Bifunctional Hybrid FTS Catalyst Mixed with SAPO-34 Zeolite for Application in the GTL-FPSO Process
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Hybrid FTS Catalysts
2.2. Performance of Hybrid FTS Catalysts Mixed with Zeolites
3. Experimental Procedure
3.1. Synthesis of Chabazite-Structured Zeolite SAPO-34 Supports
3.2. Preparation of Hybrid FTS Catalysts via the Physical Mixing Method
3.3. Characterization of the Hybrid FTS Catalysts
3.4. Catalytic Activity Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Mahammadunnisa, S.; Reddy, E.L.; Ray, D.; Subrahmanyam, C.; Whitehead, J.C. CO2 reduction to syngas and carbon nanofibres by plasma-assisted in situ decomposition of water. Int. J. Greenh. Gas Control 2013, 16, 361–363. [Google Scholar] [CrossRef]
- Kang, S.C.; Jun, K.-W.; Lee, Y.-J. Effects of the CO/CO2 ratio in synthesis gas on the catalytic behavior in Fischer–Tropsch synthesis using K/Fe–Cu–Al catalysts. Energy Fuels 2013, 27, 6377–6387. [Google Scholar] [CrossRef]
- Dorner, R.W.; Hardy, D.R.; Williams, F.W.; Willauer, H.D. Advances in CO2 Conversion and Utilization; ACS Publications: Washington, DC, USA, 2010; pp. 125–139. [Google Scholar]
- Ning, W.; Koizumi, N.; Yamada, M. Researching Fe catalyst suitable for CO2-containing syngas for Fischer−Tropsch synthesis. Energy Fuels 2009, 23, 4696–4700. [Google Scholar] [CrossRef]
- Lee, S.-C.; Jang, J.-H.; Lee, B.-Y.; Kim, J.-S.; Kang, M.; Lee, S.-B.; Choi, M.-J.; Choung, S.-J. Promotion of hydrocarbon selectivity in CO2 hydrogenation by Ru component. J. Mol. Catal. A Chem. 2004, 210, 131–141. [Google Scholar] [CrossRef]
- Park, S.H.; Choi, K.B.; Kim, M.Y.; Lee, C.S. Experimental investigation and prediction of density and viscosity of GTL, GTL–biodiesel, and GTL–diesel blends as a function of temperature. Energy Fuels 2013, 27, 56–65. [Google Scholar] [CrossRef]
- Iandoli, C.L.; Kjelstrup, S. Exergy analysis of a GTL process based on low-temperature slurry F− T reactor technology with a cobalt catalyst. Energy Fuels 2007, 21, 2317–2324. [Google Scholar] [CrossRef]
- Saito, M.; Fujitani, T.; Takeuchi, M.; Watanabe, T. Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen. Appl. Catal. A Gen. 1996, 138, 311–318. [Google Scholar] [CrossRef]
- Qi, G.-X.; Fei, J.-H.; Zheng, X.-M.; Hou, Z.-Y. DME synthesis from carbon dioxide and hydrogen over Cu–Mo/HZSM-5. Catal. Lett. 2001, 72, 121–124. [Google Scholar] [CrossRef]
- de Klerk, A.; Furimsky, E. Catalysis in the refining of Fischer–Tropsch syncrude. Platin. Met. Rev. 2011, 55, 263–267. [Google Scholar]
- Martínez, A.; Valencia, S.; Murciano, R.; Cerqueira, H.S.; Costa, A.F.; Aguiar, E.F.S. Catalytic behavior of hybrid Co/SiO2-(medium-pore) zeolite catalysts during the one-stage conversion of syngas to gasoline. Appl. Catal. A Gen. 2008, 346, 117–125. [Google Scholar] [CrossRef]
- Sousa-Aguiar, E.F.; Noronha, F.B.; Faro, A., Jr. The main catalytic challenges in GTL (gas-to-liquids) processes. Catal. Sci. Technol. 2011, 1, 698–713. [Google Scholar] [CrossRef]
- Beaumont, S.K. Recent developments in the application of nanomaterials to understanding molecular level processes in cobalt catalysed Fischer–Tropsch synthesis. Phys. Chem. Chem. Phys. 2014, 16, 5034–5043. [Google Scholar] [CrossRef]
- Adeleke, A.A.; Liu, X.; Lu, X.; Moyo, M.; Hildebrandt, D. Cobalt hybrid catalysts in Fischer-Tropsch synthesis. Rev. Chem. Eng. 2020, 36, 437–457. [Google Scholar] [CrossRef]
- Ralph, C.R. The Fischer–Tropsch Process. In The Biofuels Handbook; Speight, J.G., Ed.; The Royal Society of Chemistry: London, UK, 2011. [Google Scholar]
- Blekkan, E.A.; Borg, Ø.; Frøseth, V.; Holmen, A. Fischer-Tropsch synthesis on cobalt catalysts: The effect of water. Catalysis 2007, 20, 13–32. [Google Scholar]
- Jacobs, G.; Davis, B.H. Conversion of Biomass to Liquid Fuels and Chemicals via the Fischer–Tropsch Synthesis Route; The Royal Society of Chemistry: London, UK, 2010; Volume 1. [Google Scholar]
- Förtsch, D.; Pabst, K.; Groß-Hardt, E. The product distribution in Fischer–Tropsch synthesis: An extension of the ASF model to describe common deviations. Chem. Eng. Sci. 2015, 138, 333–346. [Google Scholar] [CrossRef]
- Park, D.; Moon, D.J.; Kim, T. Steam-CO2 reforming of methane on Ni/γ-Al2O3-deposited metallic foam catalyst for GTL-FPSO process. Fuel Process. Technol. 2013, 112, 28–34. [Google Scholar] [CrossRef]
- Jung, J.-S.; Choi, G.; Lee, J.-S.; Moon, D.J. Microstructure of FTS studies over spherical Co/γ-Al2O3. Catal. Today 2015, 250, 102–114. [Google Scholar] [CrossRef]
- Hong, G.H.; Noh, Y.S.; Park, J.I.; Shin, S.A.; Moon, D.J. Effect of catalytic reactor bed dilution on product distribution for Fischer-Tropsch synthesis over Ru/Co/Al2O3 catalyst. Catal. Today 2018, 303, 136–142. [Google Scholar] [CrossRef]
- Jung, I.; Kshetrimayum, K.S.; Park, S.; Na, J.; Lee, Y.; An, J.; Park, S.; Lee, C.-J.; Han, C. Computational fluid dynamics based optimal design of guiding channel geometry in U-type coolant layer manifold of large-scale microchannel Fischer–Tropsch reactor. Ind. Eng. Chem. Res. 2016, 55, 505–515. [Google Scholar] [CrossRef]
- Hong, G.H.; Moon, D.J. Development of fixed bed reactor for application in GTL-FPSO: The effect of nitrogen and carbon dioxide contents in feed gas on Fischer-Tropsch synthesis reaction over Ru/Co/Al2O3 catalyst. Catal. Today 2019, 353, 73–81. [Google Scholar] [CrossRef]
- Noh, Y.S.; Lee, K.-Y.; Moon, D.J. Studies on the Fischer-Tropsch synthesis over RuCo/SiC-Al2O3 structured catalyst. Catal. Today 2019, 348, 157–165. [Google Scholar] [CrossRef]
- Koo, H.M.; Park, M.J.; Moon, D.J.; Bae, J.W. Kinetic models of Fischer-Tropsch synthesis reaction over granule-type Pt-promoted Co/Al2O3 catalyst. Korean J. Chem. Eng. 2018, 35, 1263–1273. [Google Scholar] [CrossRef]
- Jung, J.-S.; Lee, J.-S.; Choi, G.; Ramesh, S.; Moon, D.J. The characterization of micro-structure of cobalt on γ-Al2O3 for FTS: Effects of pretreatment on Ru–Co/γ-Al2O3. Fuel 2015, 149, 118–129. [Google Scholar] [CrossRef]
- Jung, J.-S.; Kim, S.W.; Moon, D.J. Fischer–Tropsch Synthesis over cobalt based catalyst supported on different mesoporous silica. Catal. Today 2012, 185, 168–174. [Google Scholar] [CrossRef]
- Feller, A.; Guzman, A.; Zuazo, I.; Lercher, J.A. On the mechanism of catalyzed isobutane/butene alkylation by zeolites. J. Catal. 2004, 224, 80–93. [Google Scholar] [CrossRef]
- Kim, N.Y.; Jung, J.-S.; Lee, J.S.; Yang, E.H.; Hong, G.H.; Lim, S.S.; Noh, Y.S.; Hodala, J.L.; Lee, K.Y.; Moon, D.J. Synthesis and characterization of Al-modified SBA-15 for Fischer–Tropsch synthesis (FTS) reaction. Res. Chem. Intermed. 2016, 42, 319–334. [Google Scholar] [CrossRef]
- Kuipers, E.; Scheper, C.; Wilson, J.; Vinkenburg, I.; Oosterbeek, H. Non-ASF product distributions due to secondary reactions during Fischer–Tropsch synthesis. J. Catal. 1996, 158, 288–300. [Google Scholar] [CrossRef]
- Liu, X.; Hamasaki, A.; Honma, T.; Tokunaga, M. Anti-ASF distribution in Fischer-Tropsch synthesis over unsupported cobalt catalysts in a batch slurry phase reactor. Catal. Today 2011, 175, 494–503. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, J.; Corma, A. Applications of zeolites to C1 chemistry: Recent advances, challenges, and opportunities. Adv. Mater. 2020, 32, 2002927. [Google Scholar] [CrossRef]
- Sie, S.; Senden, M.; Van Wechem, H. Conversion of natural gas to transportation fuels via the shell middle distillate synthesis process (SMDS). Catal. Today 1991, 8, 371–394. [Google Scholar] [CrossRef]
- Eslami, A.A.; Haghighi, M.; Sadeghpour, P. Short time microwave/seed-assisted synthesis and physicochemical characterization of nanostructured MnAPSO-34 catalyst used in methanol conversion to light olefins. Powder Technol. 2017, 310, 187–200. [Google Scholar] [CrossRef]
- Dahl, I.M.; Kolboe, S. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34. Catal. Lett. 1993, 20, 329–336. [Google Scholar] [CrossRef]
- Chen, D.; Moljord, K.; Fuglerud, T.; Holmen, A. The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous Mesoporous Mater. 1999, 29, 191–203. [Google Scholar] [CrossRef]
- Lu, P.; Sun, J.; Zhu, P.; Abe, T.; Yang, R.; Taguchi, A.; Vitidsant, T.; Tsubaki, N. Sputtered nano-cobalt on H-USY zeolite for selectively converting syngas to gasoline. J. Energy Chem. 2015, 24, 637–641. [Google Scholar] [CrossRef]
- Yoneyama, Y.; He, J.; Morii, Y.; Azuma, S.; Tsubaki, N. Direct synthesis of isoparaffin by modified Fischer–Tropsch synthesis using hybrid catalyst of iron catalyst and zeolite. Catal. Today 2005, 104, 37–40. [Google Scholar] [CrossRef]
- Tsubaki, N.; Yoneyama, Y.; Michiki, K.; Fujimoto, K. Three-component hybrid catalyst for direct synthesis of isoparaffin via modified Fischer–Tropsch synthesis. Catal. Commun. 2003, 4, 108–111. [Google Scholar] [CrossRef]
- Sartipi, S.; Parashar, K.; Valero-Romero, M.J.; Santos, V.P.; Van Der Linden, B.; Makkee, M.; Kapteijn, F.; Gascon, J. Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasoline-range hydrocarbons from syngas: Advantages, limitations, and mechanistic insight. J. Catal. 2013, 305, 179–190. [Google Scholar] [CrossRef]
- Sartipi, S.; Van Dijk, J.E.; Gascon, J.; Kapteijn, F. Toward bifunctional catalysts for the direct conversion of syngas to gasoline range hydrocarbons: H-ZSM-5 coated Co versus H-ZSM-5 supported Co. Appl. Catal. A Gen. 2013, 456, 11–22. [Google Scholar] [CrossRef]
- Martínez, A.; Rollán, J.; Arribas, M.A.; Cerqueira, H.S.; Costa, A.F.; Aguiar, E.F.S. A detailed study of the activity and deactivation of zeolites in hybrid Co/SiO2-zeolite Fischer–Tropsch catalysts. J. Catal. 2007, 249, 162–173. [Google Scholar] [CrossRef]
- Huang, X.; Hou, B.; Wang, J.; Li, D.; Jia, L.; Chen, J.; Sun, Y. CoZr/H-ZSM-5 hybrid catalysts for synthesis of gasoline-range isoparaffins from syngas. Appl. Catal. A Gen. 2011, 408, 38–46. [Google Scholar] [CrossRef]
- Wu, E.; Lawton, S.; Olson, D.; Rohrman, A.; Kokotailo, G. ZSM-5-type materials. Factors affecting crystal symmetry. J. Phys. Chem. 1979, 83, 2777–2781. [Google Scholar] [CrossRef]
- Aghaei, E.; Haghighi, M. Effect of crystallization time on properties and catalytic performance of nanostructured SAPO-34 molecular sieve synthesized at high temperatures for conversion of methanol to light olefins. Powder Technol. 2015, 269, 358–370. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, Q.; He, J.; Wang, Y.; Wei, F. Pore-structure-mediated hierarchical SAPO-34: Facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins. Particuology 2013, 11, 468–474. [Google Scholar] [CrossRef]
- Tan, J.; Liu, Z.; Bao, X.; Liu, X.; Han, X.; He, C.; Zhai, R. Crystallization and Si incorporation mechanisms of SAPO-34. Microporous Mesoporous Mater. 2002, 53, 97–108. [Google Scholar] [CrossRef]
- Sadeghpour, P.; Haghighi, M. DEA/TEAOH templated synthesis and characterization of nanostructured NiAPSO-34 particles: Effect of single and mixed templates on catalyst properties and performance in the methanol to olefin reaction. Particuology 2015, 19, 69–81. [Google Scholar] [CrossRef]
- Jacobs, G.; Das, T.K.; Zhang, Y.; Li, J.; Racoillet, G.; Davis, B.H. Fischer–Tropsch synthesis: Support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl. Catal. A Gen. 2002, 233, 263–281. [Google Scholar] [CrossRef]
- Xu, D.; Li, W.; Duan, H.; Ge, Q.; Xu, H. Reaction performance and characterization of Co/Al2O3 Fischer–Tropsch catalysts promoted with Pt, Pd and Ru. Catal. Lett. 2005, 102, 229–235. [Google Scholar] [CrossRef]
- Kim, H.D.; Song, H.-t.; Fazeli, A.; Eslami, A.A.; Noh, Y.S.; Saeidabad, N.G.; Lee, K.-Y.; Moon, D.J. CO/CO2 hydrogenation for the production of lighter hydrocarbons over SAPO-34 modified hybrid FTS catalysts. Catal. Today 2022, 388, 410–416. [Google Scholar] [CrossRef]
- Kwini, M.N.; Botha, J.M. Influence of feed components on the activity and stability of cobalt molybdenum alumina metathesis catalyst. Appl. Catal. A Gen. 2005, 280, 199–208. [Google Scholar] [CrossRef]
- Aghaei, E.; Haghighi, M.; Pazhohniya, Z.; Aghamohammadi, S. One-pot hydrothermal synthesis of nanostructured ZrAPSO-34 powder: Effect of Zr-loading on physicochemical properties and catalytic performance in conversion of methanol to ethylene and propylene. Microporous Mesoporous Mater. 2016, 226, 331–343. [Google Scholar] [CrossRef]
- De la Osa, A.; De Lucas, A.; Romero, A.; Valverde, J.; Sánchez, P. Fischer–Tropsch diesel production over calcium-promoted Co/alumina catalyst: Effect of reaction conditions. Fuel 2011, 90, 1935–1945. [Google Scholar] [CrossRef]
- Borkó, L.; Horváth, Z.; Schay, Z.; Guczi, L. The role of carbon nanospecies in deactivation of cobalt based catalysts in CH4 and CO transformation. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2007; Volume 167, pp. 231–236. [Google Scholar]
- Martínez, A.; Lopez, C. The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer–Tropsch products over hybrid catalysts. Appl. Catal. A Gen. 2005, 294, 251–259. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Huang, J.; Liang, J.; Wang, H.; Li, Z.; Wu, J.; Li, M.; Zhao, Y.; Niu, J. Effect of hierarchical crystal structures on the properties of cobalt catalysts for Fischer–Tropsch synthesis. Fuel 2016, 174, 17–24. [Google Scholar] [CrossRef]
- Goodman, D.; Kelley, R.; Madey, T.; Yates, J., Jr. Kinetics of the hydrogenation of CO over a single crystal nickel catalyst. J. Catal. 1980, 63, 226–234. [Google Scholar] [CrossRef]
- Yakovenko, R.E.; Savost’yanov, A.P.; Narochniy, G.B.; Soromotin, V.N.; Zubkov, I.N.; Papeta, O.P.; Svetogorov, R.D.; Mitchenko, S.A. Preliminary evaluation of a commercially viable Co-based hybrid catalyst system in Fischer–Tropsch synthesis combined with hydroprocessing. Catal. Sci. Technol. 2020, 10, 7613–7629. [Google Scholar] [CrossRef]
- Kibby, C.; Jothimurugesan, K.; Das, T.; Lacheen, H.; Rea, T.; Saxton, R. Chevron’s gas conversion catalysis-hybrid catalysts for wax-free Fischer–Tropsch synthesis. Catal. Today 2013, 215, 131–141. [Google Scholar] [CrossRef]
Designation | Cobalt Loading (wt.%) | Support | Textural Properties | XRD | |||
---|---|---|---|---|---|---|---|
Main | Mixed | BET S. Area (m2/g) | Avg. Pore Dia. (nm) | Pore Vol. (cm3/g) | d(Co3O4) (nm) | ||
γ-Alumina | - | γ-Alumina | - | 172.0 | 11.8 | 0.5 | - |
ZSM-5 | - | ZSM-5 | - | 401.5 | 2.6 | 0.3 | - |
SAPO-34 | - | SAPO-34 | - | 650.8 | 3.0 | 0.5 | - |
Beta | - | Beta | - | 616.8 | 2.2 | 0.3 | - |
Co/γ-alumina | 15 | γ-Alumina | - | 117.0 | 11.0 | 0.3 | 16.1 |
Co/γ-alumina + γ-alumina | 15 | γ-Alumina | γ-Alumina | 163.0 | 10.8 | 0.4 | 16.1 |
Co/γ-alumina + ZSM-5 | 15 | γ-Alumina | ZSM-5 | 274.5 | 4.9 | 0.3 | 16.1 |
Co/γ-alumina + SAPO-34 | 15 | γ-Alumina | SAPO-34 | 329.0 | 4.8 | 0.4 | 16.1 |
Co/γ-alumina + zeolite beta | 15 | γ-Alumina | Zeolite beta | 382.9 | 3.7 | 0.4 | 16.1 |
Acidity (Area) | γ-Alumina | ZSM-5 | Zeolite Beta | SAPO-34 |
---|---|---|---|---|
Weak | 0.17 | 1.54 | 1.97 | 3.12 |
Strong | 0.87 | 0.24 | 2.34 | 2.63 |
Total | 1.04 | 1.78 | 4.31 | 5.75 |
Prepared Catalyst (Co/γ-Alumina + Support 1 + Support 2) | CO Conversion (%) a | Selectivity (mol.%) a | ||||
---|---|---|---|---|---|---|
Support 1 | Support 2 | CH4 | C2–C4 | C5+ | α Value b | |
γ-Alumina | - | 31 | 22 | 1.2 | 76.3 | 0.83 |
SAPO-34 | - | 28 | 23 | 1.5 | 75.4 | 0.80 |
ZSM-5 | - | 66 | 18 | 1.5 | 80.2 | 0.79 |
Zeolite beta | - | 69 | 14 | 1.6 | 84.6 | 0.79 |
SAPO-34 (2) c | ZSM-5 (8) c | 73 | 19 | 1.7 | 79.0 | 0.77 |
SAPO-34 (5) c | ZSM-5 (5) c | 65 | 21 | 1.7 | 77.8 | 0.81 |
SAPO-34 (8) c | ZSM-5 (2) c | 44 | 21 | 1.5 | 77.1 | 0.80 |
SAPO-34 (5) c | Zeolite beta (5) c | 63 | 17 | 1.6 | 81.8 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.D.; Song, H.-t.; Seo, J.M.; Choi, Y.-n.; Lee, K.-Y.; Moon, D.J. Bifunctional Hybrid FTS Catalyst Mixed with SAPO-34 Zeolite for Application in the GTL-FPSO Process. Catalysts 2023, 13, 1465. https://doi.org/10.3390/catal13121465
Kim HD, Song H-t, Seo JM, Choi Y-n, Lee K-Y, Moon DJ. Bifunctional Hybrid FTS Catalyst Mixed with SAPO-34 Zeolite for Application in the GTL-FPSO Process. Catalysts. 2023; 13(12):1465. https://doi.org/10.3390/catal13121465
Chicago/Turabian StyleKim, Hyun Dong, Hyun-tae Song, Jeong Min Seo, Ye-na Choi, Kwan-Young Lee, and Dong Ju Moon. 2023. "Bifunctional Hybrid FTS Catalyst Mixed with SAPO-34 Zeolite for Application in the GTL-FPSO Process" Catalysts 13, no. 12: 1465. https://doi.org/10.3390/catal13121465
APA StyleKim, H. D., Song, H.-t., Seo, J. M., Choi, Y.-n., Lee, K.-Y., & Moon, D. J. (2023). Bifunctional Hybrid FTS Catalyst Mixed with SAPO-34 Zeolite for Application in the GTL-FPSO Process. Catalysts, 13(12), 1465. https://doi.org/10.3390/catal13121465