Shakespeare called reputation. I view the management of reputation as a route into Shakespearean character, which I present to students as a mask attuned to sacred values. The physical basis from which the actor can discover the mask is what Hamlet calls ‘smoothness’, which I explain with an acting exercise. We discover the force of sacred values by noticing the ubiquity of keywords in the text such as honor, virtue, reason, shame and faith. By holding characters to the fire of their sacred values, I shift the actor’s attention from an individualist idea of authentic representation towards a sense of character as a battleground of mind-shaping. The resulting performance work is scaled up to a more expansive and energized degree than the actor may be used to delivering in a social media-saturated environment in which what is often prioritized is a quasi-confessional self-revelation. The revelation of an inner life then emerges through a committed exploration of antithetical relations, a strategy basic both to mask work and to Shakespeare’s poetics. The actor finds their personal connection to the material by facing the contradiction between the objective standards of behavior demanded of the character and the character’s attempt to control their status, that is, how they are seen. The final value of the performance work is that the actor learns how to manage their reputation so that they come to appear like a giant who is seen from a distance. Full article
33 pages, 4142 KiB  
Review
Advances in Wettability-Engineered Open Planar-Surface Droplet Manipulation
by Ge Chen, Jin Yan, Junjie Liang, Jiajia Zheng, Jinpeng Wang, Hongchen Pang, Xianzhang Wang, Zihao Weng and Wei Wang
Micromachines 2025, 16(8), 893; https://doi.org/10.3390/mi16080893 (registering DOI) - 31 Jul 2025
Viewed by 232
Abstract
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the [...] Read more.
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the field of droplet manipulation on open planar surfaces with engineered wettability. To achieve droplet manipulation, the core driving forces primarily stem from natural forces guided by bioinspired gradient surfaces or the regulatory effects of external fields. In terms of bioinspired self-propelled droplet movement, this paper summarizes research inspired by natural organisms such as desert beetles, cacti, self-aligning floating seeds of emergent plants, or water-walking insects, which construct bioinspired special gradient surfaces to induce Laplace pressure differences or wettability gradients on both sides of droplets for droplet manipulation. Moreover, this paper further analyzes the mechanisms, advantages, and limitations of these self-propelled approaches, while summarizing the corresponding driving force sources and their theoretical formulas. For droplet manipulation under external fields, this paper elaborates on various external stimuli including electric fields, thermal fields, optical fields, acoustic fields, and magnetic fields. Among them, electric fields involve actuation mechanisms such as directly applied electrostatic forces and indirectly applied electrocapillary forces; thermal fields influence droplet motion through thermoresponsive wettability gradients and thermocapillary effects; optical fields cover multiple wavelengths including near-infrared, ultraviolet, and visible light; acoustic fields utilize horizontal and vertical acoustic radiation pressure or acoustic wave-induced acoustic streaming for droplet manipulation; the magnetic force acting on droplets may originate from their interior, surface, or external substrates. Based on these different transport principles, this paper comparatively analyzes the unique characteristics of droplet manipulation under the five external fields. Finally, this paper summarizes the current challenges and issues in the research of droplet manipulation on the open planar surfaces and provides an outlook on future development directions in this field. Full article
(This article belongs to the Special Issue Advanced Microfluidic Chips: Optical Sensing and Detection)
Show Figures

Figure 1

13 pages, 414 KiB  
Essay
Zhuangzi’s De 德 and Transcendence: The Temporal Order of “Ten Suns Rose in the Sky at Once” in the Qiwu lun 齊物論
by Yuqi Lv and Gongyu Chen
Religions 2025, 16(8), 995; https://doi.org/10.3390/rel16080995 (registering DOI) - 30 Jul 2025
Viewed by 226
Abstract
The phrase shiri bing chu 十日並出 (ten suns rose in the sky at once) from the Qiwu lun 齊物論 can also be interpreted as shiri dai chu 十日代出 (ten suns alternately appearing). Here, “ten suns rose in the sky at once” is not [...] Read more.
The phrase shiri bing chu 十日並出 (ten suns rose in the sky at once) from the Qiwu lun 齊物論 can also be interpreted as shiri dai chu 十日代出 (ten suns alternately appearing). Here, “ten suns rose in the sky at once” is not merely a spatial concept but also a temporal one. Thus, the concept of De 德 (virtue), connected to the idea of “ten suns shining together,” is a transcendent force with its own inner sense of time. It acts as the foundation for all things to exist and grow continuously. Under the endless cycle of day and night and the nourishing power of tiande 天德 (heavenly virtue), everything flourishes according to its true nature. Here, De combines two aspects: mingde 明德 (luminous virtue) and xuande 玄德 (inconspicuous virtue). “luminous virtue” focuses on order and building, highlighting the uniqueness within human growth. “inconspicuous virtue” emphasizes harmony and equalizing with all things, revealing our shared connection with the world. These two concepts are not opposites. The highest goal of luminous virtue lies in mysterious virtue, which itself contains the roots of luminous virtue. Both work together to reflect the natural flow of the Dao 道 (the Way), thus demonstrating that Zhuangzi’s philosophy is not merely about criticism or deconstruction—it has a deeply constructive side. Virtue transcends both individuality and universality. Human nature holds both virtues. By balancing the order of growth and equalizing with all things, we can harmonize our uniqueness with our shared bonds, revealing our true value in both action and spirit. Full article
25 pages, 16811 KiB  
Article
Force Element Analysis of Vortex-Induced Vibration Mechanism of Three Side-by-Side Cylinders at Low Reynolds Number
by Su-Xiang Guo, Meng-Tian Song, Jie-Chao Lei, Hai-Long Xu and Chien-Cheng Chang
J. Mar. Sci. Eng. 2025, 13(8), 1446; https://doi.org/10.3390/jmse13081446 - 29 Jul 2025
Viewed by 128
Abstract
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The [...] Read more.
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The lift and drag forces are decomposed into three physical components: volume vorticity force, surface vorticity force, and surface acceleration force. The present work systematically examines varying S/D and Ur effects on vibration amplitudes, frequencies, phase relationships, and transitions between distinct vortex-shedding patterns. By quantitative force decomposition, underlying physical mechanisms governing VIV in the triple-cylinder system are elucidated, including vortex dynamics, inter-cylinder interference, and flow structures. Results indicate that when S/D < 4, cylinders exhibit “multi-frequency” vibration responses. When S/D > 4, the “lock-in” region broadens, and the wake structure approaches the patterns of an isolated single cylinder; in addition, the trajectories of cylinders become more regularized. The forces acting on the central cylinder present characteristics of stochastic synchronization, significantly different from those observed in two-cylinder systems. The results can advance the understanding of complex interactions between hydrodynamic and structural dynamic forces under different geometric parameters that govern VIV response characteristics of marine structures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 1398 KiB  
Article
Spatio-Temporal Dynamics, Driving Mechanisms, and Decoupling Evaluation of Farmland Carbon Emissions: A Case Study of Shandong Province, China
by Tao Sun, Ran Li, Zichao Zhao, Bing Guo, Meng Ma, Li Yao and Xinhao Gao
Sustainability 2025, 17(15), 6876; https://doi.org/10.3390/su17156876 - 29 Jul 2025
Viewed by 180
Abstract
Understanding the spatio-temporal evolution of farmland carbon emissions, disentangling their underlying driving forces, and exploring the decoupling relationship between these emissions and economic development are pivotal to advancing low-carbon and high-quality agricultural development in Shandong Province, China. Using the Logarithmic Mean Divisia Index [...] Read more.
Understanding the spatio-temporal evolution of farmland carbon emissions, disentangling their underlying driving forces, and exploring the decoupling relationship between these emissions and economic development are pivotal to advancing low-carbon and high-quality agricultural development in Shandong Province, China. Using the Logarithmic Mean Divisia Index (LMDI) and Tapio decoupling model, this study conducted a comprehensive analysis of panel data from 16 cities in Shandong Province spanning 2004–2023. This research reveals that the total farmland carbon emissions in Shandong Province followed a trajectory of “initial fluctuating increase and subsequent steady decline” during the study period. The emissions peaked at 29.4 million tons in 2007 and then declined to 20.2 million tons in 2023, representing a 26.0% reduction compared to the 2004 level. Farmland carbon emission intensity in Shandong Province showed an overall downward trend over the period 2004–2023, with the 2023 intensity registering a 68.9% decline compared to 2004. The carbon emission intensity, agricultural structure, and labor effects acted as inhibiting factors on farmland carbon emissions in Shandong Province, while the economic development effect exerted a positive driving impact on the growth of such emissions. Over the 20-year period, these four factors cumulatively contributed to a reduction of 2.1 × 105 tons in farmland carbon emissions. During 2004–2013, the farmland carbon emissions in Zaozhuang, Yantai, Jining, Linyi, Dezhou, Liaocheng, and Heze showed a weak decoupling state, while in 2014–2023, the farmland carbon emissions and economic development in all cities of Shandong Province showed a strong decoupling state. In the future, it is feasible to reduce farmland carbon emissions in Shandong Province by improving agricultural resource utilization efficiency through technological progress, adopting advanced low-carbon technologies, and promoting the transformation of agricultural industrial structures towards “high-value and low-carbon” designs. Full article
Show Figures

Figure 1

13 pages, 5349 KiB  
Article
Effects of Weak Structural Planes on Roadway Deformation Failure in Coastal Mines
by Jie Guo, Guang Li and Fengshan Ma
Water 2025, 17(15), 2257; https://doi.org/10.3390/w17152257 - 29 Jul 2025
Viewed by 174
Abstract
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs [...] Read more.
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs an optimized Finite–Discrete Element Method (Y-Mat) to simulate WSP-driven fracture evolution, introducing an elastoplastic failure criterion and enhanced contact force calculations. The results show that the farther the WSP is from the roadway, the lower its influence; its existence alters the shape of the plastic zone by lengthening the failure zone along the fault direction, while its angle changes the shape and location of the failure zone and deflects fracture directions, with the surrounding rock between the roadway and WSP suffering the most severe failure. The deformation failure of roadway surrounding rock is influenced by WSPs. Excavation unloading reduces the normal stress and shear strength in the weak structural plane of surrounding rock, resulting in slip and deformation. Additionally, WSP-induced fractures act as groundwater influx conduits, especially in fault-proximal roadways or where crack angles align with hydraulic gradients, so mitigation in water-rich mining environments should prioritize sealing these pathways. The results provide a theoretical basis for roadway excavation and support engineering under the influence of WSPs. Full article
Show Figures

Figure 1

20 pages, 3364 KiB  
Article
Inverse Kinematics of a Serial Manipulator with a Free Joint for Aerial Manipulation
by Alberto Pasetto, Mattia Pedrocco, Riccardo Zenari and Silvio Cocuzza
Appl. Sci. 2025, 15(15), 8390; https://doi.org/10.3390/app15158390 - 29 Jul 2025
Viewed by 115
Abstract
In Aerial Manipulation, the motion of the robotic arm can cause unwanted movements of the flying base affecting the trajectory tracking capability. A possible solution to reduce these disturbances is to use a free revolute joint between the flying base and the manipulator, [...] Read more.
In Aerial Manipulation, the motion of the robotic arm can cause unwanted movements of the flying base affecting the trajectory tracking capability. A possible solution to reduce these disturbances is to use a free revolute joint between the flying base and the manipulator, thus reducing the torque applied to the base from the manipulator. In this paper, a novel approach to solve the inverse kinematics of an aerial manipulator with a free revolute joint is presented. The approach exploits the Generalized Jacobian to deal with the presence of a mobile base, and the dynamics of the system is considered to predict the motion of the non-actuated joint; external forces acting on the system are also included. The method is implemented in MATLAB for a planar case considering the parameters of a real manipulator attached to a real octocopter. The tracking of a trajectory with the end-effector and a load picking task are simulated for a non-redundant and for a redundant manipulator. Simulation results demonstrate the capability of this approach in following the desired trajectories and reducing rotation and horizontal translation of the base. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

15 pages, 2519 KiB  
Article
Genetic Variability Related Behavioral Plasticity in Pikeperch (Sander lucioperca L.) Fingerlings
by Ildikó Benedek, Béla Urbányi, Balázs Kovács, István Lehoczky, Attila Zsolnai and Tamás Molnár
Animals 2025, 15(15), 2229; https://doi.org/10.3390/ani15152229 - 29 Jul 2025
Viewed by 152
Abstract
Background: The relationship between genetic diversity and fitness is well understood, but few studies have investigated how behavior influences genetic diversity, or vice versa. We investigated the relationship between feeding behavior (on a pelleted diet) and genetic diversity in pikeperch, a piscivorous species. [...] Read more.
Background: The relationship between genetic diversity and fitness is well understood, but few studies have investigated how behavior influences genetic diversity, or vice versa. We investigated the relationship between feeding behavior (on a pelleted diet) and genetic diversity in pikeperch, a piscivorous species. Methods: A total of 135 juvenile pikeperch from the same stock were grouped into three behavioral groups: pellet consuming, pellet refusing, and cannibalistic. Eighteen microsatellite markers were used to characterize the genetic diversity and structure of individuals. Results: The juveniles were classified into two genetic clusters: one dominated by pellet-consuming individuals and the other by pellet-refusing individuals containing equal proportions of cannibal individuals. Three of the microsatellite markers were under selection, but only one showed significant genetic segregation between the groups. For this marker, the pellet consumption was associated with low fragment length. Individual multilocus heterozygosity was significantly higher in the pellet-refusing group. Conclusions: These results suggest that pellet consumption acts as an uncontrolled selective force during domestication, influencing the genetic variability of domesticated populations. The ability to habituate to pellets has a significant genetic basis. Cannibalism does not affect genetic variability, and the emergence of the trait is independent of the propensity to consume pellets. Full article
(This article belongs to the Special Issue Fish Cognition and Behaviour)
Show Figures

Figure 1

24 pages, 1264 KiB  
Article
Internal Mechanism and Empirical Analysis of Digital Economy’s Impact on Agricultural New Quality Productive Forces: Evidence from China
by Yongsheng Xu, Ying Zhang, Siqing Wang, Mingzheng Zhao, Guifang Li, Yu Kang and Cuiping Zhao
Sustainability 2025, 17(15), 6844; https://doi.org/10.3390/su17156844 - 28 Jul 2025
Viewed by 403
Abstract
Agricultural new quality productive forces (ANQPFs) signify the progressive trajectory of modern agriculture. However, their development encounters significant challenges in many nations. The digital economy, characterized by its strong innovative capacity, offers continuous impetus for advancing agricultural new quality productive forces (ANQPFs). Based [...] Read more.
Agricultural new quality productive forces (ANQPFs) signify the progressive trajectory of modern agriculture. However, their development encounters significant challenges in many nations. The digital economy, characterized by its strong innovative capacity, offers continuous impetus for advancing agricultural new quality productive forces (ANQPFs). Based on panel data from 30 Chinese provinces (2014–2023), this study employs a two-way fixed-effects model, mediation and threshold effect analyses, and a spatial Durbin model to comprehensively assess the influence of the digital economy (DE) on agricultural new quality productive forces (ANQPFs). The findings reveal that (1) the digital economy (DE) significantly enhances the advancement of agricultural new quality productive forces (ANQPFs); (2) while its positive effect is pronounced in eastern, central, and western China, the impact is weaker in the northeastern region; (3) rural financial development (RFD) acts as a mediator in the relationship between digital economy (DE) growth and agricultural new quality productive forces (ANQPFs); (4) the digital economy (DE)’s contribution to agricultural new quality productive forces (ANQPFs) demonstrates non-linear trends; and (5) spatially, while the digital economy (DE) boosts the local agricultural new quality productive forces (ANQPFs), it exerts a negative spillover effect on neighboring areas. This research offers fresh empirical insights into the determinants of agricultural new quality productive forces (ANQPFs) and suggests policy measures to support agricultural modernization. Full article
Show Figures

Figure 1

20 pages, 5053 KiB  
Article
Physics-Informed Neural Networks for Depth-Dependent Constitutive Relationships of Gradient Nanostructured 316L Stainless Steel
by Huashu Li, Yang Cheng, Zheheng Wang and Xiaogui Wang
Materials 2025, 18(15), 3532; https://doi.org/10.3390/ma18153532 - 28 Jul 2025
Viewed by 332
Abstract
The structural units with different characteristic scales in gradient nanostructured (GS) 316L stainless steel act synergistically to achieve the matching of strength and plasticity, and the intrinsic plasticity of nanoscale and ultrafine grains is fully demonstrated. The macroscopic stress–strain responses of each material [...] Read more.
The structural units with different characteristic scales in gradient nanostructured (GS) 316L stainless steel act synergistically to achieve the matching of strength and plasticity, and the intrinsic plasticity of nanoscale and ultrafine grains is fully demonstrated. The macroscopic stress–strain responses of each material unit in the GS surface layer can be measured directly by tension or compression tests on microspecimens. However, the experimental results based on microspecimens do not reflect either the extraordinary strengthening effect caused by non-uniform deformation or the intrinsic plasticity of nanoscale and ultrafine grains. In this paper, a method for constructing depth-dependent constitutive relationships of GS materials was proposed, which combines strain hardening parameter (hardness) with physics-informed neural networks (PINNs). First, the microhardness distribution on the specimen cross-sections was measured after stretching to different strains, and the hardness–strain–force test data were used to construct the depth-dependent PINNs model for the true strain–hardness relationship (PINNs_εH). Hardness–strain–force test data from specimens with uniform coarse grains were used to pre-train the PINNs model for hardness and true stress (PINNs_Hσ), on the basis of which the depth-dependent PINNs_Hσ model for GS materials was constructed by transfer learning. The PINNs_εσ model, which characterizes the depth-dependent constitutive relationships of GS materials, was then constructed using hardness as an intermediate variable. Finally, the accuracy and validation of the PINNs_εσ model were verified by a three-point flexure test and finite element simulation. The modeling method proposed in this study can be used to determine the position-dependent constitutive relationships of heterogeneous materials. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

Back to TopTop