Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = acid–base bifunctional catalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 25732 KiB  
Article
Simple Cobalt Nanoparticle-Catalyzed Reductive Amination for Selective Synthesis of a Broad Range of Primary Amines
by Bingxiao Zheng, Liqin Yang, Yashuang Hei, Ling Yu, Sisi Wen, Lisi Ba, Long Ao and Zhiju Zhao
Molecules 2025, 30(15), 3089; https://doi.org/10.3390/molecules30153089 - 23 Jul 2025
Viewed by 216
Abstract
In the field of green chemistry, the development of more sustainable and cost-efficient methods for synthesizing primary amines is of paramount importance, with catalyst research being central to this effort. This work presents a facile, aqueous-phase synthesis of highly active cobalt catalysts (Co-Ph@SiO [...] Read more.
In the field of green chemistry, the development of more sustainable and cost-efficient methods for synthesizing primary amines is of paramount importance, with catalyst research being central to this effort. This work presents a facile, aqueous-phase synthesis of highly active cobalt catalysts (Co-Ph@SiO2(x)) via pyrolysis of silica-supported cobalt–phenanthroline complexes. The optimized Co-Ph@SiO2(900) catalyst achieved exceptional performance (>99% conversion, >98% selectivity) in the reductive amination of acetophenone to 1-phenylethanamine using NH3/H2. Systematic studies revealed that its exceptional performance originates from the in situ pyrolysis of the cobalt–phyllosilicate complex. This process promotes the uniform distribution of metal cobalt nanoparticles, simultaneously enhancing porosity and imparting bifunctional (acidic and basic) properties to the catalyst, resulting in outstanding catalytic activity and selectivity. The catalyst demonstrated broad applicability, efficiently converting diverse ketones (aryl-alkyl, dialkyl, bioactive) and aldehydes (halogenated, heterocyclic, biomass-derived) into primary amines with high yields (up to 99%) and chemoselectivity (>40 examples). This sustainable, non-noble metal-based catalyst system offers significant potential for industrial primary amine synthesis and provides a versatile tool for developing highly selective and active heterogeneous catalysts. Full article
Show Figures

Figure 1

20 pages, 4894 KiB  
Article
Ag-Cu Synergism-Driven Oxygen Structure Modulation Promotes Low-Temperature NOx and CO Abatement
by Ruoxin Li, Jiuhong Wei, Bin Jia, Jun Liu, Xiaoqing Liu, Ying Wang, Yuqiong Zhao, Guoqiang Li and Guojie Zhang
Catalysts 2025, 15(7), 674; https://doi.org/10.3390/catal15070674 - 11 Jul 2025
Viewed by 362
Abstract
The efficient simultaneous removal of NOx and CO from sintering flue gas under low-temperature conditions (110–180 °C) in iron and steel enterprises remains a significant challenge in the field of environmental catalysis. In this study, we present an innovative strategy to enhance [...] Read more.
The efficient simultaneous removal of NOx and CO from sintering flue gas under low-temperature conditions (110–180 °C) in iron and steel enterprises remains a significant challenge in the field of environmental catalysis. In this study, we present an innovative strategy to enhance the performance of CuSmTi catalysts through silver modification, yielding a bifunctional system capable of oxygen structure regulation and demonstrating superior activity for the combined NH3-SCR and CO oxidation reactions under low-temperature, oxygen-rich conditions. The modified AgCuSmTi catalyst achieves complete NO conversion at 150 °C, representing a 50 °C reduction compared to the unmodified CuSmTi catalyst (T100% = 200 °C). Moreover, the catalyst exhibits over 90% N2 selectivity across a broad temperature range of 150–300 °C, while achieving full CO oxidation at 175 °C. A series of characterization techniques, including XRD, Raman spectroscopy, N2 adsorption, XPS, and O2-TPD, were employed to elucidate the Ag-Cu interaction. These modifications effectively optimize the surface physical structure, modulate the distribution of acid sites, increase the proportion of Lewis acid sites, and enhance the activity of lattice oxygen species. As a result, they effectively promote the adsorption and activation of reactants, as well as electron transfer between active species, thereby significantly enhancing the low-temperature performance of the catalyst. Furthermore, in situ DRIFTS investigations reveal the reaction mechanisms involved in NH3-SCR and CO oxidation over the Ag-modified CuSmTi catalyst. The NH3-SCR process predominantly follows the L-H mechanism, with partial contribution from the E-R mechanism, whereas CO oxidation proceeds via the MvK mechanism. This work demonstrates that Ag modification is an effective approach for enhancing the low-temperature performance of CuSmTi-based catalysts, offering a promising technical solution for the simultaneous control of NOx and CO emissions in industrial flue gases. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Graphical abstract

17 pages, 13979 KiB  
Article
Waste Incineration Fly Ash-Based Bifunctional Catalyst for Upgrading Glucose to Levulinic Acid
by Rui Zhang, Han Wu, Jiantao Li, Dezhi Chen, Shimin Li, Jiale Chen, Xiaoyun Li, Jian Xiong, Zhihao Yu and Xuebin Lu
Catalysts 2025, 15(4), 402; https://doi.org/10.3390/catal15040402 - 19 Apr 2025
Viewed by 499
Abstract
The safe and resource-efficient utilization of waste incineration fly ash (WIFA) has emerged as a pressing challenge in solid waste management. In this work, WIFA was used to prepare a bifunctional catalyst (Metalsx/4@WIFA-S) for the production of levulinic acid (LA) from [...] Read more.
The safe and resource-efficient utilization of waste incineration fly ash (WIFA) has emerged as a pressing challenge in solid waste management. In this work, WIFA was used to prepare a bifunctional catalyst (Metalsx/4@WIFA-S) for the production of levulinic acid (LA) from glucose. The yield of LA was 42.3% with water as the solvent. Moreover, adding 20% γ-valerolactone (GVL) to the system increased the yield to 50.7%. Reaction kinetics and molecular dynamics simulations were applied to elucidate the mechanism by which the solvent system enhanced the catalytic performance of the Metalsx/4@WIFA-S catalyst. Additionally, the environmental risks of WIFA in the preparation of catalysts were evaluated. The dioxin decomposition rate in the catalyst was calculated to be 99.87%, effectively achieving the detoxification of the catalyst. The concentration of heavy metals in the hydrolysate complied with emission standards, thereby reducing environmental risk. This study confirms that waste incineration fly ash-based bifunctional catalysts are effective and safe catalysts with great potential for application in biomass catalysis. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Graphical abstract

18 pages, 3977 KiB  
Article
The Improved Cooperation of Metal–Acid Catalysis Using Encapsulation and P Doping Enhances the Preparation of 3-Acetyl-1-Propanol
by Zezheng Bing, Yuanyuan Gao, Zhongyi Liu and Qiaoyun Liu
Catalysts 2025, 15(4), 390; https://doi.org/10.3390/catal15040390 - 17 Apr 2025
Viewed by 490
Abstract
Biomass, as a renewable carbon resource, holds broad application prospects. Among various bio-based platform molecules, furan derivatives play a significant role in green chemical production. Notably, the conversion of 2-methylfuran (2-MF) to 3-acetyl-1-propanol (3-AP) over bifunctional catalysts has attracted considerable interest. In this [...] Read more.
Biomass, as a renewable carbon resource, holds broad application prospects. Among various bio-based platform molecules, furan derivatives play a significant role in green chemical production. Notably, the conversion of 2-methylfuran (2-MF) to 3-acetyl-1-propanol (3-AP) over bifunctional catalysts has attracted considerable interest. In this study, a Pd@PHZSM-5 catalyst was prepared by encapsulating Pd nanoparticles within P-doped HZSM-5 for 2-MF conversion. The encapsulation improved Pd dispersion and metal–acid synergy, enhancing both catalytic activity and 3-AP selectivity. Additionally, phosphorus doping increased HZSM-5 crystallinity, resulting in excellent stability. This work provides a feasible strategy for optimizing metal–acid cooperation, offering theoretical guidance for bifunctional catalysis and biomass valorization. Full article
(This article belongs to the Special Issue Industrial Applications of High-Value Added Biomass Conversion)
Show Figures

Figure 1

15 pages, 5319 KiB  
Article
Synthesis and Application of SAPO-11 Molecular Sieves Prepared from Reaction Gels with Various Templates in the Hydroisomerization of Hexadecane
by Dmitry V. Serebrennikov, Arthur R. Zabirov, Alexey N. Saliev, Roman E. Yakovenko, Tatyana R. Prosochkina, Zulfiya R. Fayzullina, Vladimir Yu. Guskov, Boris I. Kutepov and Marat R. Agliullin
Gels 2024, 10(12), 792; https://doi.org/10.3390/gels10120792 - 4 Dec 2024
Cited by 1 | Viewed by 1514
Abstract
Among the most selective catalytic systems for the hydroisomerization of C16+ n-paraffins, catalytic systems based on SAPO-11 are quite promising. In order to increase the activity and selectivity of these bifunctional catalysts, it is necessary to reduce the diffusion restrictions [...] Read more.
Among the most selective catalytic systems for the hydroisomerization of C16+ n-paraffins, catalytic systems based on SAPO-11 are quite promising. In order to increase the activity and selectivity of these bifunctional catalysts, it is necessary to reduce the diffusion restrictions for the reacting molecules and their products in the microporous structure of SAPO-11 by reducing the crystal size. To solve this problem, we have studied the influence of different templates (diethylamine, dipropylamine, diisopropylamine, and dibutylamine) on the physicochemical properties of reaction gels and SAPO-11 silicoaluminophosphates during their crystallization. Using XRD, SEM, and NMR techniques, we found that regardless of the template used, the reaction gel after the aging process at 90 °C is an AlPO4·2H2O hydroaluminophosphate. At the same time, the nature of the template affects the morphology and crystal sizes of the intermediate alumophosphate, AlPO4·2H2O, and the molecular sieves, SAPO-11. The acidic properties and the porous structure characteristics of SAPO-11 are also affected by the template. A template was proposed to enable the synthesis of nanoscale SAPO-11 crystals. The influence of the morphology and crystal size of SAPO-11 on the catalytic properties of a bifunctional catalyst based on SAPO-11 in the hydroisomerization of hexadecane was investigated. Full article
Show Figures

Graphical abstract

20 pages, 3760 KiB  
Article
Carbon-Based Catalysts from H3PO4 Activation of Olive Stones for Sustainable Solketal and γ-Valerolactone Production
by Javier Torres-Liñán, Miguel García-Rollán, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol and Tomás Cordero
Catalysts 2024, 14(12), 869; https://doi.org/10.3390/catal14120869 - 28 Nov 2024
Viewed by 936
Abstract
The use of activated carbon-based catalysts for the production of solketal and γ-valerolactone (GVL), two products of interest for biorefinery processes, was investigated. Activated carbons (ACs) were prepared by chemical activation of olive stones, an agricultural byproduct, using H3PO4 to [...] Read more.
The use of activated carbon-based catalysts for the production of solketal and γ-valerolactone (GVL), two products of interest for biorefinery processes, was investigated. Activated carbons (ACs) were prepared by chemical activation of olive stones, an agricultural byproduct, using H3PO4 to olive stone mass impregnation ratios (IRs) of 1:1 and 3:1, and under nitrogen or air atmosphere. The ACs showed SBET values of 1130–1515 m2/g, owing to the presence of micropores (0.45–0.60 cm3/g). The use of an IR of 3:1 delivered a wider pore size distribution, with mesopore volume increasing up to 1.36 cm3/g. XPS confirmed the presence of phosphorus groups with surface concentrations of 2.2–3.2 wt% strongly bonded the AC surface through C-O-P bonds. The ACs were tested as acid catalysts for the acetalization of glycerol in a stirred batch reactor at temperatures of 30–50 °C, glycerol concentrations of 1.5 to 3.4 mol/L, and 1–3 wt% catalytic loading. The catalytic activity was clearly correlated with the quantity of C-O-P acid groups determined by TPD, which increased when ACs were prepared under air atmosphere. The AC prepared with IR 3:1 under air achieved full selectivity to solketal, with activation energy of 49 kJ/mol and conversion of up to 70%, matching the equilibrium conversion value under the optimum reaction conditions. A bifunctional catalyst was prepared over this AC by deposition of 5 wt% zirconium and tested in stirred batch reactor for the hydrogenation of levulinic acid (LA) using isopropyl alcohol (IPA) as solvent and H2 donor, with LA:IPA ratios from 1:1 to 1:7 and temperatures between 160–200 °C. The catalyst reached full LA conversion and a GVL yield higher than 80% after only 12 h at 200 °C. A test conducted in the presence of water revealed that it was an inhibitor of the reaction. The identification of isopropyl levulinate as an intermediate suggests that the most likely reaction pathway was dehydration, followed by hydrogenation and cyclization, to obtain GVL. Kinetic modelling of the results showed a value of 42 kJ/mol for the hydrogenation step. The reusability of the catalyst was tested for five consecutive reaction cycles, maintaining most of the activity and selectivity towards GVL. Full article
Show Figures

Graphical abstract

20 pages, 5663 KiB  
Article
Cross-Linked Metathesis Polynorbornenes Based on Nadimides Bearing Hydrocarbon Substituents: Synthesis and Physicochemical Properties
by Kirill S. Sadovnikov, Ivan V. Nazarov, Vsevolod A. Zhigarev, Anastasia A. Danshina, Igor S. Makarov and Maxim V. Bermeshev
Polymers 2024, 16(18), 2671; https://doi.org/10.3390/polym16182671 - 22 Sep 2024
Cited by 2 | Viewed by 1475
Abstract
Metathesis homo- and copolymerization of bifunctional monomers bearing two norbornene moieties was studied. The monomers were synthesized from cis-5-norbornene-exo-2,3-dicarboxylic anhydride and various diamines (hexamethylenediamine, decamethylenediamine, 1R,3S-isophoronediamine). The metathesis homopolymerization of these bis(nadimides) in the presence of the second-generation Grubbs catalyst afforded glassy cross-linked [...] Read more.
Metathesis homo- and copolymerization of bifunctional monomers bearing two norbornene moieties was studied. The monomers were synthesized from cis-5-norbornene-exo-2,3-dicarboxylic anhydride and various diamines (hexamethylenediamine, decamethylenediamine, 1R,3S-isophoronediamine). The metathesis homopolymerization of these bis(nadimides) in the presence of the second-generation Grubbs catalyst afforded glassy cross-linked polymers in more than 90% yields. The metathesis copolymerization of the bis(nadimides) and a monofunctional norbornene derivative containing the β-pinene fragment also resulted in insoluble cross-linked polymers in nearly quantitative yields. The structures and purity of the synthesized polymers were confirmed via IR spectroscopy and CP/MAS NMR spectroscopy. Conditions for the fabrication of mechanically strong solution-cast thin films based on copolymers synthesized from the comonomers mentioned above were determined by varying the content of the cross-linking agent. It was shown that the films made in this way are stable in a range of organic solvents and could be useful as semipermeable or membrane materials for use in liquid organic media. The permeability of the polymer films in question to 1-phenylethanol and mandelic acid was studied. The results obtained are discussed along with the data from the DSC, TGA, and powder X-ray diffraction studies of the properties of the synthesized metathesis homo- and copolymers. Full article
(This article belongs to the Special Issue Preparation and Application of Functional Polymer Materials)
Show Figures

Figure 1

27 pages, 3430 KiB  
Article
Effect of TiO2 on Acidity and Dispersion of H3PW12O40 in Bifunctional Cu-ZnO(Al)-H3PW12O40/TiO2 Catalysts for Direct Dimethyl Ether Synthesis
by Elena Millán Ordóñez, Noelia Mota Toledo, Bertrand Revel, Olivier Lafon and Rufino M. Navarro Yerga
Catalysts 2024, 14(7), 435; https://doi.org/10.3390/catal14070435 - 8 Jul 2024
Cited by 1 | Viewed by 1288
Abstract
The performance of bifunctional hybrid catalysts based on phosphotungstic acid (H3PW12O40, HPW) supported on TiO2 combined with a Cu-ZnO(Al) catalyst in the direct synthesis of dimethyl ether (DME) from syngas has been investigated. In this work, [...] Read more.
The performance of bifunctional hybrid catalysts based on phosphotungstic acid (H3PW12O40, HPW) supported on TiO2 combined with a Cu-ZnO(Al) catalyst in the direct synthesis of dimethyl ether (DME) from syngas has been investigated. In this work, different types of TiO2 were used as a support to study the effect of changes in the structure of the TiO2 support on the acidity and dispersion of HPW. Various TiO2 supports with different structural and surface characteristics have been studied and the results indicate that: (i) the crystallinity and crystallite size of the primary particles of the HPW units depend on the TiO2 support; (ii) the pore size distribution of the TiO2 support affects the surface segregation of the heteropolyacids; and (iii) changes in the supported HPW acid catalysts do not significantly alter the crystal structure of the CuO and ZnO phases after contact with CZA in bifunctional catalysts. The activity results indicate that the variation in the intrinsic activity of the Cu-ZnOx centers in the bifunctional catalysts for direct DME synthesis is minimal due to the limited alteration of the crystal structure of the centers. Full article
(This article belongs to the Special Issue Polyoxometalates (POMs) as Catalysts for Biomass Conversion)
Show Figures

Graphical abstract

18 pages, 5934 KiB  
Article
Biodiesel Production over Banana Peel Biochar as a Sustainable Catalyst
by Ana Paula Soares Dias, Igor Pedra, Érica Salvador, Bruna Rijo, Manuel Francisco Costa Pereira, Fátima Serralha and Isabel Nogueira
Catalysts 2024, 14(4), 266; https://doi.org/10.3390/catal14040266 - 16 Apr 2024
Cited by 7 | Viewed by 5251
Abstract
Biodiesel from waste frying oil was produced via methanolysis using biochar-based catalysts prepared by carbonizing banana peels (350 °C and 400 °C) mixed with 20% (wt.) of alkali carbonates (Na, Li, or K). The catalysts exhibited a bi-functional character: acidic and basic. Raman [...] Read more.
Biodiesel from waste frying oil was produced via methanolysis using biochar-based catalysts prepared by carbonizing banana peels (350 °C and 400 °C) mixed with 20% (wt.) of alkali carbonates (Na, Li, or K). The catalysts exhibited a bi-functional character: acidic and basic. Raman spectroscopy confirmed the alkali’s role in char graphitization, influencing morphology and oxygen content. Oxygenated surface sites acted as acidic sites for free fatty acid esterification, while alkali sites facilitated triglyceride transesterification. The best catalyst obtained by carbonization at 350 °C, without alkali modifier, led to 97.5% FAME by processing a waste frying oil with 1.2 mg KOH/g oil acidity. Most of the studied catalysts yielded high-quality glycerin, allowing the significance of homogenous catalyzed processes to be discarded. Full article
Show Figures

Graphical abstract

12 pages, 1962 KiB  
Article
Synthesis of β-Cyclodextrin@gold Nanoparticles and Its Application on Colorimetric Assays for Ascorbic Acid and Salmonella Based on Peroxidase-like Activities
by Xinyi Fan, Yuexin Bao, Yanhong Chen, Xiaohong Wang, Stephen L. W. On and Jia Wang
Biosensors 2024, 14(4), 169; https://doi.org/10.3390/bios14040169 - 31 Mar 2024
Cited by 6 | Viewed by 2270
Abstract
The peroxidase-like behaviors of gold nanoparticles (AuNPs) have the potential to the development of rapid and sensitive colorimetric assays for specific food ingredients and contaminants. Here, using NaBH4 as a reducing agent, AuNPs with a supramolecular macrocyclic compound β-cyclodextrin (β-CD) capped were [...] Read more.
The peroxidase-like behaviors of gold nanoparticles (AuNPs) have the potential to the development of rapid and sensitive colorimetric assays for specific food ingredients and contaminants. Here, using NaBH4 as a reducing agent, AuNPs with a supramolecular macrocyclic compound β-cyclodextrin (β-CD) capped were synthesized under alkaline conditions. Monodispersal of β-CD@AuNPs possessed a reduction in diameter size and performed great peroxidase-like activities toward both substrates, H2O2 and TMB. In the presence of H2O2, the color change of TMB oxidization to oxTMB was well-achieved using β-CD@AuNPs as the catalyst, which was further employed to develop colorimetric assays for ascorbic acid, with a limit of detection as low as 0.2 μM in ddH2O. With the help of the host-guest interaction between β-CD and adamantane, AuNPs conjugated with nanobodies to exhibit peroxidase-like activities and specific recognition against Salmonella Typhimurium simultaneously. Based on this bifunctional bioprobe, a selective and sensitive one-step colorimetric assay for S. Typhimurium was developed with a linear detection from 8.3 × 104 to 2.6 × 108 CFU/mL and can be provided to spiked lettuce with acceptable recoveries of 97.31% to 103.29%. The results demonstrated that the excellent peroxidase-like behaviors of β-CD@AuNPs can be applied to develop a colorimetric sensing platform in the food industry. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Graphical abstract

13 pages, 5717 KiB  
Article
Porous Prussian Blue Analogs Decorated Electrospun Carbon Nanofibers as Efficient Electrocatalyst for Overall Water Splitting
by Zhiqing Xiao, Xiubin Zhu, Lu Bai and Zhicheng Liu
Energies 2024, 17(5), 1154; https://doi.org/10.3390/en17051154 - 29 Feb 2024
Cited by 2 | Viewed by 1885
Abstract
Metal-organic frameworks are becoming increasingly important in electrocatalysis as the hydrogen production sector grows. However, their electrocatalytic capability is limited by their inclination to agglomerate and the insufficient exposure of active sites. In this work, a three-step strategy was used to develop a [...] Read more.
Metal-organic frameworks are becoming increasingly important in electrocatalysis as the hydrogen production sector grows. However, their electrocatalytic capability is limited by their inclination to agglomerate and the insufficient exposure of active sites. In this work, a three-step strategy was used to develop a bifunctional electrocatalyst with porous Prussian blue analogs supported on carbon nanofibers. The use of electrospun carbon nanofibers as conductive substrates can successfully address the problem of easy aggregation. Moreover, the etching procedure with tannic acid creates a porous structure that effectively regulates the electrical structure and exposes additional active sites. The resulting catalyst performs well in both the hydrogen evolution reaction and the oxygen evolution reaction, and also exhibits good stability in overall water splitting. The findings of this study present new concepts for the design and fabrication of metal-organic frameworks-based materials in the realm of electrocatalysis. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Hydrogen Evolution)
Show Figures

Figure 1

20 pages, 10452 KiB  
Article
Hydrodeoxygenation of Lignin-Based Compounds over Ruthenium Catalysts Based on Sulfonated Porous Aromatic Frameworks
by Maria A. Bazhenova, Leonid A. Kulikov, Daria A. Makeeva, Anton L. Maximov and Eduard A. Karakhanov
Polymers 2023, 15(23), 4618; https://doi.org/10.3390/polym15234618 - 4 Dec 2023
Cited by 8 | Viewed by 2032
Abstract
Bifunctional catalysts are a major type of heterogeneous catalytic systems that have been widely investigated for biomass upgrading. In this work, Ru-catalysts based on sulfonated porous aromatic frameworks (PAFs) were used in the hydrodeoxygenation (HDO) of lignin-derived compounds: guaiacol, veratrole, and catechol. The [...] Read more.
Bifunctional catalysts are a major type of heterogeneous catalytic systems that have been widely investigated for biomass upgrading. In this work, Ru-catalysts based on sulfonated porous aromatic frameworks (PAFs) were used in the hydrodeoxygenation (HDO) of lignin-derived compounds: guaiacol, veratrole, and catechol. The relationship between the activity of metal nanoparticles and the content of acid sites in synthesized catalysts was studied. Herein, their synergy was demonstrated in the Ru-PAF-30-SO3H/5-COD catalyst. The results revealed that this catalytic system promoted partial hydrogenation of lignin-based compounds to ketones without any further transformations. The design of the Ru-PAF-30-SO3H/5-COD catalytic system opens a promising route to the selective conversion of lignin model compounds to cyclohexanone. Full article
Show Figures

Graphical abstract

14 pages, 2520 KiB  
Article
Bifunctional Hybrid FTS Catalyst Mixed with SAPO-34 Zeolite for Application in the GTL-FPSO Process
by Hyun Dong Kim, Hyun-tae Song, Jeong Min Seo, Ye-na Choi, Kwan-Young Lee and Dong Ju Moon
Catalysts 2023, 13(12), 1465; https://doi.org/10.3390/catal13121465 - 24 Nov 2023
Viewed by 1887
Abstract
The gas-to-liquid (GTL) process is a catalytic technology for achieving carbon neutrality during fuel production. Fischer–Tropsch synthesis (FTS), a core step in this process, converts synthesis gas (CO + H2) to high-value hydrocarbon products. This study synthesized a chabazite-shaped zeolite and [...] Read more.
The gas-to-liquid (GTL) process is a catalytic technology for achieving carbon neutrality during fuel production. Fischer–Tropsch synthesis (FTS), a core step in this process, converts synthesis gas (CO + H2) to high-value hydrocarbon products. This study synthesized a chabazite-shaped zeolite and a Co/γ-alumina catalyst by using conventional hydrothermal and wet impregnation methods, respectively. Hybrid FTS catalysts were then prepared by mixing the Co/γ-alumina catalyst with supports, including the synthesized and commercial zeolites alone and mixed at various ratios. The effects of these zeolites on the FTS conversion and selectivity were investigated. Additionally, the physicochemical properties of the supports and prepared catalysts were analyzed. The bifunctional hybrid catalyst performance was evaluated in a fixed-bed reactor, and the FTS products were analyzed using online and offline gas chromatography. The hybrid catalysts produced lighter hydrocarbons than the Co/γ-alumina catalyst alone. Meanwhile, heavy hydrocarbons produced over the Co/γ-alumina catalyst were hydrocracked at the acid sites of the silicoaluminophosphate zeolite (SAPO-34) to yield lighter, fuel-range hydrocarbons. Cobalt-based hybrid FTS catalysts were also investigated to determine the optimum support ratio for high carbon conversion and C5+ selectivity. The hybrid catalyst supported on SAPO-34:ZSM-5 (2:8) exhibited the highest CO conversion and favorable C5+ selectivity. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

20 pages, 2405 KiB  
Article
The Role of Catalyst Promotive Additives and Temperature in the Hydroisodewaxing Process
by Kamilla Abdildina, Gulzira Vassilina, Albina Abdrassilova, Ivan A. Klassen, Raigul Orynbassar and Fatima Kanapiyeva
Molecules 2023, 28(22), 7598; https://doi.org/10.3390/molecules28227598 - 15 Nov 2023
Cited by 1 | Viewed by 1372
Abstract
One of the valuable fractions of paraffinic oils is the diesel fraction, which can be used as a commercial fuel. However, the high content of alkanes of normal structure (~10–40%) in the diesel fraction leads to a deterioration in the performance characteristics of [...] Read more.
One of the valuable fractions of paraffinic oils is the diesel fraction, which can be used as a commercial fuel. However, the high content of alkanes of normal structure (~10–40%) in the diesel fraction leads to a deterioration in the performance characteristics of the fuel and, as a result, the inability to use the diesel fraction without additional processing in the cold season at lower temperatures, which is critical for many regions with cold winters. The process of catalytic dewaxing is one of the most promising ways to improve the low-temperature characteristics of diesel fractions. This work is devoted to studying the activity of promoted Ni, Mo, and Ni-Mo catalysts based on mesoporous aluminosilicate and pre-activated bentonite in dewaxing diesel fractions. The effect of the nature and content of promoting additives on the activity of bifunctional catalysts in the process of hydroisodewaxing of diesel fraction in a flow-type reactor in the temperature range of 260–340 °C, pressure of 2 MPa and feed space velocity of 1 h–1 was studied. It is shown that the synthesized bifunctional catalysts based on mesoporous aluminosilicate and pre-activated bentonite from the Tagan field (Ni/MAS-H-bentonite, Mo/MAS-H-bentonite, and Ni-Mo/MAS-H-bentonite) have the necessary balance of Lewis and Bronsted acid centers strengths. It allows them to selectively conduct the hydroisodewaxing process. It has been established that the use of the synthesized 5% Ni-1% Mo/MAS-H-bentonite bifunctional catalyst in the diesel fractions hydroisodewaxing process under optimal process conditions makes it possible to obtain diesel fuel with low-temperature characteristics that meet the requirements for cold climate fuels: cold filter plugging point (CFPP)—minus 33 °C, flash point in a closed cup—39 °C and pour point—minus 36 °C. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

16 pages, 23832 KiB  
Article
Bacterial Cellulose and Biodegradable Superbase for Heterogeneous Transesterification to Alkyl Esters
by Cristina Ionela Gogoaşă, Cristian Eugen Răducanu, Laura Elisabeta Petraş, Doinița Roxana Cioroiu Tîrpan, Gabriel Vasilievici, Andreea Luiza Mîrţ, Tănase Dobre and Oana Cristina Pârvulescu
Catalysts 2023, 13(11), 1431; https://doi.org/10.3390/catal13111431 - 13 Nov 2023
Cited by 3 | Viewed by 1679
Abstract
Heterogeneous catalysts, basic, acidic or bifunctional, can catalyze transesterification reactions where the raw material has a significant content of FFA fatty acids, such as used cooking oils or other lipid-based residues, which do not have the purity required for homogeneous catalysis, in which [...] Read more.
Heterogeneous catalysts, basic, acidic or bifunctional, can catalyze transesterification reactions where the raw material has a significant content of FFA fatty acids, such as used cooking oils or other lipid-based residues, which do not have the purity required for homogeneous catalysis, in which case the purity of the triglycerides above 99.5% is the first condition for the initiation of the reaction, to avoid saponification. In this work, a green supported catalyst was developed, using bacterial cellulose as catalytic support and biodegradable superbase as a chemical compound, for transesterification reaction to obtain alkyl esters, yielding over 99% of its content at 70 °C temperature and 7.5% catalyst loading (1.5/20 w/w catalyst:oil). A Plackett-–Burman design was used for screening experiments to explore the main effect in terms of catalytic activity and performance of the triglyceride conversion reaction. Full article
(This article belongs to the Special Issue Applications of Heterogeneous Catalysts in Green Chemistry)
Show Figures

Graphical abstract

Back to TopTop