Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,321)

Search Parameters:
Keywords = accident investigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 482 KiB  
Article
The Influence of Managers’ Safety Perceptions and Practices on Construction Workers’ Safety Behaviors in Saudi Arabian Projects: The Mediating Roles of Workers’ Safety Awareness, Competency, and Safety Actions
by Talal Mousa Alshammari, Musab Rabi, Mazen J. Al-Kheetan and Abdulrazzaq Jawish Alkherret
Safety 2025, 11(3), 77; https://doi.org/10.3390/safety11030077 - 5 Aug 2025
Abstract
Improving construction site safety remains a critical challenge in Saudi Arabia’s rapidly growing construction sector, where high accident rates and diverse labor forces demand evidence-based managerial interventions. This study investigated the influence of Managers’ Safety Perceptions and Practices (MSP) on Workers’ Safety Behaviors [...] Read more.
Improving construction site safety remains a critical challenge in Saudi Arabia’s rapidly growing construction sector, where high accident rates and diverse labor forces demand evidence-based managerial interventions. This study investigated the influence of Managers’ Safety Perceptions and Practices (MSP) on Workers’ Safety Behaviors (WSB) in the Saudi construction industry, emphasizing the mediating roles of Workers’ Safety Awareness (WSA), Safety Competency (WSC), and Safety Actions (SA). The conceptual framework integrates these three mediators to explain how managerial attitudes and practices translate into frontline safety outcomes. A quantitative, cross-sectional design was adopted using a structured questionnaire distributed among construction workers, supervisors, and project managers. A total of 352 from 384 valid responses were collected, and the data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) via SmartPLS 4. The findings revealed that MSP does not directly influence WSB but has significant indirect effects through WSA, WSC, and SA. Among these, WSC emerged as the most powerful mediator, followed by WSA and SA, indicating that competency is the most critical driver of safe worker behavior. These results provide robust empirical support for a multidimensional mediation model, highlighting the need for managers to enhance safety behaviors not merely through supervision but through fostering awareness and competency, providing technical training, and implementing proactive safety measures. Theoretically, this study contributes a novel and integrative framework to the occupational safety literature, particularly within underexplored Middle Eastern construction contexts. Practically, it offers actionable insights for safety managers, industry practitioners, and policymakers seeking to improve construction safety performance in alignment with Saudi Vision 2030. Full article
(This article belongs to the Special Issue Safety Performance Assessment and Management in Construction)
Show Figures

Figure 1

15 pages, 2879 KiB  
Article
Study on the Eye Movement Transfer Characteristics of Drivers Under Different Road Conditions
by Zhenxiang Hao, Jianping Hu, Xiaohui Sun, Jin Ran, Yuhang Zheng, Binhe Yang and Junyao Tang
Appl. Sci. 2025, 15(15), 8559; https://doi.org/10.3390/app15158559 (registering DOI) - 1 Aug 2025
Viewed by 153
Abstract
Given the severe global traffic safety challenges—including threats to human lives and socioeconomic impacts—this study analyzes visual behavior to promote sustainable transportation, improve road safety, and reduce resource waste and pollution caused by accidents. Four typical road sections, namely, turning, straight ahead, uphill, [...] Read more.
Given the severe global traffic safety challenges—including threats to human lives and socioeconomic impacts—this study analyzes visual behavior to promote sustainable transportation, improve road safety, and reduce resource waste and pollution caused by accidents. Four typical road sections, namely, turning, straight ahead, uphill, and downhill, were selected, and the eye movement data of 23 drivers in different driving stages were collected by aSee Glasses eye-tracking device to analyze the visual gaze characteristics of the drivers and their transfer patterns in each road section. Using Markov chain theory, the probability of staying at each gaze point and the transfer probability distribution between gaze points were investigated. The results of the study showed that drivers’ visual behaviors in different road sections showed significant differences: drivers in the turning section had the largest percentage of fixation on the near front, with a fixation duration and frequency of 29.99% and 28.80%, respectively; the straight ahead section, on the other hand, mainly focused on the right side of the road, with 31.57% of fixation duration and 19.45% of frequency of fixation; on the uphill section, drivers’ fixation duration on the left and right roads was more balanced, with 24.36% of fixation duration on the left side of the road and 25.51% on the right side of the road; drivers on the downhill section looked more frequently at the distance ahead, with a total fixation frequency of 23.20%, while paying higher attention to the right side of the road environment, with a fixation duration of 27.09%. In terms of visual fixation, the fixation shift in the turning road section was mainly concentrated between the near and distant parts of the road ahead and frequently turned to the left and right sides; the straight road section mainly showed a shift between the distant parts of the road ahead and the dashboard; the uphill road section was concentrated on the shift between the near parts of the road ahead and the two sides of the road, while the downhill road section mainly occurred between the distant parts of the road ahead and the rearview mirror. Although drivers’ fixations on the front of the road were most concentrated under the four road sections, with an overall fixation stability probability exceeding 67%, there were significant differences in fixation smoothness between different road sections. Through this study, this paper not only reveals the laws of drivers’ visual behavior under different driving environments but also provides theoretical support for behavior-based traffic safety improvement strategies. Full article
Show Figures

Figure 1

19 pages, 2913 KiB  
Article
Radiation Mapping: A Gaussian Multi-Kernel Weighting Method for Source Investigation in Disaster Scenarios
by Songbai Zhang, Qi Liu, Jie Chen, Yujin Cao and Guoqing Wang
Sensors 2025, 25(15), 4736; https://doi.org/10.3390/s25154736 - 31 Jul 2025
Viewed by 153
Abstract
Structural collapses caused by accidents or disasters could create unexpected radiation shielding, resulting in sharp gradients within the radiation field. Traditional radiation mapping methods often fail to accurately capture these complex variations, making the rapid and precise localization of radiation sources a significant [...] Read more.
Structural collapses caused by accidents or disasters could create unexpected radiation shielding, resulting in sharp gradients within the radiation field. Traditional radiation mapping methods often fail to accurately capture these complex variations, making the rapid and precise localization of radiation sources a significant challenge in emergency response scenarios. To address this issue, based on standard Gaussian process regression (GPR) models that primarily utilize a single Gaussian kernel to reflect the inverse-square law in free space, a novel multi-kernel Gaussian process regression (MK-GPR) model is proposed for high-fidelity radiation mapping in environments with physical obstructions. MK-GPR integrates two additional kernel functions with adaptive weighting: one models the attenuation characteristics of intervening materials, and the other captures the energy-dependent penetration behavior of radiation. To validate the model, gamma-ray distributions in complex, shielded environments were simulated using GEometry ANd Tracking 4 (Geant4). Compared with conventional methods, including linear interpolation, nearest-neighbor interpolation, and standard GPR, MK-GPR demonstrated substantial improvements in key evaluation metrics, such as MSE, RMSE, and MAE. Notably, the coefficient of determination (R2) increased to 0.937. For practical deployment, the optimized MK-GPR model was deployed to an RK-3588 edge computing platform and integrated into a mobile robot equipped with a NaI(Tl) detector. Field experiments confirmed the system’s ability to accurately map radiation fields and localize gamma sources. When combined with SLAM, the system achieved localization errors of 10 cm for single sources and 15 cm for dual sources. These results highlight the potential of the proposed approach as an effective and deployable solution for radiation source investigation in post-disaster environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

29 pages, 1289 KiB  
Article
An Analysis of Hybrid Management Strategies for Addressing Passenger Injuries and Equipment Failures in the Taipei Metro System: Enhancing Operational Quality and Resilience
by Sung-Neng Peng, Chien-Yi Huang, Hwa-Dong Liu and Ping-Jui Lin
Mathematics 2025, 13(15), 2470; https://doi.org/10.3390/math13152470 - 31 Jul 2025
Viewed by 282
Abstract
This study is the first to systematically integrate supervised machine learning (decision tree) and association rule mining techniques to analyze accident data from the Taipei Metro system, conducting a large-scale data-driven investigation into both passenger injury and train malfunction events. The research demonstrates [...] Read more.
This study is the first to systematically integrate supervised machine learning (decision tree) and association rule mining techniques to analyze accident data from the Taipei Metro system, conducting a large-scale data-driven investigation into both passenger injury and train malfunction events. The research demonstrates strong novelty and practical contributions. In the passenger injury analysis, a dataset of 3331 cases was examined, from which two highly explanatory rules were extracted: (i) elderly passengers (aged > 61) involved in station incidents are more likely to suffer moderate to severe injuries; and (ii) younger passengers (aged ≤ 61) involved in escalator incidents during off-peak hours are also at higher risk of severe injury. This is the first study to quantitatively reveal the interactive effect of age and time of use on injury severity. In the train malfunction analysis, 1157 incidents with delays exceeding five minutes were analyzed. The study identified high-risk condition combinations—such as those involving rolling stock, power supply, communication, and signaling systems—associated with specific seasons and time periods (e.g., a lift value of 4.0 for power system failures during clear mornings from 06:00–12:00, and 3.27 for communication failures during summer evenings from 18:00–24:00). These findings were further cross-validated with maintenance records to uncover underlying causes, including brake system failures, cable aging, and automatic train operation (ATO) module malfunctions. Targeted preventive maintenance recommendations were proposed. Additionally, the study highlighted existing gaps in the completeness and consistency of maintenance records, recommending improvements in documentation standards and data auditing mechanisms. Overall, this research presents a new paradigm for intelligent metro system maintenance and safety prediction, offering substantial potential for broader adoption and practical application. Full article
Show Figures

Figure 1

13 pages, 5503 KiB  
Article
Effects of Temperature, Stress, and Grain Size on the High-Temperature Creep Mechanism of FeCrAl Alloys
by Huan Yao, Changwei Wu, Tianzhou Ye, Pengfei Wang, Junmei Wu, Yingwei Wu and Ping Chen
Metals 2025, 15(8), 845; https://doi.org/10.3390/met15080845 - 29 Jul 2025
Viewed by 234
Abstract
FeCrAl exhibits excellent resistance to high temperatures, corrosion, and irradiation, making it a prime candidate material for accident-tolerant fuel (ATF) cladding. This study investigates the high-temperature creep behavior of FeCrAl alloys with grain sizes of 12.0 μm and 9.9 μm under temperatures ranging [...] Read more.
FeCrAl exhibits excellent resistance to high temperatures, corrosion, and irradiation, making it a prime candidate material for accident-tolerant fuel (ATF) cladding. This study investigates the high-temperature creep behavior of FeCrAl alloys with grain sizes of 12.0 μm and 9.9 μm under temperatures ranging from 450 °C to 650 °C and applied stresses between 75 and 200 MPa. The texture, grain morphology, grain orientation, and dislocation density of FeCrAl were characterized by electron backscatter diffraction (EBSD). The results indicate that temperature, applied stress, and grain size are the primary factors governing high-temperature creep behavior. The material texture showed no significant difference before and after creep. Large grains tend to engulf smaller ones during the creep process at lower temperatures and stresses, reducing the proportion of low-angle grain boundaries (LAGBs). In contrast, at higher temperatures or under higher stress, dislocations proliferate within grains, leading to a significant increase in the number of LAGBs. As the applied stress increases, the dominant creep mechanism tends to convert from grain boundary sliding to dislocation motion. Moreover, higher temperatures or smaller grain sizes lower the critical stress required to activate dislocation motion and significantly increase dislocation density, severely degrading the creep resistance. Full article
Show Figures

Figure 1

25 pages, 1159 KiB  
Article
Integration of TPB and TAM Frameworks to Assess Driving Assistance Technology-Mediated Risky Driving Behaviors Among Young Urban Chinese Drivers
by Ruiwei Li, Xiangyu Li and Xiaoqing Li
Vehicles 2025, 7(3), 79; https://doi.org/10.3390/vehicles7030079 - 28 Jul 2025
Viewed by 284
Abstract
This study developed and validated an integrated theoretical framework combining the Theory of Planned Behavior (TPB) and the Technology Acceptance Model (TAM) to investigate how driving assistance technologies (DATs) influence risky driving behaviors among young urban Chinese drivers. Based on this framework, we [...] Read more.
This study developed and validated an integrated theoretical framework combining the Theory of Planned Behavior (TPB) and the Technology Acceptance Model (TAM) to investigate how driving assistance technologies (DATs) influence risky driving behaviors among young urban Chinese drivers. Based on this framework, we proposed and tested several hypotheses regarding the effects of psychological and technological factors on risky driving intentions and behaviors. A survey was conducted with 495 young drivers in Shaoguan, Guangdong Province, examining psychological factors, technology acceptance, and their influence on risky driving behaviors. Structural equation modeling revealed that the integrated TPB-TAM explained 58.3% of the variance in behavioral intentions and 42.6% of the variance in actual risky driving behaviors, significantly outperforming single-theory models. Attitudes toward risky driving (β = 0.287) emerged as the strongest TPB predictor of behavioral intentions, while perceived usefulness (β = −0.172) and perceived ease of use (β = −0.113) of driving assistance technologies negatively influenced risky driving intentions. Multi-group analysis identified significant gender and driving experience differences. Logistic regression analyses demonstrated that model constructs significantly predicted actual traffic violations and accidents. These findings provide theoretical insights into risky driving determinants and practical guidance for developing targeted interventions and effective traffic safety policies for young drivers in urban China. Full article
Show Figures

Figure 1

17 pages, 5711 KiB  
Article
Impact of High-Temperature Exposure on Reinforced Concrete Structures Supported by Steel Ring-Shaped Shear Connectors
by Atsushi Suzuki, Runze Yang and Yoshihiro Kimura
Buildings 2025, 15(15), 2626; https://doi.org/10.3390/buildings15152626 - 24 Jul 2025
Viewed by 283
Abstract
Ensuring the structural integrity of reinforced concrete (RC) components in nuclear facilities exposed to extreme conditions is essential for safe decommissioning. This study investigates the impact of high-temperature exposure on RC pedestal structures supported by steel ring-shaped shear connectors—critical elements for maintaining vertical [...] Read more.
Ensuring the structural integrity of reinforced concrete (RC) components in nuclear facilities exposed to extreme conditions is essential for safe decommissioning. This study investigates the impact of high-temperature exposure on RC pedestal structures supported by steel ring-shaped shear connectors—critical elements for maintaining vertical and lateral load paths in containment systems. Scaled-down cyclic loading tests were performed on pedestal specimens with and without prior thermal exposure, simulating post-accident conditions observed at a damaged nuclear power plant. Experimental results show that thermal degradation significantly reduces lateral stiffness, with failure mechanisms concentrating at the interface between the concrete and the embedded steel skirt. Complementary finite element analyses, incorporating temperature-dependent material degradation, highlight the crucial role of load redistribution to steel components when concrete strength is compromised. Parametric studies reveal that while geometric variations in the inner skirt have limited influence, thermal history is the dominant factor affecting vertical capacity. Notably, even with substantial section loss in the concrete, the steel inner skirt maintained considerable load-bearing capacity. This study establishes a validated analytical framework for assessing structural performance under extreme conditions, offering critical insights for risk evaluation and retrofit strategies in the context of nuclear facility decommissioning. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 2474 KiB  
Article
Renal Effects and Nitric Oxide Response Induced by Bothrops atrox Snake Venom in an Isolated Perfused Kidney Model
by Terentia Batista Sa Norões, Antonio Rafael Coelho Jorge, Helena Serra Azul Monteiro, Ricardo Parente Garcia Vieira and Breno De Sá Barreto Macêdo
Toxins 2025, 17(8), 363; https://doi.org/10.3390/toxins17080363 - 24 Jul 2025
Viewed by 288
Abstract
The snakes from the genus Bothrops are responsible for most of the ophidic accidents in Brazil, and Bothrops atrox represents one of these species. Envenomation by these snakes results in systemic effects and is often associated with early mortality following snakebite incidents. The [...] Read more.
The snakes from the genus Bothrops are responsible for most of the ophidic accidents in Brazil, and Bothrops atrox represents one of these species. Envenomation by these snakes results in systemic effects and is often associated with early mortality following snakebite incidents. The present study investigates the pharmacological properties of Bothrops atrox venom (VBA), focusing specifically on its impact on renal blood flow. Following the renal perfusion procedure, kidney tissues were processed for histopathological examination. Statistical analysis of all evaluated parameters was conducted using ANOVA and Student’s t-test, with significance set at p < 0.005. Administration of VBA resulted in a marked reduction in both perfusion pressure and renal vascular resistance. In contrast, there was a significant elevation in urinary output and glomerular filtration rate. Histological changes observed in the perfused kidneys were mild. The involvement of nitric oxide in the pressor effects of Bothrops atrox venom was not investigated in renal perfusion systems or in in vivo models. Treatment with VBA led to elevated nitrite levels in the bloodstream of the experimental animals. This effect was completely inhibited following pharmacological blockade with L-NAME. Based on these findings, we conclude that VBA alters renal function and promotes increased nitric oxide production. Full article
(This article belongs to the Special Issue Clinical Evidence for Therapeutic Effects and Safety of Animal Venoms)
Show Figures

Figure 1

20 pages, 1258 KiB  
Article
The Crime of Vehicular Homicide in Italy: Trends in Alcohol and Drug Use in Fatal Road Accidents in Lazio Region from 2018 to 2024
by Francesca Vernich, Leonardo Romani, Federico Mineo, Giulio Mannocchi, Lucrezia Stefani, Margherita Pallocci, Luigi Tonino Marsella, Michele Treglia and Roberta Tittarelli
Toxics 2025, 13(7), 607; https://doi.org/10.3390/toxics13070607 - 19 Jul 2025
Viewed by 336
Abstract
In Italy, the law on road homicide (Law no. 41/2016) introduced specific provisions for drivers who cause severe injuries or death to a person due to the violation of the Highway Code. The use of alcohol or drugs while driving constitutes an aggravating [...] Read more.
In Italy, the law on road homicide (Law no. 41/2016) introduced specific provisions for drivers who cause severe injuries or death to a person due to the violation of the Highway Code. The use of alcohol or drugs while driving constitutes an aggravating circumstance of the offence and provides for a tightening of penalties. Our study aims to report on the analysis performed on blood samples collected between January 2018 and December 2024 from drivers convicted of road homicide and who tested positive for alcohol and/or drugs. The majority of the involved subjects were males belonging to the 18–30 and 41–50 age groups. Alcohol, cocaine and cannabinoids were the most detected substances and the most frequent polydrug combination was alcohol and cocaine. We also investigated other influencing factors in road traffic accidents as the day of the week and the time of the day in which fatal road traffic accident occurred, and the time elapsed between the road accident and the collection of biological samples. Our data, in line with the international scenario, strongly support that, in addition to the tightening of penalties, raising awareness plays a key role in preventing alcohol- and drug-related traffic accidents by increasing risk perception and encouraging safer driving behaviors. Full article
(This article belongs to the Special Issue Current Issues and Research Perspectives in Forensic Toxicology)
Show Figures

Graphical abstract

19 pages, 441 KiB  
Article
Exploring the Impact of the Maritime Regulatory Framework on the Barrier System in Ship Operations
by Darijo Mišković and Huanxin Wang
J. Mar. Sci. Eng. 2025, 13(7), 1361; https://doi.org/10.3390/jmse13071361 - 17 Jul 2025
Viewed by 184
Abstract
The backbone of maritime transportation has always been the successful execution of ship operations. However, the human factor has proven to be a weak point in the system. To reduce and mitigate it, a regulatory framework and consequently a safety system for ship [...] Read more.
The backbone of maritime transportation has always been the successful execution of ship operations. However, the human factor has proven to be a weak point in the system. To reduce and mitigate it, a regulatory framework and consequently a safety system for ship barriers were created and implemented with this goal in mind. The expected result of these measures was the creation of a resilient maritime transport system. Nevertheless, the available statistics show that most of the reported accidents and incidents occurred during ship operation, with the human factor as the main cause. Therefore, it is useful to investigate whether the regulatory framework can influence the safety system of ship barriers. Therefore, the objectives of the study are as follows: (a) to investigate and determine the regulatory safety requirements and the elements related to the ship barrier system, and (b) to investigate the influence of the regulatory safety requirements on the elements related to the ship barrier system. From the data obtained and the analyses performed, seven factors emerged. Four of them were related to the regulatory requirements and three to the shipboard barrier system, a basis for the presented models. Several important findings were obtained that have theoretical and practical implications and further highlight the importance and potential undesirable side effects of the provisions of the current regulatory framework. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 1827 KiB  
Article
Discrete Element Modeling of Concrete Under Dynamic Tensile Loading
by Ahmad Omar and Laurent Daudeville
Materials 2025, 18(14), 3347; https://doi.org/10.3390/ma18143347 - 17 Jul 2025
Viewed by 267
Abstract
Concrete is a fundamental material in structural engineering, widely used in critical infrastructure such as bridges, nuclear power plants, and dams. These structures may be subjected to extreme dynamic loads resulting from natural disasters, industrial accidents, or missile impacts. Therefore, a comprehensive understanding [...] Read more.
Concrete is a fundamental material in structural engineering, widely used in critical infrastructure such as bridges, nuclear power plants, and dams. These structures may be subjected to extreme dynamic loads resulting from natural disasters, industrial accidents, or missile impacts. Therefore, a comprehensive understanding of concrete behavior under high strain rates is essential for safe and resilient design. Experimental investigations, particularly spalling tests, have highlighted the strain-rate sensitivity of concrete in dynamic tensile loading conditions. This study presents a macroscopic 3D discrete element model specifically developed to simulate the dynamic response of concrete subjected to extreme loading. Unlike conventional continuum-based models, the proposed discrete element framework is particularly suited to capturing damage and fracture mechanisms in cohesive materials. A key innovation lies in incorporating a physically grounded strain-rate dependency directly into the local cohesive laws that govern inter-element interactions. The originality of this work is further underlined by the validation of the discrete element model under dynamic tensile loading through the simulation of spalling tests on normalstrength concrete at strain rates representative of severe impact scenarios (30–115 s−1). After calibrating the model under quasi-static loading, the simulations accurately reproduce key experimental outcomes, including rear-face velocity profiles and failure characteristics. Combined with prior validations under high confining pressure, this study reinforces the capability of the discrete element method for modeling concrete subjected to extreme dynamic loading, offering a robust tool for predictive structural assessment and design. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

43 pages, 1035 KiB  
Review
A Review of Internet of Things Approaches for Vehicle Accident Detection and Emergency Notification
by Mohammad Ali Sahraei and Said Ramadhan Mubarak Al Mamari
Sustainability 2025, 17(14), 6510; https://doi.org/10.3390/su17146510 - 16 Jul 2025
Viewed by 901
Abstract
The inspiration behind this specific research is based on addressing the growing need to improve road safety via the application of the Internet of Things (IoT) system. Although several investigations have discovered the possibility of IoT-based accident recognition, recent research remains fragmented, usually [...] Read more.
The inspiration behind this specific research is based on addressing the growing need to improve road safety via the application of the Internet of Things (IoT) system. Although several investigations have discovered the possibility of IoT-based accident recognition, recent research remains fragmented, usually concentrating on outdated science or specific use cases. This study aims to fill that gap by carefully examining and conducting a comparative analysis of 101 peer-reviewed articles published between 2008 and 2025, with a focus on IoT systems for accident recognition techniques. The review categorizes approaches depending on the sensor used, incorporation frameworks, and recognition techniques. The study examines numerous sensors, such as Global System for Mobile Communications/Global Positioning System (GSM/GPS), accelerometers, vibration, and many other superior sensors. The research shows the constraints and advantages of existing techniques, concentrating on the significance of multi-sensor utilization in enhancing recognition precision and dependability. Findings indicate that, although substantial improvements have been made in the use of IoT-based systems for accident recognition, problems such as substantial implementation costs, weather conditions, and data precision issues persist. Moreover, the research acknowledges deficiencies in standardization, as well as the requirement for strong communication systems to enhance the responsiveness of emergency services. As a result, the study suggests a plan for upcoming developments, concentrating on the incorporation of IoT-enabled infrastructure, sensor fusion approaches, and artificial intelligence. This study improves knowledge by offering an extensive viewpoint on IoT-based accident recognition, providing insights for upcoming research, and suggesting policies to facilitate implementation, eventually enhancing worldwide road safety. Full article
Show Figures

Figure 1

15 pages, 3857 KiB  
Article
Numerical and Experimental Investigation of Damage and Failure Analysis of Aero-Engine Electronic Controllers Under Thermal Shock
by Fang Wen, Jinshan Wen and Jie Jin
Aerospace 2025, 12(7), 636; https://doi.org/10.3390/aerospace12070636 - 16 Jul 2025
Viewed by 234
Abstract
The Engine Electronic Controller (EEC), as the core component of an aircraft engine control system, is vulnerable to rapid failure when exposed to thermal shock during engine fire incidents, potentially leading to catastrophic aviation accidents. To address this issue, this study conducts both [...] Read more.
The Engine Electronic Controller (EEC), as the core component of an aircraft engine control system, is vulnerable to rapid failure when exposed to thermal shock during engine fire incidents, potentially leading to catastrophic aviation accidents. To address this issue, this study conducts both numerical simulations and experimental investigations to evaluate the thermal performance of the EEC under thermal shock conditions, exploring the weaknesses of the EEC chassis under high-temperature thermal shock and the damage to important internal electronic components. A three-dimensional finite element model of the EEC was established to simulate its behavior under a thermal shock of 1100 °C. Simulation results reveal that the aluminum alloy chassis wall cannot withstand the extreme thermal load, resulting in failure of the internal electronic components within the first 5 min of exposure, thereby rendering the EEC inoperative. In contrast, when the chassis wall is made of stainless steel, all components and internal electronics remain functional throughout the initial 5 min thermal shock period. Experimental results show that the temperature evolution and component failure patterns under both scenarios align well with the simulation outcomes, thus validating the model’s accuracy. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

27 pages, 3503 KiB  
Article
Structure-Aware and Format-Enhanced Transformer for Accident Report Modeling
by Wenhua Zeng, Wenhu Tang, Diping Yuan, Hui Zhang, Pinsheng Duan and Shikun Hu
Appl. Sci. 2025, 15(14), 7928; https://doi.org/10.3390/app15147928 - 16 Jul 2025
Viewed by 298
Abstract
Modeling accident investigation reports is crucial for elucidating accident causation mechanisms, analyzing risk evolution processes, and formulating effective accident prevention strategies. However, such reports are typically long, hierarchically structured, and information-dense, posing unique challenges for existing language models. To address these domain-specific characteristics, [...] Read more.
Modeling accident investigation reports is crucial for elucidating accident causation mechanisms, analyzing risk evolution processes, and formulating effective accident prevention strategies. However, such reports are typically long, hierarchically structured, and information-dense, posing unique challenges for existing language models. To address these domain-specific characteristics, this study proposes SAFE-Transformer, a Structure-Aware and Format-Enhanced Transformer designed for long-document modeling in the emergency safety context. SAFE-Transformer adopts a dual-stream encoding architecture to separately model symbolic section features and heading text, integrates hierarchical depth and format types into positional encodings, and introduces a dynamic gating unit to adaptively fuse headings with paragraph semantics. We evaluate the model on a multi-label accident intelligence classification task using a real-world corpus of 1632 official reports from high-risk industries. Results demonstrate that SAFE-Transformer effectively captures hierarchical semantic structure and outperforms strong long-text baselines. Further analysis reveals an inverted U-shaped performance trend across varying report lengths and highlights the role of attention sparsity and label distribution in long-text modeling. This work offers a practical solution for structurally complex safety documents and provides methodological insights for downstream applications in safety supervision and risk analysis. Full article
(This article belongs to the Special Issue Advances in Smart Construction and Intelligent Buildings)
Show Figures

Figure 1

44 pages, 1470 KiB  
Article
GPT Applications for Construction Safety: A Use Case Analysis
by Ali Katooziani, Idris Jeelani and Masoud Gheisari
Buildings 2025, 15(14), 2410; https://doi.org/10.3390/buildings15142410 - 9 Jul 2025
Viewed by 705
Abstract
This study explores the use of Large Language Models (LLMs), specifically GPT, for different safety management applications in the construction industry. Many studies have explored the integration of GPT in construction safety for various applications; their primary focus has been on the feasibility [...] Read more.
This study explores the use of Large Language Models (LLMs), specifically GPT, for different safety management applications in the construction industry. Many studies have explored the integration of GPT in construction safety for various applications; their primary focus has been on the feasibility of such integration, often using GPT models for specific applications rather than a thorough evaluation of GPT’s limitations and capabilities. In contrast, this study aims to provide a comprehensive assessment of GPT’s performance based on established key criteria. Using structured use cases, this study explores GPT’s strength and weaknesses in four construction safety areas: (1) delivering personalized safety training and educational content tailored to individual learner needs; (2) automatically analyzing post-accident reports to identify root causes and suggest preventive measures; (3) generating customized safety guidelines and checklists to support site compliance; and (4) providing real-time assistance for managing daily safety tasks and decision-making on construction sites. LLMs and NLP have already been employed in each of these four areas for improvement, making them suitable areas for further investigation. GPT demonstrated acceptable performance in delivering evidence-based, regulation-aligned responses, making it valuable for scaling personalized training, automating accident analyses, and developing safety protocols. Additionally, it provided real-time safety support through interactive dialogues. However, the model showed limitations in deeper critical analysis, extrapolating information, and adapting to dynamic environments. The study concludes that while GPT holds significant promise for enhancing construction safety, further refinement is necessary. This includes fine-tuning for more relevant safety-specific outcomes, integrating real-time data for contextual awareness, and developing a nuanced understanding of safety risks. These improvements, coupled with human oversight, could make GPT a robust tool for safety management. Full article
(This article belongs to the Special Issue Safety Management and Occupational Health in Construction)
Show Figures

Figure 1

Back to TopTop