Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = abandoned coal mines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5219 KiB  
Article
Utilizing a Transient Electromagnetic Inversion Method with Lateral Constraints in the Goaf of Xiaolong Coal Mine, Xinjiang
by Yingying Zhang, Bin Xie and Xinyu Wu
Appl. Sci. 2025, 15(15), 8571; https://doi.org/10.3390/app15158571 (registering DOI) - 1 Aug 2025
Viewed by 141
Abstract
The abandoned goaf resulting from coal resource integration in China poses a significant threat to coal mine safety. The transient electromagnetic method (TEM) has emerged as a crucial technology for detecting goafs in coal mines due to its adaptable equipment and efficient implementation. [...] Read more.
The abandoned goaf resulting from coal resource integration in China poses a significant threat to coal mine safety. The transient electromagnetic method (TEM) has emerged as a crucial technology for detecting goafs in coal mines due to its adaptable equipment and efficient implementation. In recent years, small-loop TEM has demonstrated high resolution and adaptability in challenging terrains with vegetation, such as coal mine ponding areas, karst regions, and reservoir seepage scenarios. By considering the sedimentary characteristics of coal seams and addressing the resistivity changes encountered in single-point inversion, a joint optimization inversion process incorporating lateral weighting factors and vertical roughness constraints has been developed to enhance the connectivity between adjacent survey points and improve the continuity of inversion outcomes. Through an OCCAM inversion approach, the regularization factor is dynamically determined by evaluating the norms of the data objective function and model objective function in each iteration, thereby reducing the reliance of inversion results on the initial model. Using the Xiaolong Coal Mine as a geological context, the impact of lateral and vertical weighting factors on the inversion outcomes of high- and low-resistivity structural models is examined through a control variable method. The analysis reveals that optimal inversion results are achieved with a combination of a lateral weighting factor of 0.5 and a vertical weighting factor of 0.1, ensuring both result continuity and accurate depiction of vertical and lateral electrical interfaces. The practical application of this approach validates its effectiveness, offering theoretical support and technical assurance for old goaf detection in coal mines, thereby holding significant engineering value. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

21 pages, 2430 KiB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Viewed by 218
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
Show Figures

Graphical abstract

13 pages, 710 KiB  
Article
A Phytoremediation Efficiency Assessment of Cadmium (Cd)-Contaminated Soils in the Three Gorges Reservoir Area, China
by Yinhua Guo, Wei Liu, Lixiong Zeng, Liwen Qiu, Di Wu, Hao Wen, Rui Yuan, Dingjun Zhang, Rongbin Tang and Zhan Chen
Plants 2025, 14(14), 2202; https://doi.org/10.3390/plants14142202 - 16 Jul 2025
Viewed by 298
Abstract
To investigate the remediation efficiency of different plant species on cadmium (Cd)-contaminated soil, this study conducted a pot experiment with two woody species (Populu adenopoda and Salix babylonica) and two herbaceous species (Artemisia argyi and Amaranthus hypochondriacus). Soils were [...] Read more.
To investigate the remediation efficiency of different plant species on cadmium (Cd)-contaminated soil, this study conducted a pot experiment with two woody species (Populu adenopoda and Salix babylonica) and two herbaceous species (Artemisia argyi and Amaranthus hypochondriacus). Soils were collected from an abandoned coal mine and adjacent pristine natural areas within the dam-adjacent section of the Three Gorges Reservoir Area to establish three soil treatment groups: unpolluted soil (T1, 0.18 mg·kg−1 Cd), a 1:1 mixture of contaminated and unpolluted soil (T2, 0.35 mg·kg−1 Cd), and contaminated coal mine soil (T3, 0.54 mg·kg−1 Cd). This study aimed to investigate the growth status of plants, Cd accumulation and translocation characteristics, and the relationship between them and soil environmental factors. Woody plants exhibited significant advantages in aboveground biomass accumulation. Under T3 treatment, the Cd extraction amount of S. babylonica (224.93 mg) increased by about 36 times compared to T1, and the extraction efficiency (6.42%) was significantly higher than other species. Among the herbaceous species, A. argyi showed the maximum Cd extraction amount (66.26 mg) and extraction efficiency (3.11%) during T2 treatment. While A. hypochondriacus exhibited a trend of increasing extraction amount but decreasing extraction efficiency with increasing concentration. With the exception of S. babylonica under T1 treatment (BCF = 0.78), the bioconcentration factor was greater than 1 in both woody (BCF = 1.39–6.42) and herbaceous species (BCF = 1.39–3.11). However, herbaceous plants demonstrated significantly higher translocation factors (TF = 1.58–3.43) compared to woody species (TF = 0.31–0.87). There was a significant negative correlation between aboveground phosphorus (P) content and root Cd (p < 0.05), while underground nitrogen (N) content was positively correlated to aboveground Cd content (p < 0.05). Soil total N and available P were significantly positively correlated with plant Cd absorption, whereas total potassium (K) showed a negative correlation. This study demonstrated that woody plants can achieve long-term remediation through biomass advantages, while herbaceous plants, with their high transfer efficiency, are suitable for short-term rotation. In the future, it is suggested to conduct a mixed planting model of woody and herbaceous plants to remediate Cd-contaminated soils in the tailing areas of reservoir areas. This would synergistically leverage the dual advantages of root retention and aboveground removal, enhancing remediation efficiency. Concurrent optimization of soil nutrient management would further improve the Cd remediation efficiency of plants. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

16 pages, 9789 KiB  
Article
CO2 Sequestration Potential Competitive with H2O and N2 in Abandoned Coal Mines Based on Molecular Modeling
by Tianyang Liu, Yun Li, Yaxuan Hu, Hezhao Li, Binghe Chen, Qixu Zhang, Qiufeng Xu and Yong Li
Processes 2025, 13(7), 2123; https://doi.org/10.3390/pr13072123 - 3 Jul 2025
Viewed by 349
Abstract
To facilitate the local recycling of coal mine waste gas and investigate multi-component gas adsorption under high pressure conditions, this study develops a coal nanopore model using molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) methods and simulates the adsorption behavior of [...] Read more.
To facilitate the local recycling of coal mine waste gas and investigate multi-component gas adsorption under high pressure conditions, this study develops a coal nanopore model using molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) methods and simulates the adsorption behavior of coal mine waste gas components (CO2, H2O, N2) under varying pressure levels and gas molar ratios at 353.15 K. We evaluated the adsorption capacity and selectivity for both single-component and multi-component gases, quantifying adsorption interactions through adsorption heat, interaction energy, and energy distribution. The simulation results revealed that the contribution of the three gases to the total adsorption amount followed the order: H2O > CO2 > N2. The selective adsorption coefficient of a gas exhibits an inverse correlation with its molar volume ratio. Isothermal heat adsorption of gases in coal was positive, decreasing sharply with increasing pressure before leveling off. Electrostatic interactions dominated CO2 and H2O adsorption, while van der Waals forces governed N2 adsorption. As the gas mixture complexity increased, the overlap of energy distribution curves pronounced, highlighting competitive adsorption behavior. These findings offer a theoretical foundation for optimizing coal mine waste gas treatment and CO2 sequestration technologies. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

23 pages, 1296 KiB  
Article
Gravity Energy Storage and Its Feasibility in the Context of Sustainable Energy Management with an Example of the Possibilities of Mine Shafts in Poland
by Katarzyna Tobór-Osadnik, Jacek Korski, Bożena Gajdzik, Radosław Wolniak and Wieslaw Grebski
Energies 2025, 18(13), 3374; https://doi.org/10.3390/en18133374 - 27 Jun 2025
Viewed by 576
Abstract
This paper discusses the viability and efficiency of gravity energy storage (GES) systems utilizing abandoned coal mine shafts in Poland as a new frontier of energy management within the broader framework of sustainable energy transition. After a thorough analysis of shaft infrastructure, economic [...] Read more.
This paper discusses the viability and efficiency of gravity energy storage (GES) systems utilizing abandoned coal mine shafts in Poland as a new frontier of energy management within the broader framework of sustainable energy transition. After a thorough analysis of shaft infrastructure, economic factors, and regulatory environment, the research demonstrates how GES is in line with circular economy and sustainability principles yet there are certain technical and financial limitations—smaller lifting capacities and expensive adjustments, for instance—that are currently stalling its large-scale adoption. The results highlight the importance of harmonizing such repurposing efforts with the available renewable energy infrastructure and call for aggressive policy, technological, and funding efforts to sustain the conceptual promise with actual fulfilment. Full article
(This article belongs to the Special Issue Environmental Sustainability and Energy Economy)
Show Figures

Figure 1

22 pages, 9724 KiB  
Article
Study on the Mechanical Properties and Degradation Mechanisms of Damaged Rock Under the Influence of Liquid Saturation
by Bowen Wu, Jucai Chang, Jianbiao Bai, Chao Qi and Dingchao Chen
Appl. Sci. 2025, 15(13), 7054; https://doi.org/10.3390/app15137054 - 23 Jun 2025
Viewed by 281
Abstract
To investigate the degradation mechanisms of the surrounding rock in abandoned mine roadways used for oil storage, this study combined uniaxial compression tests with digital image correlation (DIC), scanning electron microscopy (SEM), and other techniques to analyze the evolution of the rock mechanical [...] Read more.
To investigate the degradation mechanisms of the surrounding rock in abandoned mine roadways used for oil storage, this study combined uniaxial compression tests with digital image correlation (DIC), scanning electron microscopy (SEM), and other techniques to analyze the evolution of the rock mechanical properties under the coupled effects of oil–water soaking and initial damage. The results indicate that oil–water soaking induces the loss of silicon elements and the deterioration of microstructure, leading to surface peeling, crack propagation, and increased porosity of the sample. The compressive strength decreases linearly with the soaking time. Acoustic emission (AE) monitoring showed that after 24 h of soaking, the maximum ringing count rate and cumulative count decreased by 81.7% and 80.4%, respectively, compared to the dry state. As the liquid saturation increases, the failure mode transitions from tension dominated to shear failure. The synergistic effect of initial damage and oil–water erosion weakens the rock’s energy storage capacity, with the energy storage limit decreasing by 45.6%, leading to reduced resistance to external forces. Full article
(This article belongs to the Special Issue Novel Technologies in Intelligent Coal Mining)
Show Figures

Figure 1

25 pages, 1610 KiB  
Article
Study on the Seismic Stability of Urban Sewage Treatment and Underground Reservoir of an Abandoned Mine Pumped Storage Power Station
by Baoyu Wei, Lu Gao and Hongbao Zhao
Sustainability 2025, 17(12), 5620; https://doi.org/10.3390/su17125620 - 18 Jun 2025
Viewed by 478
Abstract
As coal’s share in primary energy consumption wanes, the annual increase in abandoned coal mines presents escalating safety and environmental concerns. This paper delves into cutting-edge models and attributes of integrating pumped storage hydropower systems with subterranean reservoirs and advanced wastewater treatment facilities [...] Read more.
As coal’s share in primary energy consumption wanes, the annual increase in abandoned coal mines presents escalating safety and environmental concerns. This paper delves into cutting-edge models and attributes of integrating pumped storage hydropower systems with subterranean reservoirs and advanced wastewater treatment facilities within these decommissioned mines. By utilizing the expansive underground voids left by coal extraction, this method aims to achieve multifaceted objectives: efficient energy storage and generation, reclamation of mine water, and treatment of urban sewage. This research enhances the development and deployment of pumped storage technology in the context of abandoned mines, demonstrating its potential for fostering sustainable energy solutions and optimizing urban infrastructure. This study not only facilitates the progressive transformation and modernization of energy cities but also provides crucial insights for future advances in ecological mining practices, energy efficiency, emission mitigation, and green development strategies in the mining industry. Full article
Show Figures

Figure 1

15 pages, 2052 KiB  
Article
Assessment of Potential Environmental Risks Posed by Soils of a Deactivated Coal Mining Area in Northern Portugal—Impact of Arsenic and Antimony
by Marcus Monteiro, Patrícia Santos, Jorge Espinha Marques, Deolinda Flores, Manuel Azenha and José A. Ribeiro
Pollutants 2025, 5(2), 15; https://doi.org/10.3390/pollutants5020015 - 18 Jun 2025
Viewed by 824
Abstract
Active and abandoned mining sites are significant sources of heavy metals and metalloid pollution, leading to serious environmental issues. This study assessed the environmental risks posed by potentially toxic elements (PTEs), specifically arsenic (As) and antimony (Sb), in the Technosols (mining residues) of [...] Read more.
Active and abandoned mining sites are significant sources of heavy metals and metalloid pollution, leading to serious environmental issues. This study assessed the environmental risks posed by potentially toxic elements (PTEs), specifically arsenic (As) and antimony (Sb), in the Technosols (mining residues) of the former Pejão coal mine complex in Northern Portugal, a site impacted by forest wildfires in October 2017 that triggered underground combustion within the waste heaps. Our methodology involved determining the “pseudo-total” concentrations of As and Sb in the collected heap samples using microwave digestion with aqua regia (ISO 12914), followed by analysis using hydride generation-atomic absorption spectroscopy (HG-AAS). The concentrations of As an Sb ranging from 31.0 to 68.6 mg kg−1 and 4.8 to 8.3 mg kg−1, respectively, were found to be above the European background values reported in project FOREGS (11.6 mg kg−1 for As and 1.04 mg kg−1 for Sb) and Portuguese Environment Agency (APA) reference values for agricultural soils (11 mg kg−1 for As and 7.5 mg kg−1 for Sb), indicating significant enrichment of these PTEs. Based on average Igeo values, As contamination overall was classified as “unpolluted to moderately polluted” while Sb contamination was classified as “moderately polluted” in the waste pile samples and “unpolluted to moderately polluted” in the downhill soil samples. However, total PTE content alone is insufficient for a comprehensive environmental risk assessment. Therefore, further studies on As and Sb fractionation and speciation were conducted using the Shiowatana sequential extraction procedure (SEP). The results showed that As and Sb levels in the more mobile fractions were not significant. This suggests that the enrichment in the burned (BCW) and unburned (UCW) coal waste areas of the mine is likely due to the stockpiling of lithic fragments, primarily coals hosting arsenian pyrites and stibnite which largely traps these elements within its crystalline structure. The observed enrichment in downhill soils (DS) is attributed to mechanical weathering, rock fragment erosion, and transport processes. Given the strong association of these elements with solid phases, the risk of leaching into surface waters and aquifers is considered low. This work underscores the importance of a holistic approach to environmental risk assessment at former mining sites, contributing to the development of sustainable remediation strategies for long-term environmental protection. Full article
(This article belongs to the Section Soil Pollution)
Show Figures

Figure 1

28 pages, 6433 KiB  
Article
Quantifying Thermal Spatiotemporal Signatures and Identifying Hidden Mining-Induced Fissures with Various Burial Depths via UAV Infrared Thermometry
by Duo Xu, Yi-Xin Zhao, Kang-Ning Zhang, Chun-Wei Ling and Peng Li
Remote Sens. 2025, 17(12), 1992; https://doi.org/10.3390/rs17121992 - 9 Jun 2025
Viewed by 270
Abstract
Hidden mining-induced fissures connected to a goaf may induce spontaneous combustion of abandoned coal, threatening safe coal mining operation and ecological and environmental protection. To identify hidden mining-induced fissures rapidly, accurately and in a timely manner, a novel method involving infrared remote sensing [...] Read more.
Hidden mining-induced fissures connected to a goaf may induce spontaneous combustion of abandoned coal, threatening safe coal mining operation and ecological and environmental protection. To identify hidden mining-induced fissures rapidly, accurately and in a timely manner, a novel method involving infrared remote sensing via an unmanned aerial vehicle (UAV) was proposed. Hidden mining-induced fissures above working face No. 52605 of the Daliuta coal mine were continuously monitored using this method. Field experiments revealed that hidden mining-induced fissures could be effectively identified via infrared technology. The diurnal variation in the hidden mining-induced fissure temperature was cosinusoidal. The temperature of the hidden mining-induced fissures was highly correlated with burial depth, and the burial depths of the identified hidden mining-induced fissures differed at various times. The temperature differences among hidden mining-induced fissures, aeolian sands and vegetation varied with time and burial depth. The temperature difference variation between in situ hidden mining-induced fissures and aeolian sand matches that between hidden mining-induced fissures at a 20 cm burial depth and sand. In situ hidden mining-induced fissures could be identified from 1:00 to 5:00 a.m. and from 11:00 a.m. to 7:00 p.m. under the studied conditions. Full article
Show Figures

Figure 1

12 pages, 3536 KiB  
Article
Selected Meteorological Factors Influencing Gas Emissions from an Abandoned Coal Mine Shaft—Results of In Situ Measurements
by Paweł Wrona, Zenon Różański, Grzegorz Pach, Adam P. Niewiadomski, Małgorzata Markowska, Aleksander Król, Małgorzata Król and Andrzej Chmiela
Sustainability 2025, 17(9), 3875; https://doi.org/10.3390/su17093875 - 25 Apr 2025
Viewed by 392
Abstract
With climate change, more intense weather events are observed, including pressure drops associated with the arrival of atmospheric fronts. These pressure drops are the primary cause of gas emissions from closed mines to the surface, with inactive mine shafts serving as the most [...] Read more.
With climate change, more intense weather events are observed, including pressure drops associated with the arrival of atmospheric fronts. These pressure drops are the primary cause of gas emissions from closed mines to the surface, with inactive mine shafts serving as the most likely emission pathways. The most significant emitted gases are carbon dioxide and methane, posing a dual challenge: greenhouse gas emissions and gas-related hazards. This study analyses changes in gas emission intensity in response to short-term (hourly) pressure fluctuations. Additionally, it presents the results of gas emission measurements from an inactive shaft, considering the impact of temperature differences between the air and emitted gases. The findings indicate that gas emissions are subject to inertia, which is crucial for gas monitoring around mine shafts, as emissions may still occur in the early stages of a pressure increase. Furthermore, the results show that temperature differences between the atmosphere and emitted gases could have a major influence on the process. Full article
(This article belongs to the Topic Mining Safety and Sustainability, 2nd Volume)
Show Figures

Figure 1

14 pages, 2718 KiB  
Article
Mining-Influenced Water from the Abandoned Hausham Colliery in Southern Germany—A Case of Unmonitored Natural Attenuation
by Sylke Hilberg, Nicola Yousefi and Thomas Rinder
Water 2025, 17(9), 1253; https://doi.org/10.3390/w17091253 - 23 Apr 2025
Viewed by 477
Abstract
Coal mining in Upper Bavaria ended in the 1960s and the mines were flooded. This study investigates the mining-influenced water and its environmental implications in the Hausham Mine, one of many unmonitored coal mines in the region and along the northern edge of [...] Read more.
Coal mining in Upper Bavaria ended in the 1960s and the mines were flooded. This study investigates the mining-influenced water and its environmental implications in the Hausham Mine, one of many unmonitored coal mines in the region and along the northern edge of the Molasse zone in Austria, Germany and Switzerland. Water and solid samples were collected in the vicinity of the discharge area within a waste rock pile and downstream of a nearby lake. The samples were subjected to chemical and isotopic analysis, with a focus on the potential for natural attenuation. The mine waste discharge has high initial concentrations of calcium, sulfate, and iron, and elevated concentrations of nickel, zinc, and strontium. These element concentrations are significantly reduced along the flow path so that the water is environmentally safe for discharge into the Loidlsee. The reduced contaminant levels are related to the formation of secondary iron precipitates and associated sorption processes, the formation of secondary calcium carbonates, and mixing with another groundwater source. The results indicate that the carbonate-dominated sediments of the Molasse zone contribute substantially to the natural remediation of a potential environmental problem. Full article
Show Figures

Figure 1

17 pages, 9448 KiB  
Article
Analysis of the Quality of Typical Acidic Groundwater of the Guangwang Mining Area and Its Associated Human Health Risks
by Guo Liu, Man Gao, Mingtan Zhu, Shuang Ren and Jiajun Fan
Sustainability 2025, 17(6), 2677; https://doi.org/10.3390/su17062677 - 18 Mar 2025
Viewed by 338
Abstract
This study determined the hydro-chemical properties of groundwater in a typical mining area and its associated human health risks, focusing on the Guangwang mining area. Groundwater samples were analyzed for toxic metals, after which analysis of principal components, the entropy-weighted water quality index, [...] Read more.
This study determined the hydro-chemical properties of groundwater in a typical mining area and its associated human health risks, focusing on the Guangwang mining area. Groundwater samples were analyzed for toxic metals, after which analysis of principal components, the entropy-weighted water quality index, and Spearman analysis of correlation were applied to the collected data. The Environmental Protection Agency of the United States’s health hazard appraisal was utilized to assess the hazards of toxic metals in the local water supply to the health of both grownups and juveniles. HCO3-Na and SO4⋅Cl-Ca⋅Mg were found to be the predominant groundwater hydro-chemical types. The eastern section of the area of study showed the greatest average total dissolved solids (16,347.00 mg/L) and SO42− (8980.00 mg/L) levels. It was determined that the groundwater hydro-chemical type was Ca-HCO3 and that limestone leeching and the evaporative level in the coal seam aquifer were the predominant factors regulating groundwater hydrochemistry. Six of the ten assessed metals exceeded the World Health Organization’s safe water for drinking standards, with particularly high Al (66.97 mg/L) and Cd (194.53 μg/L). Spearman correlation analysis showed significant correlations between Mn, Al, Cu, and Zn, which could be attributed to bauxite minerals associated with the coal mine. Release of metal ions was attributed to the oxidation of metal sulfide minerals, which is driven by mining-induced water–rock interaction. The intake of water for drinking was shown to be the predominant route of hazard to human health. The hazard index decreased from east to west due to the level of abandoned coal mines in the eastern region, along with well-developed fissures. The total carcinogenic hazard for grownups exceeded that of juveniles due to the greater quantity of water for drinking consumed and higher surface area of skin amongst grownups. The results can guide groundwater pollution regulation activities in mining areas to minimize potential hazards of groundwater quality to the health of humans. Full article
Show Figures

Figure 1

17 pages, 3657 KiB  
Article
Influence of Miscanthus floridulus on Heavy Metal Distribution and Phytoremediation in Coal Gangue Dump Soils: Implications for Ecological Risk Mitigation
by Jiaolong Wang, Yan Jiang, Yuanying Peng, Xiaoyong Chen, Wende Yan, Xiaocui Liang, Qian Wu and Jingjie Fang
Plants 2025, 14(6), 836; https://doi.org/10.3390/plants14060836 - 7 Mar 2025
Cited by 1 | Viewed by 755
Abstract
Coal gangue dumps, a byproduct of coal mining, contribute significantly to heavy metal contamination, impacting soil and water quality. In order to assess the levels of heavy metal contamination in soils at different stages of abandonment, this study investigated the role of Miscanthus [...] Read more.
Coal gangue dumps, a byproduct of coal mining, contribute significantly to heavy metal contamination, impacting soil and water quality. In order to assess the levels of heavy metal contamination in soils at different stages of abandonment, this study investigated the role of Miscanthus floridulus (M. floridulus) in the spatial distribution and remediation of six heavy metals (Cd, Cr, Mn, Ni, Cu, and Pb) in coal gangue dump soils abandoned for 0, 8, and 12 years in Pingxiang City, Jiangxi Province, China. Fieldwork was conducted at three sites operated by the Pingxiang Mining Group: Anyuan (active, barren), Gaokeng (8 years, natural vegetation), and Qingshan (12 years, partially remediated). Anyuan remains largely barren, while Gaokeng supports natural vegetation without formal remediation. In contrast, Qingshan supports diverse plant species, including M. floridulus, due to partial remediation. Using a randomized design, root exudates, heavy metal concentrations, and soil properties were analyzed. The results showed that Cd poses the highest ecological risk, with concentrations of 64.56 mg kg−1 at the active site, 25.57 mg kg−1 at the 8-year site, and 39.13 mg kg−1 at the 12-year site. Cu and Pb showed accumulation, while Cr and Mn decreased over time. Root exudates from M. floridulus enhanced metal bioavailability, influencing Cd, Cr, and Ni concentrations. These findings highlight the importance of rhizosphere processes in metal mobility and inform sustainable remediation strategies for post-mining landscapes. Full article
Show Figures

Figure 1

18 pages, 4172 KiB  
Article
Natural Resource Management in Depopulated Regions of Serbia—Birth of Rural Brownfields or Final Abandonment
by Marko Joksimović
Land 2025, 14(2), 403; https://doi.org/10.3390/land14020403 - 15 Feb 2025
Cited by 1 | Viewed by 1109
Abstract
Numerous research studies have long established the causes and consequences of the depopulation of certain regions in Europe, but it seems that there are no systematic approaches to implementing the policy of managing abandoned areas. Following years of demographic decline in settlements, the [...] Read more.
Numerous research studies have long established the causes and consequences of the depopulation of certain regions in Europe, but it seems that there are no systematic approaches to implementing the policy of managing abandoned areas. Following years of demographic decline in settlements, the 2022 census revealed depopulated clusters in Serbia—regions with 20 or fewer residents or even no inhabitants at all. The areas of depopulated settlements are growing territorially from the south towards the north. This paper adopts a broader interpretation of brownfield land, defining it as any previously used land that is no longer employed for commercial purposes, serving as the theoretical foundation. Although they seem economically hopeless, some depopulated clusters have become the subject of research for the exploitation of mineral resources such as gold, copper, zinc, uranium, lithium and coal. The main problem is that depopulated clusters have acquired an ecological stability that would be disrupted by the opening of mines and massive construction. The changes in land use were analyzed using time series data and a formal database of natural resources from these communities. The primary methodological framework was based on the correlation between population size, utilized areas, and the ecological stability coefficient. This study aimed to explore the relationship between the proportion of arable land within a spatial unit and its depopulation rate while also examining how arable land and mineral resources could influence the potential revitalization of rural wastelands in Serbia’s depopulated areas. The primary findings indicate a significant correlation between population decline and changes in the natural environment of abandoned clusters, as well as the significant potential of clusters as rural brownfields. While it is natural to continue with ecological and green space projects, the current liberal and centralized mining management policy can create major problems for the remaining population. Full article
Show Figures

Figure 1

20 pages, 4749 KiB  
Review
Methane Emissions from Mining in the European Union
by Magdalena Zięba and Adam Smoliński
Energies 2025, 18(4), 791; https://doi.org/10.3390/en18040791 - 8 Feb 2025
Viewed by 689
Abstract
Methane emissions from coal mining remain a significant environmental challenge in the European Union, particularly in the context of climate change commitments and the ongoing transformation of the energy sector. This article analyses methane emissions from surface and underground coal mining, distinguishing between [...] Read more.
Methane emissions from coal mining remain a significant environmental challenge in the European Union, particularly in the context of climate change commitments and the ongoing transformation of the energy sector. This article analyses methane emissions from surface and underground coal mining, distinguishing between emissions from mining activities, abandoned underground mines, and post-mining activities. A key aspect of the analysis is the methane emissions per 1000 tonnes of lignite and hard coal mined, which allows a comparison of emission intensities between different mining methods. Between 2009 and 2021, methane emissions from coal mining in the EU decrease, with reductions of 2436 kt CO2 eq. (87 kt CH4) from surface mining and 16,518 kt CO2 eq. (590 kt CH4) from underground mining. However, total methane emissions in 2021 still amount to 25,414 kt CO2 eq. (908 kt CH4), with underground mining contributing 84.7% of the emissions. Discrepancies in national emissions reporting and the lack of transparent data on methane emissions from imported coal make accurate assessments difficult. Strengthening international cooperation, improving data transparency, and exploring methane recovery for energy use are essential steps towards achieving the EU’s climate change objectives. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

Back to TopTop