Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (195)

Search Parameters:
Keywords = accelerated brain aging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 1299 KB  
Review
Precision Nutrition and Gut–Brain Axis Modulation in the Prevention of Neurodegenerative Diseases
by Dilyar Tuigunov, Yuriy Sinyavskiy, Talgat Nurgozhin, Zhibek Zholdassova, Galiya Smagul, Yerzhan Omarov, Oksana Dolmatova, Ainur Yeshmanova and Indira Omarova
Nutrients 2025, 17(19), 3068; https://doi.org/10.3390/nu17193068 - 26 Sep 2025
Abstract
In the recent years, the accelerating global demographic shift toward population aging has been accompanied by a marked increase in the prevalence of neurodegenerative disorders, notably Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis. Among emerging approaches, dietary interventions targeting the [...] Read more.
In the recent years, the accelerating global demographic shift toward population aging has been accompanied by a marked increase in the prevalence of neurodegenerative disorders, notably Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis. Among emerging approaches, dietary interventions targeting the gut–brain axis have garnered considerable attention, owing to their potential to modulate key pathogenic pathways underlying neurodegenerative processes. This review synthesizes current concepts in precision nutrition and elucidates neurohumoral, immune, and metabolic regulatory mechanisms mediated by the gut microbiota, including the roles of the vagus nerve, cytokines, short-chain fatty acids, vitamins, polyphenols, and microbial metabolites. Emerging evidence underscores that dysbiotic alterations contribute to compromised barrier integrity, the initiation and perpetuation of neuroinflammatory responses, pathological protein aggregations, and the progressive course of neurodegenerative diseases. Collectively, these insights highlight the gut microbiota as a pivotal target for the development of precision-based dietary strategies in the prevention and mitigation of neurodegenerative disorders. Particular attention is devoted to key bioactive components such as prebiotics, probiotics, psychobiotics, dietary fiber, omega-3 fatty acids, and polyphenols that critically participate in regulating the gut–brain axis. Contemporary evidence on the contribution of the gut microbiota to the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis is systematically summarized. The review further discusses the prospects of applying nutrigenomics, chrononutrition, and metagenomic analysis to the development of personalized dietary strategies. The presented findings underscore the potential of integrating precision nutrition with targeted modulation of the gut–brain axis as a multifaceted approach to reducing the risk of neurodegenerative diseases and preserving cognitive health. Full article
(This article belongs to the Section Nutrition and Neuro Sciences)
Show Figures

Figure 1

24 pages, 1093 KB  
Review
Neurobiochemical Effects of a High-Fat Diet: Implications for the Pathogenesis of Neurodegenerative Diseases
by Marta Srokowska, Wojciech Żwierełło, Agata Wszołek and Izabela Gutowska
Biology 2025, 14(10), 1317; https://doi.org/10.3390/biology14101317 - 24 Sep 2025
Viewed by 214
Abstract
The global rise in high-fat diet (HFD) consumption and obesity has raised concerns about their long-term effects on brain health. This review addresses how HFDs, including ketogenic diets (KDs), influence the central nervous system (CNS) and may contribute to neurodegenerative processes. The findings [...] Read more.
The global rise in high-fat diet (HFD) consumption and obesity has raised concerns about their long-term effects on brain health. This review addresses how HFDs, including ketogenic diets (KDs), influence the central nervous system (CNS) and may contribute to neurodegenerative processes. The findings show that prolonged HFD exposure is associated with altered brain metabolism, increased oxidative stress, neuroinflammation, and impaired synaptic plasticity, particularly in regions like the hippocampus and hypothalamus. These changes may affect cognitive function and accelerate neurodegenerative mechanisms linked to disorders such as Alzheimer’s and Parkinson’s disease. While certain types of KD appear to exert neuroprotective effects—such as improved motor outcomes in experimental Parkinson’s disease models—evidence remains inconsistent, and concerns about their long-term safety persist. This review emphasizes that the impact of high-fat nutrition on the CNS depends on fat type, exposure duration, and individual factors such as age and sex. Overall, further research is needed to distinguish between harmful and potentially therapeutic dietary fat patterns and to better understand their influence on brain health across the lifespan. Full article
Show Figures

Figure 1

23 pages, 6848 KB  
Review
The Expanding Frontier: The Role of Artificial Intelligence in Pediatric Neuroradiology
by Alessia Guarnera, Antonio Napolitano, Flavia Liporace, Fabio Marconi, Maria Camilla Rossi-Espagnet, Carlo Gandolfo, Andrea Romano, Alessandro Bozzao and Daniela Longo
Children 2025, 12(9), 1127; https://doi.org/10.3390/children12091127 - 27 Aug 2025
Viewed by 708
Abstract
Artificial intelligence (AI) is revolutionarily shaping the entire landscape of medicine and particularly the privileged field of radiology, since it produces a significant amount of data, namely, images. Currently, AI implementation in radiology is continuously increasing, from automating image analysis to enhancing workflow [...] Read more.
Artificial intelligence (AI) is revolutionarily shaping the entire landscape of medicine and particularly the privileged field of radiology, since it produces a significant amount of data, namely, images. Currently, AI implementation in radiology is continuously increasing, from automating image analysis to enhancing workflow management, and specifically, pediatric neuroradiology is emerging as an expanding frontier. Pediatric neuroradiology presents unique opportunities and challenges since neonates’ and small children’s brains are continuously developing, with age-specific changes in terms of anatomy, physiology, and disease presentation. By enhancing diagnostic accuracy, reducing reporting times, and enabling earlier intervention, AI has the potential to significantly impact clinical practice and patients’ quality of life and outcomes. For instance, AI reduces MRI and CT scanner time by employing advanced deep learning (DL) algorithms to accelerate image acquisition through compressed sensing and undersampling, and to enhance image reconstruction by denoising and super-resolving low-quality datasets, thereby producing diagnostic-quality images with significantly fewer data points and in a shorter timeframe. Furthermore, as healthcare systems become increasingly burdened by rising demands and limited radiology workforce capacity, AI offers a practical solution to support clinical decision-making, particularly in institutions where pediatric neuroradiology is limited. For example, the MELD (Multicenter Epilepsy Lesion Detection) algorithm is specifically designed to help radiologists find focal cortical dysplasias (FCDs), which are a common cause of drug-resistant epilepsy. It works by analyzing a patient’s MRI scan and comparing a wide range of features—such as cortical thickness and folding patterns—to a large database of scans from both healthy individuals and epilepsy patients. By identifying subtle deviations from normal brain anatomy, the MELD graph algorithm can highlight potential lesions that are often missed by the human eye, which is a critical step in identifying patients who could benefit from life-changing epilepsy surgery. On the other hand, the integration of AI into pediatric neuroradiology faces technical and ethical challenges, such as data scarcity and ethical and legal restrictions on pediatric data sharing, that complicate the development of robust and generalizable AI models. Moreover, many radiologists remain sceptical of AI’s interpretability and reliability, and there are also important medico-legal questions around responsibility and liability when AI systems are involved in clinical decision-making. Future promising perspectives to overcome these concerns are represented by federated learning and collaborative research and AI development, which require technological innovation and multidisciplinary collaboration between neuroradiologists, data scientists, ethicists, and pediatricians. The paper aims to address: (1) current applications of AI in pediatric neuroradiology; (2) current challenges and ethical considerations related to AI implementation in pediatric neuroradiology; and (3) future opportunities in the clinical and educational pediatric neuroradiology field. AI in pediatric neuroradiology is not meant to replace neuroradiologists, but to amplify human intellect and extend our capacity to diagnose, prognosticate, and treat with unprecedented precision and speed. Full article
Show Figures

Figure 1

18 pages, 4041 KB  
Article
A Deep Learning Approach to Alzheimer’s Diagnosis Using EEG Data: Dual-Attention and Optuna-Optimized SVM
by Funda Bulut Arikan, Dilber Cetintas, Aziz Aksoy and Muhammed Yildirim
Biomedicines 2025, 13(8), 2017; https://doi.org/10.3390/biomedicines13082017 - 19 Aug 2025
Viewed by 843
Abstract
Background/Objectives: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, pathologically defined by the accumulation of amyloid-β plaques and tau-related neurofibrillary tangles in the brain. It represents a principal driver of cognitive deterioration in middle-aged and elderly populations. Early diagnosis and pharmacological management [...] Read more.
Background/Objectives: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, pathologically defined by the accumulation of amyloid-β plaques and tau-related neurofibrillary tangles in the brain. It represents a principal driver of cognitive deterioration in middle-aged and elderly populations. Early diagnosis and pharmacological management of the disease markedly improve both the quality and duration of life. Methods: Electroencephalography (EEG) is critical in detecting and analyzing Alzheimer’s disease. The widespread use of mobile EEG devices in recent years has necessitated real-time and effective data processing. However, extracting disease-specific features from EEG data still poses a significant challenge, especially in cases that must be completed quickly. This study aims to determine the frequency bands associated with Alzheimer’s disease in EEG data obtained from multiple channels and to accelerate the detection methods. An accurate classification that requires little computation is the primary goal. Results: EEG recordings of 48 individuals (24 AD and 24 healthy controls (HC)) obtained from Florida State University were divided into Alpha, Beta, Delta, Gamma, and Theta frequency bands; scalograms and spectrograms were generated for each frequency band. The effectiveness of these bands was evaluated using the MobileNetV2 architecture. The results showed that Delta and Beta frequency bands were the most significant for Alzheimer’s detection. By analyzing the features obtained from the Delta and Beta bands using the MobileNetV2 model integrated with the Dual-Attention Mechanism, it was determined that the attention mechanisms improved model performance by 2%. In addition, the use of an SVM classifier with hyperparameters optimized via Optuna resulted in approximately 3% performance improvement, suggesting that hyperparameter tuning may contribute positively to classification accuracy. Furthermore, combining features obtained from these frequency bands increased the detection performance when evaluated with larger datasets. Conclusions: The study demonstrates the potential of frequency band-based analyses and feature fusion methods to increase the accuracy and efficiency of Alzheimer’s diagnosis using EEG data. The results are promising; however, they should be interpreted with caution regarding their generalizability. Full article
Show Figures

Figure 1

18 pages, 2124 KB  
Article
Automated Subregional Hippocampus Segmentation Using 3D CNNs: A Computational Framework for Brain Aging Biomarker Analysis
by Eshaa Gogia, Arash Dehzangi and Iman Dehzangi
Algorithms 2025, 18(8), 509; https://doi.org/10.3390/a18080509 - 13 Aug 2025
Viewed by 645
Abstract
The hippocampus is a critical brain structure involved in episodic memory, spatial orientation, and stress regulation. Its volumetric shrinkage is among the earliest and most reliable indicators of both physiological brain aging and pathological neurodegeneration. Accurate segmentation and measurement of the hippocampal subregions [...] Read more.
The hippocampus is a critical brain structure involved in episodic memory, spatial orientation, and stress regulation. Its volumetric shrinkage is among the earliest and most reliable indicators of both physiological brain aging and pathological neurodegeneration. Accurate segmentation and measurement of the hippocampal subregions from magnetic resonance imaging (MRI) is therefore essential for neurobiological age estimation and the early identification of at-risk individuals. In this study, we present a fully automated pipeline that leverages nnU-Net, a self-configuring deep learning framework, to segment the hippocampus from high-resolution 3D T1-weighted brain MRI scans. The primary objective of this work is to enable accurate estimation of brain age through quantitative analysis of hippocampal volume. By fusing domain knowledge in neuroanatomy with data-driven learning through a highly expressive and self-optimizing model, this work advances the methodological frontier for neuroimaging-based brain-age estimation. The proposed approach demonstrates that deep learning can serve as a reliable segmentation tool as well as a foundational layer in predictive neuroscience, supporting early detection of accelerated aging and subclinical neurodegenerative processes. Full article
Show Figures

Figure 1

30 pages, 3376 KB  
Article
Olfactory-Guided Behavior Uncovers Imaging and Molecular Signatures of Alzheimer’s Disease Risk
by Hae Sol Moon, Zay Yar Han, Robert J. Anderson, Ali Mahzarnia, Jacques A. Stout, Andrei R. Niculescu, Jessica T. Tremblay and Alexandra Badea
Brain Sci. 2025, 15(8), 863; https://doi.org/10.3390/brainsci15080863 - 13 Aug 2025
Viewed by 831
Abstract
Background/Objectives: Olfactory impairment has been proposed as an early marker for Alzheimer’s disease (AD), yet the mechanisms linking sensory decline to genetic and environmental risk factors remain unclear. We aimed to identify early biomarkers and brain network alterations associated with AD risk by [...] Read more.
Background/Objectives: Olfactory impairment has been proposed as an early marker for Alzheimer’s disease (AD), yet the mechanisms linking sensory decline to genetic and environmental risk factors remain unclear. We aimed to identify early biomarkers and brain network alterations associated with AD risk by multimodal analyses in humanized APOE mice. Methods: We evaluated olfactory behavior, diffusion MRI connectomics, and brain and blood transcriptomics in mice stratified by APOE2, APOE3, and APOE4 genotypes, age, sex, high-fat diet, and immune background (HN). Behavioral assays assessed odor salience, novelty detection, and memory. Elastic Net-regularized multi-set canonical correlation analysis (MCCA) was used to link behavior to brain connectivity. Blood transcriptomics and gene ontology analyses identified peripheral molecular correlates. Results: APOE4 mice exhibited accelerated deficits in odor-guided behavior and memory, especially under high-fat diet, while APOE2 mice were more resilient (ANOVA: APOE x HN, F(2, 1669) = 77.25, p < 0.001, eta squared = 0.08). Age and diet compounded behavioral impairments (diet x age: F(1, 1669) = 16.04, p < 0.001). Long-term memory was particularly reduced in APOE4 mice (APOE x HN, F(2,395) = 5.6, p = 0.004). MCCA identified subnetworks explaining up to 24% of behavioral variance (sum of canonical correlations: 1.27, 95% CI [1.18, 1.85], p < 0.0001), with key connections involving the ventral orbital and somatosensory cortices. Blood eigengene modules correlated with imaging changes (e.g., subiculum diffusivity: r = −0.5, p < 1 × 10−30), and enriched synaptic pathways were identified across brain and blood. Conclusions: Olfactory behavior, shaped by genetic and environmental factors, may serve as a sensitive, translatable biomarker of AD risk. Integrative systems-level approaches reveal brain and blood signatures of early sensory–cognitive vulnerability, supporting new avenues for early detection and intervention in AD. Full article
Show Figures

Graphical abstract

22 pages, 716 KB  
Article
Survival in Patients with Colorectal Cancer and Isolated Brain Metastases: Temporal Trends and Prognostic Factors from the National Cancer Database (2010–2020)
by Zouina Sarfraz, Diya Jayram, Ahmad Ozair, Lydia Hodgson, Shreyas Bellur, Arun Maharaj, Vyshak A. Venur, Sarbajit Mukherjee and Manmeet S. Ahluwalia
Cancers 2025, 17(15), 2531; https://doi.org/10.3390/cancers17152531 - 31 Jul 2025
Viewed by 674
Abstract
Background: The development of brain metastases (BM) is a relatively uncommon but significantly adverse event in the spread of colorectal cancer (CRC). Although management of CRC BM has improved with advances in imaging and systemic therapies, clinical outcomes remain poor. Methods: This retrospective [...] Read more.
Background: The development of brain metastases (BM) is a relatively uncommon but significantly adverse event in the spread of colorectal cancer (CRC). Although management of CRC BM has improved with advances in imaging and systemic therapies, clinical outcomes remain poor. Methods: This retrospective cohort study used the U.S. National Cancer Database to evaluate survival outcomes, treatment patterns, and prognostic factors in CRC patients diagnosed with BM between 2010 and 2020. Patients with isolated brain-only metastases formed the primary analytic cohort, while those with additional extracranial metastases were included for descriptive comparison. Multivariable Cox proportional hazards and logistic regression models were used to assess factors associated with of survival. Proportional hazards assumptions were tested using Schoenfeld residuals. Accelerated failure time models were also employed. Results: From a cohort of 1,040,877 individuals with CRC, 795 had metastatic disease present along with relevant data, of which 296 had isolated BM. Median overall survival (mOS) in BM-only metastatic disease group was 7.82 months (95% CI: 5.82–9.66). The longest survival was observed among patients treated with stereotactic radiosurgery combined with systemic therapy (SRS+Sys), with a median OS of 23.26 months (95% CI: 17.51–41.95) and a 3-year survival rate of 35.8%. In adjusted Cox models, SRS, systemic therapy, and definitive surgery of the primary site were each independently associated with reduced hazard of death. Rectal cancer patients had longer survival than those with colon primaries (mOS: 10.35 vs. 6.08 months). Age, comorbidity burden, and insurance status were not associated with survival in adjusted analyses. Conclusions: SRS+Sys was associated with longer survival compared to other treatment strategies. However, treatment selection is highly dependent on individual clinical factors such as performance status, comorbidities, and disease extent; therefore, these findings must be interpreted with caution Future prospective studies incorporating molecular and biomarker data are warranted to better guide care in this rare and high-risk group. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

9 pages, 464 KB  
Review
Photobiomodulation as a Hypothetical Strategy to Reverse Botulinum Toxin Effects: Exploring the Neuroregenerative Mechanisms and Translational Potential
by Rodrigo Álvaro Brandão Lopes-Martins, Francisco Gonzalez-Lima, Sérgio Gomes da Silva, Patrícia Sardinha Leonardo, Cristiane Soncino, Roberto Fernandes Pacheco, Carolina Lúcia de Oliveira e Oliveira and Fabrizio dos Santos Cardoso
Life 2025, 15(8), 1206; https://doi.org/10.3390/life15081206 - 28 Jul 2025
Viewed by 793
Abstract
Background: Botulinum toxin type A (BoNT/A) is widely used in both clinical and aesthetic settings to induce temporary neuromuscular paralysis by inhibiting acetylcholine release. Although generally regarded as safe and effective, complications such as iatrogenic ptosis or facial asymmetry may occur and persist [...] Read more.
Background: Botulinum toxin type A (BoNT/A) is widely used in both clinical and aesthetic settings to induce temporary neuromuscular paralysis by inhibiting acetylcholine release. Although generally regarded as safe and effective, complications such as iatrogenic ptosis or facial asymmetry may occur and persist for several weeks or even months, with no standardized method currently available to accelerate recovery. Objective: This article explores the hypothesis that photobiomodulation (PBM)—a non-invasive modality recognized for its neuroregenerative potential—may facilitate the reversal of BoNT/A-induced neuromuscular blockade. Discussion: PBM enhances mitochondrial activity by stimulating cytochrome c oxidase in nerve and muscle tissues, thereby increasing ATP production and modulating intracellular signaling pathways associated with neuroplasticity, cell survival, and synaptogenesis. Preclinical studies have demonstrated that PBM can upregulate neurotrophic factors (e.g., BDNF, NGF), enhance SNAP-25 expression, and promote structural remodeling of neurons in both young and aged brains. These mechanisms are biologically consistent with the regenerative processes required for recovery from BoNT/A-induced effects. While controlled clinical trials for this specific application are currently lacking, anecdotal clinical reports suggest that PBM may accelerate functional recovery in cases of BoNT/A-related complications. Conclusions: Although this approach has not yet been tested in clinical trials, we propose that photobiomodulation may hypothetically serve as a supportive strategy to promote neuromuscular recovery in patients experiencing adverse effects from BoNT/A. This hypothesis is grounded in robust preclinical evidence but requires validation through translational and clinical research. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

14 pages, 4627 KB  
Communication
BDNF Overexpression Enhances Neuronal Activity and Axonal Growth in Human iPSC-Derived Neural Cultures
by Alba Ortega-Gasco, Francesca Percopo, Ares Font-Guixe, Santiago Ramos-Bartolome, Andrea Cami-Bonet, Marc Magem-Planas, Marc Fabrellas-Monsech, Emma Esquirol-Albala, Luna Goulet, Sergi Fornos-Zapater, Ainhoa Arcas-Marquez, Anna-Christina Haeb, Claudia Gomez-Bravo, Clelia Introna, Josep M. Canals and Daniel Tornero
Int. J. Mol. Sci. 2025, 26(15), 7262; https://doi.org/10.3390/ijms26157262 - 27 Jul 2025
Viewed by 1204
Abstract
As the global population continues to age, the incidence of neurodegenerative diseases and neural injuries is increasing, presenting major challenges for healthcare systems. Due to the brain’s limited regenerative capacity, there is an urgent need for strategies that promote neuronal repair and functional [...] Read more.
As the global population continues to age, the incidence of neurodegenerative diseases and neural injuries is increasing, presenting major challenges for healthcare systems. Due to the brain’s limited regenerative capacity, there is an urgent need for strategies that promote neuronal repair and functional integration. Brain-derived neurotrophic factor (BDNF) is a key regulator of synaptic plasticity and neuronal development. In this study, we investigated whether constitutive BDNF expression in human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) enhances their neurogenic and integrative potential in vitro. We found that NPCs engineered to overexpress BDNF produced neuronal cultures with increased numbers of mature and spontaneously active neurons, without altering the overall structure or organization of functional networks. Furthermore, BDNF-expressing neurons exhibited significantly greater axonal outgrowth, including directed axon extension in a compartmentalized microfluidic system, suggesting a chemoattractive effect of localized BDNF secretion. These effects were comparable to those observed with the early supplementation of recombinant BDNF. Our results demonstrate that sustained BDNF expression enhances neuronal maturation and axonal projection without disrupting network integrity. These findings support the use of BDNF not only as a therapeutic agent to improve cell therapy outcomes but also as a tool to accelerate the development of functional neural networks in vitro. Full article
(This article belongs to the Special Issue New Advances in Stem Cells in Human Health and Diseases)
Show Figures

Figure 1

42 pages, 914 KB  
Review
Western Diet and Cognitive Decline: A Hungarian Perspective—Implications for the Design of the Semmelweis Study
by Andrea Lehoczki, Tamás Csípő, Ágnes Lipécz, Dávid Major, Vince Fazekas-Pongor, Boglárka Csík, Noémi Mózes, Ágnes Fehér, Norbert Dósa, Dorottya Árva, Kata Pártos, Csilla Kaposvári, Krisztián Horváth, Péter Varga and Mónika Fekete
Nutrients 2025, 17(15), 2446; https://doi.org/10.3390/nu17152446 - 27 Jul 2025
Viewed by 1557
Abstract
Background: Accelerated demographic aging in Hungary and across Europe presents significant public health and socioeconomic challenges, particularly in preserving cognitive function and preventing neurodegenerative diseases. Modifiable lifestyle factors—especially dietary habits—play a critical role in brain aging and cognitive decline. Objective: This narrative review [...] Read more.
Background: Accelerated demographic aging in Hungary and across Europe presents significant public health and socioeconomic challenges, particularly in preserving cognitive function and preventing neurodegenerative diseases. Modifiable lifestyle factors—especially dietary habits—play a critical role in brain aging and cognitive decline. Objective: This narrative review explores the mechanisms by which Western dietary patterns contribute to cognitive impairment and neurovascular aging, with specific attention to their relevance in the Hungarian context. It also outlines the rationale and design of the Semmelweis Study and its workplace-based health promotion program targeting lifestyle-related risk factors. Methods: A review of peer-reviewed literature was conducted focusing on Western diet, cognitive decline, cerebrovascular health, and dietary interventions. Emphasis was placed on mechanistic pathways involving systemic inflammation, oxidative stress, endothelial dysfunction, and decreased neurotrophic support. Key findings: Western dietary patterns—characterized by high intakes of saturated fats, refined sugars, ultra-processed foods, and linoleic acid—are associated with elevated levels of 4-hydroxynonenal (4-HNE), a lipid peroxidation product linked to neuronal injury and accelerated cognitive aging. In contrast, adherence to Mediterranean dietary patterns—particularly those rich in polyphenols from extra virgin olive oil and moderate red wine consumption—supports neurovascular integrity and promotes brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) activity. The concept of “cognitive frailty” is introduced as a modifiable, intermediate state between healthy aging and dementia. Application: The Semmelweis Study is a prospective cohort study involving employees of Semmelweis University aged ≥25 years, collecting longitudinal data on dietary, psychosocial, and metabolic determinants of aging. The Semmelweis–EUniWell Workplace Health Promotion Model translates these findings into practical interventions targeting diet, physical activity, and cardiovascular risk factors in the workplace setting. Conclusions: Improving our understanding of the diet–brain health relationship through population-specific longitudinal research is crucial for developing culturally tailored preventive strategies. The Semmelweis Study offers a scalable, evidence-based model for reducing cognitive decline and supporting healthy aging across diverse populations. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

24 pages, 1540 KB  
Review
The Search for Disease Modification in Parkinson’s Disease—A Review of the Literature
by Daniel Barber, Tissa Wijeratne, Lakshman Singh, Kevin Barnham and Colin L. Masters
Life 2025, 15(8), 1169; https://doi.org/10.3390/life15081169 - 23 Jul 2025
Viewed by 1187
Abstract
Sporadic Parkinson’s Disease (PD) affects 3% of people over 65 years of age. People are living longer, thanks in large part to improvements in global health technology and health access for non-neurological diseases. Consequently, neurological diseases of senescence, such as PD, are representing [...] Read more.
Sporadic Parkinson’s Disease (PD) affects 3% of people over 65 years of age. People are living longer, thanks in large part to improvements in global health technology and health access for non-neurological diseases. Consequently, neurological diseases of senescence, such as PD, are representing an ever-increasing share of global disease burden. There is an intensifying research focus on the processes that underlie these conditions in the hope that neurological decay may be arrested at the earliest time point. The concept of neuronal death linked to ageing- neural senescence- first emerged in the 1800s. By the late 20th century, it was recognized that neurodegeneration was common to all ageing human brains, but in most cases, this process did not lead to clinical disease during life. Conditions such as PD are the result of accelerated neurodegeneration in particular brain foci. In the case of PD, degeneration of the substantia nigra pars compacta (SNpc) is especially implicated. Why neural degeneration accelerates in these particular regions remains a point of contention, though current evidence implicates a complex interplay between a vast array of neuronal cell functions, bioenergetic failure, and a dysfunctional brain immunological response. Their complexity is a considerable barrier to disease modification trials, which seek to intercept these maladaptive cell processes. This paper reviews current evidence in the domain of neurodegeneration in Parkinson’s disease, focusing on alpha-synuclein accumulation and deposition and the role of oxidative stress and inflammation in progressive brain changes. Recent approaches to disease modification are discussed, including the prevention or reversal of alpha-synuclein accumulation and deposition, modification of oxidative stress, alteration of maladaptive innate immune processes and reactive cascades, and regeneration of lost neurons using stem cells and growth factors. The limitations of past research methodologies are interrogated, including the difficulty of recruiting patients in the clinically quiescent prodromal phase of sporadic Parkinson’s disease. Recommendations are provided for future studies seeking to identify novel therapeutics with disease-modifying properties. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

11 pages, 387 KB  
Article
Use of Instrumented Timed Up and Go in Adults with Traumatic Brain Injury
by Shanti M. Pinto, Nahir A. Habet, Tamar C. Roomian, Kathryn M. Williams, Marc Duemmler, Kelly A. Werts, Stephen H. Sims and Mark A. Newman
BioMed 2025, 5(3), 16; https://doi.org/10.3390/biomed5030016 - 23 Jul 2025
Viewed by 615
Abstract
Objective: The primary objective was to identify whether there were differences in performance for the individual subcomponents of the instrumented timed “Up and Go” (iTUG) between adults with traumatic brain injury (TBI) and healthy controls. Methods: Fifteen adults with moderate-to-severe TBI [...] Read more.
Objective: The primary objective was to identify whether there were differences in performance for the individual subcomponents of the instrumented timed “Up and Go” (iTUG) between adults with traumatic brain injury (TBI) and healthy controls. Methods: Fifteen adults with moderate-to-severe TBI and fifteen age- and sex-matched controls completed two separate trials of the iTUG. Paired t-tests or Wilcoxon signed rank tests were used to determine the differences between groups. Results: Adults with moderate-to-severe TBI took more time to complete the iTUG (14.50 ± 2.36 s vs. 9.85 ± 1.71 s; p-value = 0.0002), had slower chest flexion angular velocities (63.52 ± 23.25 s vs. 88.19 ± 29.20 s; p-value = 0.0486) and vertical acceleration (2.22 [1.23–2.74] s vs. 3.89 [3.36–5.02] s; p-value = 0.0005) during the sit-to-stand movements, and had slower angular velocities during the turns (p-value < 0.05 for both mean and peak turn angular velocities) compared with the controls. Conclusions: Adults with moderate-to-severe TBI completed the iTUG more slowly than healthy controls. Significant differences were noted in the sit-to-stand and turn subcomponents for adults with moderate-to-severe TBI compared with healthy controls, which would not be apparent from evaluating the total time taken alone. Full article
Show Figures

Figure 1

12 pages, 1840 KB  
Brief Report
HIV Protein TAT Dysregulates Multiple Pathways in Human iPSCs-Derived Microglia
by Liam Liyang Guo, Robert Jiang, Yan Cheng, Brooke Russell, Yan Y. Sanders and Ming-Lei Guo
Life 2025, 15(7), 1082; https://doi.org/10.3390/life15071082 - 9 Jul 2025
Viewed by 754
Abstract
In the era of combined antiretroviral therapy, around 50% of chronic HIV (+) individuals show varying degrees of memory and cognitive deficiency (NeuroHIV), a phenomenon of accelerated brain aging. HIV protein transactivator of transcription (TAT) has been well-accepted as a risk factor contributing [...] Read more.
In the era of combined antiretroviral therapy, around 50% of chronic HIV (+) individuals show varying degrees of memory and cognitive deficiency (NeuroHIV), a phenomenon of accelerated brain aging. HIV protein transactivator of transcription (TAT) has been well-accepted as a risk factor contributing to NeuroHIV through dysregulating microglia (Mg) functions. Previous studies have demonstrated that HIV-TAT can affect lipid metabolism, immune responses, autophagy, and senescence in rodent Mg. However, due to the significant species differences between rodent and human Mg (hMg), it is essential to take caution when interpreting the results obtained from rodent models into human conditions. For the unanswered questions, we generated hMg from human inducible pluripotent stem cells (iPSCs) and exposed them to HIV-TAT. The results obtained from Flow analysis and immunostaining experiments reveal that TAT can induce LD accumulation and increase perilipin-2 (Plin2) levels in hMg. Meanwhile, HIV-TAT can upregulate autophagosome formation and p53 levels. Through human immune array assay, we showed that TAT can increase the expression of multiple pro-inflammatory mediators, cytokines, and chemokines in hMg. Extensive bioinformatic analysis shows that HIV-TAT can affect multiple neuroimmune signaling pathways and indicates that microRNAs (miRNAs) are coherently involved in such dysregulation. Overall, our findings provide direct evidence showing that HIV-TAT can affect lipid metabolism, autophagy, senescence signaling, and multiple neuroimmune-related pathways in hMg and indicate the roles of novel miRNAs on NeuroHIV pathogenesis, which deserves further investigations. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

15 pages, 1463 KB  
Article
Persistent Changes in Hormones and Growth Factors Involved in Ageing in Patients That Recovered from Severe COVID-19
by Alice Cuchi-Cabral, André C. Palma, Guilherme A. Nogueira, Henrique Ceretta Oliveira, Suzimar F. Benato Fusco, Maria L. Moretti, Licio A. Velloso and Eliana P. Araujo
Diseases 2025, 13(7), 209; https://doi.org/10.3390/diseases13070209 - 3 Jul 2025
Viewed by 1419
Abstract
Background: The coronavirus disease-19 pandemic affected millions of people and its long-term impact on the health of survivors is under evaluation. Objectives: In this study, we hypothesized that severe coronavirus disease-19 could promote long-term changes in the blood levels of hormones and growth [...] Read more.
Background: The coronavirus disease-19 pandemic affected millions of people and its long-term impact on the health of survivors is under evaluation. Objectives: In this study, we hypothesized that severe coronavirus disease-19 could promote long-term changes in the blood levels of hormones and growth factors known to be involved in the regulation of ageing. Methods: We evaluated 49 patients that recovered from severe COVID-19 and compared them with matched controls that were never infected by the virus. The blood levels of growth hormone, insulin-like growth factor-1, insulin, brain-derived neurotrophic factor, nerve growth factor, oxytocin, ghrelin, platelet-derived growth factor, fibroblast growth factor-1, and transforming growth factor-beta were determined using enzyme-linked immunosorbent assays. Results: After six months of recovery, patients presented reduced blood levels of growth hormone, insulin-like growth factor-1, brain-derived neurotrophic factor, and platelet-derived growth factor. Fifteen months after, the reductions in the blood levels of all four hormones/growth factors persisted. Conclusions: Our study advances the field by identifying hormones and growth factors involved in ageing that undergo persistent changes in patients that recover from severe COVID-19. Further studies could explore the potential of the identified hormones/growth factors as therapeutic targets for the late complications and accelerated ageing that may affect patients recovering from severe COVID-19. Full article
Show Figures

Figure 1

14 pages, 692 KB  
Review
Decoding Mini-Puberty and Its Clinical Significance: A Narrative Review
by Anastasios Serbis, Chrysoula Kosmeri, Natalia Atzemoglou, Katerina-Marina Lampropoulou, Lida-Eleni Giaprou, Dimitrios Rallis and Vasileios Giapros
Endocrines 2025, 6(2), 28; https://doi.org/10.3390/endocrines6020028 - 9 Jun 2025
Viewed by 2516
Abstract
Mini-puberty refers to the transient activation of the hypothalamic–pituitary–gonadal (HPG) axis during early infancy, lasting up to six months in boys and 12–24 months in girls. This phase represents the second activation of the HPG axis, following its initial activation during the second [...] Read more.
Mini-puberty refers to the transient activation of the hypothalamic–pituitary–gonadal (HPG) axis during early infancy, lasting up to six months in boys and 12–24 months in girls. This phase represents the second activation of the HPG axis, following its initial activation during the second half of fetal life. At birth, the removal of the suppressive effect of placental estrogens on the HPG axis prompts a rise in both gonadotropins and sex steroid hormones, resulting in distinct clinical and laboratory markers of mini-puberty. While the clinical significance of mini-puberty remains partially understood, emerging evidence underscores its essential role in several aspects of human growth and development. In boys, testosterone influences penile growth, increases Sertoli cell numbers in the testes, and lays the foundation for future spermatogenesis. In girls, the increase in estradiol levels promotes follicular maturation and stimulates breast and uterine growth. Beyond the gonadal effects, mini-puberty appears to impact body composition, affecting body weight and promoting accelerated growth. Additionally, it may affect early psychosomatic and neural maturation, playing a role in several key aspects of the infantile brain. This narrative review examines recent findings on the physiology of the activation of the HPG axis before and after birth along with its significance in various aspects of human growth and development. In addition, mini-puberty-unique features in specific groups, such as preterm and small-for-gestational-age infants, are presented. Full article
(This article belongs to the Section Pediatric Endocrinology and Growth Disorders)
Show Figures

Figure 1

Back to TopTop