Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,098)

Search Parameters:
Keywords = above-ground carbon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5688 KiB  
Review
Tree Biomass Estimation in Agroforestry for Carbon Farming: A Comparative Analysis of Timing, Costs, and Methods
by Niccolò Conti, Gianni Della Rocca, Federico Franciamore, Elena Marra, Francesco Nigro, Emanuele Nigrone, Ramadhan Ramadhan, Pierluigi Paris, Gema Tárraga-Martínez, José Belenguer-Ballester, Lorenzo Scatena, Eleonora Lombardi and Cesare Garosi
Forests 2025, 16(8), 1287; https://doi.org/10.3390/f16081287 - 7 Aug 2025
Abstract
Agroforestry systems (AFSs) enhance long-term carbon sequestration through tree biomass accumulation. As the European Union’s Carbon Farming Certification (CRCF) Regulation now recognizes AFSs in carbon farming (CF) schemes, accurate tree biomass estimation becomes essential for certification. This review examines field-destructive and remote sensing [...] Read more.
Agroforestry systems (AFSs) enhance long-term carbon sequestration through tree biomass accumulation. As the European Union’s Carbon Farming Certification (CRCF) Regulation now recognizes AFSs in carbon farming (CF) schemes, accurate tree biomass estimation becomes essential for certification. This review examines field-destructive and remote sensing methods for estimating tree aboveground biomass (AGB) in AFSs, with a specific focus on their advantages, limitations, timing, and associated costs. Destructive methods, although accurate and necessary for developing and validating allometric equations, are time-consuming, costly, and labour-intensive. Conversely, satellite- and drone-based remote sensing offer scalable and non-invasive alternatives, increasingly supported by advances in machine learning and high-resolution imagery. Using data from the INNO4CFIs project, which conducted parallel destructive and remote measurements in an AFS in Tuscany (Italy), this study provides a novel quantitative comparison of the resources each method requires. The findings highlight that while destructive measurements remain indispensable for model calibration and new species assessment, their feasibility is limited by practical constraints. Meanwhile, remote sensing approaches, despite some accuracy challenges in heterogeneous AFSs, offer a promising path forward for cost-effective, repeatable biomass monitoring but in turn require reliable field data. The integration of both approaches might represent a valid strategy to optimize precision and resource efficiency in carbon farming applications. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

13 pages, 1165 KiB  
Article
Simulation of the Adsorption Bed Process of Activated Carbon with Zinc Chloride from Spent Coffee Grounds for the Removal of Parabens in Treatment Plants
by Wagner Vedovatti Martins, Adriele Rodrigues Dos Santos, Gideã Taques Tractz, Lucas Bonfim-Rocha, Ana Paula Peron and Osvaldo Valarini Junior
Processes 2025, 13(8), 2481; https://doi.org/10.3390/pr13082481 - 6 Aug 2025
Abstract
Parabens—specifically methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP)—are widely used substances in everyday life, particularly as preservatives in pharmaceutical and food products. However, these compounds are not effectively removed by conventional water and wastewater treatment processes, potentially causing disruptions to human [...] Read more.
Parabens—specifically methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP)—are widely used substances in everyday life, particularly as preservatives in pharmaceutical and food products. However, these compounds are not effectively removed by conventional water and wastewater treatment processes, potentially causing disruptions to human homeostasis and the endocrine system. This study conducted a transport and dimensional analysis through simulation of the adsorption process for these parabens, using zinc chloride-activated carbon derived from spent coffee grounds (ACZnCl2) as the adsorbent, implemented via Aspen Properties® and Aspen Adsorption®. Simulations were performed for two inlet concentrations (50 mg/L and 100 mg/L) and two adsorption column heights (3 m and 4 m), considering a volumetric flow rate representative of a medium-sized city with approximately 100,000 inhabitants. The results showed that both density and surface tension of the parabens varied linearly with increasing temperature, and viscosity exhibited a marked reduction above 30 °C. Among the tested conditions, the configuration with 50 mg∙L−1 inlet concentration and a 4 m column height demonstrated the highest adsorption capacity and better performance under adsorption–desorption equilibrium. These findings indicate that the implementation of adsorption beds on an industrial scale in water and wastewater treatment systems is both environmentally and socially viable. Full article
Show Figures

Figure 1

25 pages, 5704 KiB  
Article
A Robust Framework for Bamboo Forest AGB Estimation by Integrating Geostatistical Prediction and Ensemble Learning
by Lianjin Fu, Qingtai Shu, Cuifen Xia, Zeyu Li, Hailing He, Zhengying Li, Shaoyang Ma, Chaoguan Qin, Rong Wei, Qin Xiang, Xiao Zhang, Yiran Zhang and Huashi Cai
Remote Sens. 2025, 17(15), 2682; https://doi.org/10.3390/rs17152682 - 3 Aug 2025
Viewed by 146
Abstract
Accurate above-ground biomass (AGB) quantification is confounded by signal saturation and data fusion challenges, particularly in structurally complex ecosystems like bamboo forests. To address these gaps, this study developed a two-stage framework to map the AGB of Dendrocalamus giganteus in a subtropical mountain [...] Read more.
Accurate above-ground biomass (AGB) quantification is confounded by signal saturation and data fusion challenges, particularly in structurally complex ecosystems like bamboo forests. To address these gaps, this study developed a two-stage framework to map the AGB of Dendrocalamus giganteus in a subtropical mountain environment. This study first employed Empirical Bayesian Kriging Regression Prediction (EBKRP) to spatialize sparse GEDI and ICESat-2 LiDAR metrics using Sentinel-2 and topographic covariates. Subsequently, a stacked ensemble model, integrating four machine learning algorithms, predicted AGB from the full suite of continuous variables. The stacking model achieved high predictive accuracy (R2 = 0.84, RMSE = 11.07 Mg ha−1) and substantially mitigated the common bias of underestimating high AGB, improving the predicted observed regression slope from a base model average of 0.63 to 0.81. Furthermore, SHAP analysis provided mechanistic insights, identifying the canopy photon rate as the dominant predictor and quantifying the ecological thresholds governing AGB distribution. The mean AGB density was 71.8 ± 21.9 Mg ha−1, with its spatial pattern influenced by elevation and human settlements. This research provides a robust framework for synergizing multi-source remote sensing data to improve AGB estimation, offering a refined methodological pathway for large-scale carbon stock assessments. Full article
Show Figures

Figure 1

21 pages, 262 KiB  
Article
Sustainability in Boreal Forests: Does Elevated CO2 Increase Wood Volume?
by Nyonho Oh, Eric C. Davis and Brent Sohngen
Sustainability 2025, 17(15), 7017; https://doi.org/10.3390/su17157017 - 1 Aug 2025
Viewed by 217
Abstract
While boreal forests constitute 30% of the Earth’s forested area and are responsible for 20% of the global carbon sink, there is considerable concern about their sustainability. This paper focuses on the role of elevated CO2, examining whether wood volume in [...] Read more.
While boreal forests constitute 30% of the Earth’s forested area and are responsible for 20% of the global carbon sink, there is considerable concern about their sustainability. This paper focuses on the role of elevated CO2, examining whether wood volume in these forests has responded to increased CO2 over the last 60 years. To accomplish this, we use a rich set of wood volume measurement data from the Province of Alberta, Canada, and deploy quasi-experimental techniques to determine the effect of elevated CO2. While the few experimental studies that have examined boreal forests have found almost no effect of elevated CO2, our results indicate that a 1.0% increase in lifetime exposure to CO2 leads to a 1.1% increase in aboveground wood volume in these boreal forests. This study showcases the value of research designs that use natural settings to better account for the effects of prolonged exposure to elevated CO2. Our results should enable improved delineation of the drivers of historical changes in wood volume and carbon storage in boreal forests. In addition, when combined with other studies, these results will likely aid policymakers in designing management or policy approaches that will enhance the sustainability of forests in boreal regions. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
16 pages, 3034 KiB  
Article
Interannual Variability in Precipitation Modulates Grazing-Induced Vertical Translocation of Soil Organic Carbon in a Semi-Arid Steppe
by Siyu Liu, Xiaobing Li, Mengyuan Li, Xiang Li, Dongliang Dang, Kai Wang, Huashun Dou and Xin Lyu
Agronomy 2025, 15(8), 1839; https://doi.org/10.3390/agronomy15081839 - 29 Jul 2025
Viewed by 158
Abstract
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing [...] Read more.
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing intensity influences SOC density in grasslands remain incompletely understood. This study examines the effects of varying grazing intensities on SOC density (0–30 cm) dynamics in temperate grasslands of northern China using field surveys and experimental analyses in a typical steppe ecosystem of Inner Mongolia. Results show that moderate grazing (3.8 sheep units/ha/yr) led to substantial consumption of aboveground plant biomass. Relative to the ungrazed control (0 sheep units/ha/yr), aboveground plant biomass was reduced by 40.5%, 36.2%, and 50.6% in the years 2016, 2019, and 2020, respectively. Compensatory growth failed to fully offset biomass loss, and there were significant reductions in vegetation carbon storage and cover (p < 0.05). Reduced vegetation cover increased bare soil exposure and accelerated topsoil drying and erosion. This degradation promoted the downward migration of SOC from surface layers. Quantitative analysis revealed that moderate grazing significantly reduced surface soil (0–10 cm) organic carbon density by 13.4% compared to the ungrazed control while significantly increasing SOC density in the subsurface layer (10–30 cm). Increased precipitation could mitigate the SOC transfer and enhance overall SOC accumulation. However, it might negatively affect certain labile SOC fractions. Elucidating the mechanisms of SOC variation under different grazing intensities and precipitation regimes in semi-arid grasslands could improve our understanding of carbon dynamics in response to environmental stressors. These insights will aid in predicting how grazing systems influence grassland carbon cycling under global climate change. Full article
Show Figures

Figure 1

16 pages, 2462 KiB  
Article
Allometric Equations for Aboveground Biomass Estimation in Wet Miombo Forests of the Democratic Republic of the Congo Using Terrestrial LiDAR
by Jonathan Ilunga Muledi, Stéphane Takoudjou Momo, Pierre Ploton, Augustin Lamulamu Kamukenge, Wilfred Kombe Ibey, Blaise Mupari Pamavesi, Benoît Amisi Mushabaa, Mylor Ngoy Shutcha, David Nkulu Mwenze, Bonaventure Sonké, Urbain Mumba Tshanika, Benjamin Toirambe Bamuninga, Cléto Ndikumagenge and Nicolas Barbier
Environments 2025, 12(8), 260; https://doi.org/10.3390/environments12080260 - 29 Jul 2025
Viewed by 528
Abstract
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been [...] Read more.
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been validated by the IPCC guidelines for carbon accounting within the REDD+ framework. TLS surveys were carried out in five non-contiguous 1-ha plots in two study sites in the wet Miombo forest of Katanga, in the Democratic Republic Congo. Local wood densities (WD) were determined from wood cores taken from 619 trees on the sites. After a careful checking of Quantitative Structure Models (QSMs) output, the individual volumes of 213 trees derived from TLS data processing were converted to AGB using WD. Four AEs were calibrated using different predictors, and all presented strong performance metrics (e.g., R2 ranging from 90 to 93%), low relative bias and relative individual mean error (11.73 to 16.34%). Multivariate analyses performed on plot floristic and structural data showed a strong contrast in terms of composition and structure between sites and between plots within sites. Even though the whole variability of the biome has not been sampled, we were thus able to confirm the transposability of results within the wet Miombo forests through two cross-validation approaches. The AGB predictions obtained with our best AE were also compared with AEs found in the literature. Overall, an underestimation of tree AGB varying from −35.04 to −19.97% was observed when AEs from the literature were used for predicting AGB in the Miombo of Katanga. Full article
Show Figures

Figure 1

19 pages, 3536 KiB  
Article
Loss and Early Recovery of Biomass and Soil Organic Carbon in Restored Mangroves After Paspalum vaginatum Invasion in West Africa
by Julio César Chávez Barrera, Juan Fernando Gallardo Lancho, Robert Puschendorf and Claudia Maricusa Agraz Hernández
Resources 2025, 14(8), 122; https://doi.org/10.3390/resources14080122 - 29 Jul 2025
Viewed by 293
Abstract
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified [...] Read more.
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified in the total biomass, including both aboveground and belowground components, as well as in the soil to a depth of −50 cm. In addition, soil gas fluxes of CO2, CH4, and N2O were measured. Three sites were evaluated: a conserved mangrove, a site degraded by P. vaginatum, and the same site post-restoration via hydrological rehabilitation and reforestation. Invasion significantly reduced carbon storage, especially in soil, due to lower biomass, incorporation of low C/N ratio organic residues, and compaction. Restoration recovered 7.8% of the total biomass carbon compared to the conserved mangrove site, although soil organic carbon did not rise significantly in the short term. However, improvements in deep soil C/N ratios (15–30 and 30–50 cm) suggest enhanced soil organic matter recalcitrance linked to R. racemosa reforestation. Soil CO2 emissions dropped by 60% at the restored site, underscoring restoration’s potential to mitigate early carbon loss. These results highlight the need to control invasive species and suggest that restoration can generate additional social benefits. Full article
Show Figures

Figure 1

17 pages, 2895 KiB  
Article
Trade-Offs of Plant Biomass by Precipitation Regulation Across the Sanjiangyuan Region of Qinghai–Tibet Plateau
by Mingxue Xiang, Gang Fu, Junxi Wu, Yunqiao Ma, Tao Ma, Kai Zheng, Zhaoqi Wang and Xinquan Zhao
Plants 2025, 14(15), 2325; https://doi.org/10.3390/plants14152325 - 27 Jul 2025
Viewed by 301
Abstract
Climate change alters plant biomass allocation and aboveground–belowground trade-offs in grassland ecosystems, potentially affecting critical functions such as carbon sequestration. However, uncertainties persist regarding how precipitation gradients regulate (1) responses of aboveground biomass (AGB), belowground biomass (BGB), and total biomass in alpine grasslands, [...] Read more.
Climate change alters plant biomass allocation and aboveground–belowground trade-offs in grassland ecosystems, potentially affecting critical functions such as carbon sequestration. However, uncertainties persist regarding how precipitation gradients regulate (1) responses of aboveground biomass (AGB), belowground biomass (BGB), and total biomass in alpine grasslands, and (2) precipitation-mediated AGB-BGB allocation strategies. To address this, we conducted a large-scale field survey across precipitation gradients (400–700 mm/y) in the Sanjiangyuan alpine grasslands, Qinghai–Tibet Plateau. During the 2024 growing season, a total of 63 sites (including 189 plots and 945 quadrats) were sampled along five aridity classes: <400, 400–500, 500–600, 600–700, and >700 mm/y. Our findings revealed precipitation as the dominant driver of biomass dynamics: AGB exhibited equal growth rates relative to BGB within the 600–700 mm/y range, but accelerated under drier/wetter conditions. This suggests preferential allocation to aboveground parts under most precipitation regimes. Precipitation explained 31.71% of AGB–BGB trade-off variance (random forest IncMSE), surpassing contributions from AGB (17.61%), specific leaf area (SLA, 13.87%), and BGB (12.91%). Structural equation modeling confirmed precipitation’s positive effects on SLA (β = 0.28, p < 0.05), AGB (β = 0.53, p < 0.05), and BGB (β = 0.60, p < 0.05), with AGB-mediated cascades (β = 0.33, p < 0.05) dominating trade-off regulation. These results advance our understanding of mechanistic drivers governing allometric AGB–BGB relationships across climatic gradients in alpine ecosystems of the Sanjiangyuan Region on the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

25 pages, 5461 KiB  
Article
Spaceborne LiDAR Reveals Anthropogenic and Biophysical Drivers Shaping the Spatial Distribution of Forest Aboveground Biomass in Eastern Himalayas
by Abhilash Dutta Roy, Abraham Ranglong, Sandeep Timilsina, Sumit Kumar Das, Michael S. Watt, Sergio de-Miguel, Sourabh Deb, Uttam Kumar Sahoo and Midhun Mohan
Land 2025, 14(8), 1540; https://doi.org/10.3390/land14081540 - 27 Jul 2025
Viewed by 424
Abstract
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows [...] Read more.
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows and contributes to the livelihoods of more than 200 distinct indigenous communities. This study aimed to identify the key factors influencing forest AGBD across this region by analyzing the underlying biophysical and anthropogenic drivers through machine learning (random forest). We processed AGBD data from the Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR and applied filtering to retain 30,257 high-quality footprints across ten ecoregions. We then analyzed the relationship between AGBD and 17 climatic, topographic, soil, and anthropogenic variables using random forest regression models. The results revealed significant spatial variability in AGBD (149.6 ± 79.5 Mg ha−1) across the region. State-wise, Sikkim recorded the highest mean AGBD (218 Mg ha−1) and Manipur the lowest (102.8 Mg ha−1). Within individual ecoregions, the Himalayan subtropical pine forests exhibited the highest mean AGBD (245.5 Mg ha−1). Topographic factors, particularly elevation and latitude, were strong determinants of biomass distribution, with AGBD increasing up to elevations of 2000 m before declining. Protected areas (PAs) consistently showed higher AGBD than unprotected forests for all ecoregions, while proximity to urban and agricultural areas resulted in lower AGBD, pointing towards negative anthropogenic impacts. Our full model explained 41% of AGBD variance across the Eastern Himalayas, with better performance in individual ecoregions like the Northeast India-Myanmar pine forests (R2 = 0.59). While limited by the absence of regionally explicit stand-level forest structure data (age, stand density, species composition), our results provide valuable evidence for conservation policy development, including expansion of PAs, compensating avoided deforestation and modifications in shifting cultivation. Future research should integrate field measurements with remote sensing and use high-resolution LiDAR with locally derived allometric models to enhance biomass estimation and GEDI data validation. Full article
Show Figures

Figure 1

24 pages, 12938 KiB  
Article
Spatial Distribution of Mangrove Forest Carbon Stocks in Marismas Nacionales, Mexico: Contributions to Climate Change Adaptation and Mitigation
by Carlos Troche-Souza, Edgar Villeda-Chávez, Berenice Vázquez-Balderas, Samuel Velázquez-Salazar, Víctor Hugo Vázquez-Morán, Oscar Gerardo Rosas-Aceves and Francisco Flores-de-Santiago
Forests 2025, 16(8), 1224; https://doi.org/10.3390/f16081224 - 25 Jul 2025
Viewed by 724
Abstract
Mangrove forests are widely recognized for their effectiveness as carbon sinks and serve as critical ecosystems for mitigating the effects of climate change. Current research lacks comprehensive, large-scale carbon storage datasets for wetland ecosystems, particularly across Mexico and other understudied regions worldwide. Therefore, [...] Read more.
Mangrove forests are widely recognized for their effectiveness as carbon sinks and serve as critical ecosystems for mitigating the effects of climate change. Current research lacks comprehensive, large-scale carbon storage datasets for wetland ecosystems, particularly across Mexico and other understudied regions worldwide. Therefore, the objective of this study was to develop a high spatial resolution map of carbon stocks, encompassing both aboveground and belowground components, within the Marismas Nacionales system, which is the largest mangrove complex in northeastern Pacific Mexico. Our approach integrates primary field data collected during 2023–2024 and incorporates some historical plot measurements (2011–present) to enhance spatial coverage. These were combined with contemporary remote sensing data, including Sentinel-1, Sentinel-2, and LiDAR, analyzed using Random Forest algorithms. Our spatial models achieved strong predictive accuracy (R2 = 0.94–0.95), effectively resolving fine-scale variations driven by canopy structure, hydrologic regime, and spectral heterogeneity. The application of Local Indicators of Spatial Association (LISA) revealed the presence of carbon “hotspots,” which encompass 33% of the total area but contribute to 46% of the overall carbon stocks, amounting to 21.5 Tg C. Notably, elevated concentrations of carbon stocks are observed in the central regions, including the Agua Brava Lagoon and at the southern portion of the study area, where pristine mangrove stands thrive. Also, our analysis reveals that 74.6% of these carbon hotspots fall within existing protected areas, demonstrating relatively effective—though incomplete—conservation coverage across the Marismas Nacionales wetlands. We further identified important cold spots and ecotones that represent priority areas for rehabilitation and adaptive management. These findings establish a transferable framework for enhancing national carbon accounting while advancing nature-based solutions that support both climate mitigation and adaptation goals. Full article
Show Figures

Graphical abstract

23 pages, 3875 KiB  
Article
Soil Water-Soluble Ion Inversion via Hyperspectral Data Reconstruction and Multi-Scale Attention Mechanism: A Remote Sensing Case Study of Farmland Saline–Alkali Lands
by Meichen Liu, Shengwei Zhang, Jing Gao, Bo Wang, Kedi Fang, Lu Liu, Shengwei Lv and Qian Zhang
Agronomy 2025, 15(8), 1779; https://doi.org/10.3390/agronomy15081779 - 24 Jul 2025
Viewed by 613
Abstract
The salinization of agricultural soils is a serious threat to farming and ecological balance in arid and semi-arid regions. Accurate estimation of soil water-soluble ions (calcium, carbonate, magnesium, and sulfate) is necessary for correct monitoring of soil salinization and sustainable land management. Hyperspectral [...] Read more.
The salinization of agricultural soils is a serious threat to farming and ecological balance in arid and semi-arid regions. Accurate estimation of soil water-soluble ions (calcium, carbonate, magnesium, and sulfate) is necessary for correct monitoring of soil salinization and sustainable land management. Hyperspectral ground-based data are valuable in soil salinization monitoring, but the acquisition cost is high, and the coverage is small. Therefore, this study proposes a two-stage deep learning framework with multispectral remote-sensing images. First, the wavelet transform is used to enhance the Transformer and extract fine-grained spectral features to reconstruct the ground-based hyperspectral data. A comparison of ground-based hyperspectral data shows that the reconstructed spectra match the measured data in the 450–998 nm range, with R2 up to 0.98 and MSE = 0.31. This high similarity compensates for the low spectral resolution and weak feature expression of multispectral remote-sensing data. Subsequently, this enhanced spectral information was integrated and fed into a novel multiscale self-attentive Transformer model (MSATransformer) to invert four water-soluble ions. Compared with BPANN, MLP, and the standard Transformer model, our model remains robust across different spectra, achieving an R2 of up to 0.95 and reducing the average relative error by more than 30%. Among them, for the strongly responsive ions magnesium and sulfate, R2 reaches 0.92 and 0.95 (with RMSE of 0.13 and 0.29 g/kg, respectively). For the weakly responsive ions calcium and carbonate, R2 stays above 0.80 (RMSE is below 0.40 g/kg). The MSATransformer framework provides a low-cost and high-accuracy solution to monitor soil salinization at large scales and supports precision farmland management. Full article
(This article belongs to the Special Issue Water and Fertilizer Regulation Theory and Technology in Crops)
Show Figures

Figure 1

22 pages, 4318 KiB  
Article
The Molecular Mechanism and Effects of Root Pruning Treatment on Blueberry Tree Growth
by Liwei Chu, Chengjing Shi, Xin Wang, Benyin Li, Siyu Zuo, Qixuan Li, Jiarui Han, Hexin Wang and Xin Lou
Plants 2025, 14(15), 2269; https://doi.org/10.3390/plants14152269 - 23 Jul 2025
Viewed by 220
Abstract
Root pruning can promote the transplanting of young green plants, but the overall impact of pruning on root growth, morphology, and physiological functions remains unclear. This study integrated transcriptomics and physiological analyses to elucidate the effects of root pruning on blueberry growth. Appropriate [...] Read more.
Root pruning can promote the transplanting of young green plants, but the overall impact of pruning on root growth, morphology, and physiological functions remains unclear. This study integrated transcriptomics and physiological analyses to elucidate the effects of root pruning on blueberry growth. Appropriate pruning (CT4) significantly promoted plant growth, with above-ground biomass and leaf biomass significantly increasing compared to the control group within 42 days. Photosynthesis temporarily decreased at 7 days but recovered at 21 and 42 days. Transcriptomics analysis showed that the cellulose metabolism pathway was rapidly activated and influenced multiple key genes in the starch metabolism pathway. Importantly, transcription factors associated with vascular development were also significantly increased at 7, 21, and 42 days after root pruning, indicating their role in regulating vascular differentiation. Enhanced aboveground growth was positively correlated with the expression of photosynthesis-related genes, and the transport of photosynthetic products via vascular tissues provided a carbon source for root development. Thus, root development is closely related to leaf photosynthesis, and changes in gene expression associated with vascular tissue development directly influence root development, ultimately ensuring coordinated growth between aboveground and belowground parts. These findings provide a theoretical basis for optimizing root pruning strategies to enhance blueberry growth and yield. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

18 pages, 3178 KiB  
Article
Biomass Estimation of Apple and Citrus Trees Using Terrestrial Laser Scanning and Drone-Mounted RGB Sensor
by Min-Ki Lee, Yong-Ju Lee, Dong-Yong Lee, Jee-Su Park and Chang-Bae Lee
Remote Sens. 2025, 17(15), 2554; https://doi.org/10.3390/rs17152554 - 23 Jul 2025
Viewed by 321
Abstract
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. [...] Read more.
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. This study evaluates the potential of terrestrial laser scanning (TLS) and drone-mounted RGB sensors (Drone_RGB) for estimating biomass in two major perennial crops in South Korea: apple (‘Fuji’/M.9) and citrus (‘Miyagawa-wase’). Trees of different ages were destructively sampled for biomass measurement, while volume, height, and crown area data were collected via TLS and Drone_RGB. Regression analyses were performed, and the model accuracy was assessed using R2, RMSE, and bias. The TLS-derived volume showed strong predictive power for biomass (R2 = 0.704 for apple, 0.865 for citrus), while the crown area obtained using both sensors showed poor fit (R2 ≤ 0.7). Aboveground biomass was reasonably estimated (R2 = 0.725–0.865), but belowground biomass showed very low predictability (R2 < 0.02). Although limited in scale, this study provides empirical evidence to support the development of remote sensing-based biomass estimation methods and may contribute to improving national greenhouse gas inventories by refining emission/removal factors for perennial fruit crops. Full article
(This article belongs to the Special Issue Biomass Remote Sensing in Forest Landscapes II)
Show Figures

Graphical abstract

21 pages, 4580 KiB  
Article
Response of Patch Characteristics of Carex alatauensis S. R. Zhang to Establishment Age in Artificial Grasslands on the Qinghai–Tibet Plateau, China
by Liangyu Lyu, Chao Wang, Pei Gao, Fayi Li, Qingqing Liu and Jianjun Shi
Plants 2025, 14(15), 2257; https://doi.org/10.3390/plants14152257 - 22 Jul 2025
Viewed by 179
Abstract
To clarify the ecological mechanisms underlying the succession of artificial grasslands to native alpine meadows and systematically reveal the patterns of ecological restoration in artificial grasslands in the Qinghai–Tibet Plateau, this study provides a theoretical basis for alpine meadow ecological restoration. In this [...] Read more.
To clarify the ecological mechanisms underlying the succession of artificial grasslands to native alpine meadows and systematically reveal the patterns of ecological restoration in artificial grasslands in the Qinghai–Tibet Plateau, this study provides a theoretical basis for alpine meadow ecological restoration. In this study, artificial grassland and degraded grassland (CK) with different restoration years (20 years, 16 years, 14 years, and 2 years) in the Qinghai–Tibet Plateau were taken as research objects. We focused on the tillering characteristics, patch number, community structure evolution, and soil properties of the dominant species, C. alatauensis, and systematically explored the ecological restoration law by comparing and analyzing ecological indicators in different restoration years. The results showed the following: (1) With the extension of restoration years, the asexual reproduction ability of C. alatauensis was enhanced, the patches became large, and aboveground/underground biomass significantly accumulated. (2) Community structure optimization meant that the coverage and biomass of Cyperaceae plants increased with restoration age, while those of Poaceae plants decreased. The diversity of four species in 20A of restored grasslands showed significant increases (10.71–19.18%) compared to 2A of restored grasslands. (3) Soil improvement effect: The contents of soil organic carbon (SOC), total phosphorus (TP), nitrate nitrogen (NN), and available phosphorus (AP) increased significantly with the restoration years (in 20A, the SOC content in the 0–10 cm soil layer increased by 57.5% compared with CK), and the soil pH gradually approached neutrality. (4) In artificial grasslands with different restoration ages (20A, 16A, and 14A), significant or highly significant correlations existed between C. alatauensis tiller characteristics and community and soil properties. In conclusion, C. alatauensis in artificial grasslands drives population enhancement, community succession, and soil improvement through patch expansion. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

21 pages, 8521 KiB  
Article
Estimating Forest Carbon Stock Using Enhanced ResNet and Sentinel-2 Imagery
by Jintong Ren, Lizhi Liu, You Wu, Lijian Ouyang and Zhenyu Yu
Forests 2025, 16(7), 1198; https://doi.org/10.3390/f16071198 - 20 Jul 2025
Viewed by 347
Abstract
Accurate estimation of forest carbon stock is critical for understanding ecosystem carbon dynamics and informing climate mitigation strategies. This study presents a deep learning framework that integrates Sentinel-2 multispectral imagery with an enhanced residual neural network for estimating aboveground forest carbon stock in [...] Read more.
Accurate estimation of forest carbon stock is critical for understanding ecosystem carbon dynamics and informing climate mitigation strategies. This study presents a deep learning framework that integrates Sentinel-2 multispectral imagery with an enhanced residual neural network for estimating aboveground forest carbon stock in the Liuchong River Basin, Bijie City, Guizhou Province, China. The proposed model incorporates multiscale residual blocks and channel attention mechanisms to improve spatial feature extraction and spectral dependency modeling. A dataset of 150 ground inventory plots was employed for supervised training and validation. Comparative experiments with Random Forest, Gradient Boosting Decision Trees (GBDT), and Vision Transformer (ViT) demonstrate that the enhanced ResNet achieves the best performance, with a root mean square error (RMSE) of 23.02 Mg/ha and a coefficient of determination (R2) of 0.773 on the test set. Spatial mapping results further reveal that the model effectively captures fine-scale carbon stock variations across mountainous forested landscapes. These findings underscore the potential of combining multispectral remote sensing and advanced neural architectures for scalable, high-resolution forest carbon estimation in complex terrain. Full article
(This article belongs to the Special Issue Mapping and Modeling Forests Using Geospatial Technologies)
Show Figures

Figure 1

Back to TopTop