Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (353)

Search Parameters:
Keywords = ab initio simulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5743 KiB  
Article
Effect of Grain Boundary Characteristics on Mechanical Properties and Irradiation Response in 3C-SiC: A Molecular Dynamics Simulation Study
by Wenying Liu, Fugen Deng, Jiajie Yu, Lin Chen, Yuyang Zhou, Yulu Zhou and Yifang Ouyang
Materials 2025, 18(15), 3545; https://doi.org/10.3390/ma18153545 - 29 Jul 2025
Viewed by 187
Abstract
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. [...] Read more.
Molecular dynamics (MD) simulations have been performed on the energetics, mechanical properties, and irradiation response of seventy-three 3C-SiC symmetric tilt grain boundaries (STGBs) with three tilt axes (<100>, <110> and <111>). The effect of GB characteristics on the STGB properties has been investigated. The GB energy is positively and linearly correlated with the excess volume, but the linearity in SiC is not as good as in metals, which stems from the inhomogeneous structural relaxation near GBs induced by orientation-sensitive covalent bonding. For <110>STGBs, the shear strength exhibits symmetry with respect to the misorientation angle of 90°, which is consistent with ab initio calculations for Al in similar shear orientations. Cascades are performed with 8 keV silicon as the primary knock-on atom (PKA). No direct correlation is found between the sink efficiency of GBs for defects and GB characteristics, which comes from the complexity of the diatomic system during the recovery phase. For GBs with smaller values of Σ, the GBs exhibit a weaker blocking effect on the penetration of irradiated defects, resulting in a lower number of defects in GBs and a higher number of total surviving defects. In particular, it is seen that the percentage decrease in tensile strength after irradiation is positively correlated with the Σ value. Taken together, these results help to elucidate the impact of GB behavior on the mechanical properties of as well as the primary irradiation damage in SiC and provide a reference for creating improved materials through GB engineering. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

20 pages, 2267 KiB  
Review
Multiscale Simulation of Nanowear-Resistant Coatings
by Xiaoming Liu, Kun Gao, Peng Chen, Lijun Yin and Jing Yang
Materials 2025, 18(14), 3334; https://doi.org/10.3390/ma18143334 - 16 Jul 2025
Viewed by 387
Abstract
Nanowear-resistant coatings are critical for extending the service life of mechanical components, yet their performance optimization remains challenging due to the complex interplay between atomic-scale defects and macroscopic wear behavior. While experimental characterization struggles to resolve transient interfacial phenomena, multiscale simulations, integrating ab [...] Read more.
Nanowear-resistant coatings are critical for extending the service life of mechanical components, yet their performance optimization remains challenging due to the complex interplay between atomic-scale defects and macroscopic wear behavior. While experimental characterization struggles to resolve transient interfacial phenomena, multiscale simulations, integrating ab initio calculations, molecular dynamics, and continuum mechanics, have emerged as a powerful tool to decode structure–property relationships. This review systematically compares mainstream computational methods and analyzes their coupling strategies. Through case studies on metal alloy nanocoatings, we demonstrate how machine learning-accelerated simulations enable the targeted design of layered architectures with 30% improved wear resistance. Finally, we propose a protocol combining high-throughput simulation and topology optimization to guide future coating development. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

30 pages, 11919 KiB  
Article
Unveiling Vibrational Couplings in Model Peptides in Solution by a Theoretical Approach
by Federico Coppola, Fulvio Perrella, Alessio Petrone, Greta Donati, Luciana Marinelli and Nadia Rega
Molecules 2025, 30(13), 2854; https://doi.org/10.3390/molecules30132854 - 4 Jul 2025
Viewed by 433
Abstract
Vibrational analysis of peptides in solution and the theoretical determination of the effects of the microenvironment on infrared and Raman spectra are of key importance in many fields of chemical interest. In this work, we present a computational study combining static quantum mechanical [...] Read more.
Vibrational analysis of peptides in solution and the theoretical determination of the effects of the microenvironment on infrared and Raman spectra are of key importance in many fields of chemical interest. In this work, we present a computational study combining static quantum mechanical calculations with ab initio molecular dynamics simulations to investigate the vibrational behavior of three peptide models in both the gas phase and in explicit water, under non-periodic boundary conditions. The vibrational spectra of the main amide bands, namely amide I-III and A, were analyzed using a time–frequency approach based on the wavelet transform, which allows the resolution of transient frequency shifts and mode couplings along the trajectories. This combined approach enabled us to perform a time-resolved vibrational analysis revealing how vibrational frequencies, especially of the C=O and N–H stretching modes, evolve over time due to dynamical microsolvation. These fluctuations modulate vibrational couplings and lead to spectral broadening and frequency shifts that correlate with the local structuring of the solvent. In conclusion, our results highlight how the proposed protocol allows for the direct connection between vibrational modes and local structural changes, providing a link from the spectroscopic observable to the structure, the peptide backbone, and its microenvironment. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

18 pages, 433 KiB  
Article
Controlling the Ionization Dynamics of Argon Induced by Intense Laser Fields: From the Infrared Regime to the Two-Color Configuration
by Soumia Chqondi, Souhaila Chaddou, Ahmad Laghdas and Abdelkader Makhoute
Atoms 2025, 13(7), 63; https://doi.org/10.3390/atoms13070063 - 1 Jul 2025
Viewed by 289
Abstract
The current study presents the results of a methodical investigation into the ionization of rare gas atoms, specifically focusing on argon. In this study, two configurations are examined: ionization via a near-infrared (NIR) laser field alone, and ionization caused by extreme ultraviolet (XUV) [...] Read more.
The current study presents the results of a methodical investigation into the ionization of rare gas atoms, specifically focusing on argon. In this study, two configurations are examined: ionization via a near-infrared (NIR) laser field alone, and ionization caused by extreme ultraviolet (XUV) radiation in the presence of a strong, synchronized NIR pulse. The theoretical investigation is conducted using an ab initio method to solve the time-dependent Schrödinger equation within the single active electron (SAE) approximation. The simulation results show a sequence of above-threshold ionization (ATI) peaks that shift to lower energies with increasing laser intensity. This behavior reflects the onset of the Stark effect, which modifies atomic energy levels and increases the number of photons required for ionization. An examination of the two-color photoionization spectrum, which includes sideband structures and harmonic peaks, shows how the ionization probability is redistributed between the direct path (single XUV photon absorption) and sideband pathways (XUV ± n × IR) as the intensity of the infrared field increases. Quantum interference between continuum states is further revealed by the photoelectron angular distribution, clearly indicating the control of ionization dynamics by the IR field. Full article
Show Figures

Figure 1

22 pages, 3862 KiB  
Article
Composition-Dependent Structural, Phonon, and Thermodynamical Characteristics of Zinc-Blende BeZnO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(13), 3101; https://doi.org/10.3390/ma18133101 - 1 Jul 2025
Viewed by 286
Abstract
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained [...] Read more.
Both ZnO and BeO semiconductors crystallize in the hexagonal wurtzite (wz), cubic rock salt (rs), and zinc-blende (zb) phases, depending upon their growth conditions. Low-dimensional heterostructures ZnO/BexZn1-xO and BexZn1-xO ternary alloy-based devices have recently gained substantial interest to design/improve the operations of highly efficient and flexible nano- and micro-electronics. Attempts are being made to engineer different electronic devices to cover light emission over a wide range of wavelengths to meet the growing industrial needs in photonics, energy harvesting, and biomedical applications. For zb materials, both experimental and theoretical studies of lattice dynamics ωjq have played crucial roles for understanding their optical and electronic properties. Except for zb ZnO, inelastic neutron scattering measurement of ωjq for BeO is still lacking. For the BexZn1-xO ternary alloys, no experimental and/or theoretical studies exist for comprehending their structural, vibrational, and thermodynamical traits (e.g., Debye temperature ΘDT; specific heat CvT). By adopting a realistic rigid-ion model, we have meticulously simulated the results of lattice dynamics, and thermodynamic properties for both the binary zb ZnO, BeO and ternary BexZn1-xO alloys. The theoretical results are compared/contrasted against the limited experimental data and/or ab initio calculations. We strongly feel that the phonon/thermodynamic features reported here will encourage spectroscopists to perform similar measurements and check our theoretical conjectures. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing Processing of Ceramic Materials)
Show Figures

Figure 1

27 pages, 5575 KiB  
Review
Modeling of Chemiresistive Gas Sensors: From Microscopic Reception and Transduction Processes to Macroscopic Sensing Behaviors
by Zhiqiao Gao, Menglei Mao, Jiuwu Ma, Jincheng Han, Hengzhen Feng, Wenzhong Lou, Yixin Wang and Teng Ma
Chemosensors 2025, 13(7), 227; https://doi.org/10.3390/chemosensors13070227 - 22 Jun 2025
Viewed by 654
Abstract
Chemiresistive gas sensors have gained significant attention and have been widely applied in various fields. However, the gap between experimental observations and fundamental sensing mechanisms hinders systematic optimization. Despite the critical role of modeling in explaining atomic-scale interactions and offering predictive insights beyond [...] Read more.
Chemiresistive gas sensors have gained significant attention and have been widely applied in various fields. However, the gap between experimental observations and fundamental sensing mechanisms hinders systematic optimization. Despite the critical role of modeling in explaining atomic-scale interactions and offering predictive insights beyond experiments, existing reviews on chemiresistive gas sensors remain predominantly experimental-centric, with a limited systematic exploration of the modeling approaches. Herein, we present a comprehensive overview of the modeling approaches for chemiresistive gas sensors, focusing on two critical processes: the reception and transduction stages. For the reception process, density functional theory (DFT), molecular dynamics (MD), ab initio molecular dynamics (AIMD), and Monte Carlo (MC) methods were analyzed. DFT quantifies atomic-scale charge transfer, and orbital hybridization, MD/AIMD captures dynamic adsorption kinetics, and MC simulates equilibrium/non-equilibrium behaviors based on statistical mechanics principles. For the transduction process, band-bending-based theoretical models and power-law models elucidate the resistance modulation mechanisms, although their generalizability remains limited. Notably, the finite element method (FEM) has emerged as a powerful tool for full-process modeling by integrating gas diffusion, adsorption, and electronic responses into a unified framework. Future directions highlight the use of multiscale models to bridge microscopic interactions with macroscopic behaviors and the integration of machine learning, accelerating the iterative design of next-generation sensors with superior performance. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors and Humidity Sensors)
Show Figures

Figure 1

16 pages, 3258 KiB  
Article
Breaking the Efficiency–Quality Tradeoff via Temperature–Velocity Co-Optimization: Multiscale Calculations and Experimental Study of Epitaxial Growth of Iridium on MgO(100)
by Yang Wang, Junhao Chen, Shilin Yang and Jiaqi Zhu
Crystals 2025, 15(6), 580; https://doi.org/10.3390/cryst15060580 - 19 Jun 2025
Viewed by 260
Abstract
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the [...] Read more.
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the mechanisms of Volmer–Weber (VW, island growth mode) nucleation at low coverage and Stranski–Krastanov (SK, layer-plus-island growth) transitions driven by interface metallization, stress release, and energy reduction, which facilitates coherent monolayer formation by lowering the energy barrier by ~34%. Molecular dynamics simulations demonstrate that the strategic co-optimization of substrate temperature (Tsub) and deposition rate (Vdep) induces an abrupt cliff-like drop in mosaic spread. Experimental validations confirm that this T-V synergy achieves unprecedented interfacial coherence, whereby AFM roughness reaches 0.34 nm (RMS) and the XRC-FWHM of 0.13° approaches single-crystal benchmarks. Notably, our novel “accelerated heteroepitaxy” protocol reduces growth time without compromising quality, addressing the efficiency–quality paradox in industrial-scale diamond substrate fabrication. These findings establish universal thermal–kinetic design principles applicable to refractory metal/oxide heterostructures for next-generation quantum sensors and high-power electronic devices. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Third Edition)
Show Figures

Figure 1

19 pages, 5063 KiB  
Article
Ab Initio Elucidation of the Nature of the Bonding of Tetrahedral Nitrides (BN, AlN, GaN, and InN), Hexagonal BN, and Graphene
by Pawel Strak, Konrad Sakowski, Pawel Kempisty, Izabella Grzegory, Agata Kaminska and Stanislaw Krukowski
Materials 2025, 18(12), 2875; https://doi.org/10.3390/ma18122875 - 18 Jun 2025
Viewed by 319
Abstract
Recent measurements of the band properties of AlN and GaN by fluorescence yield absorption and soft X-ray emission spectroscopies revealed that their valence band (VB) is composed of two separate subbands. The upper VB subband of GaN is composed of gallium sp and [...] Read more.
Recent measurements of the band properties of AlN and GaN by fluorescence yield absorption and soft X-ray emission spectroscopies revealed that their valence band (VB) is composed of two separate subbands. The upper VB subband of GaN is composed of gallium sp and nitrogen p orbitals; the lower subband consists of metal d and nitrogen s orbitals. These findings were confirmed by extensive ab initio simulations. These results are not consistent with the standard tetrahedrally coordinated semiconductors, which are bonded by sp3-hybridized orbitals of metal and nonmetal atoms. The new analysis techniques and ab initio simulations create a new picture, allowing the calculation of overlap integrals to determine the bond order in these crystals. According to these results, bonding occurs between resonant p-states of nitrogen and sp3-hybridized metal orbitals in tetrahedral nitrides, allowing tetrahedral symmetry to be maintained. A similar resonant bonding mechanism is observed in hexagonal BN, where the p orbitals of nitrogen create three resonant states necessary for maintaining the planar symmetry of the lattice. In addition, nonresonant π-type bonds in BN are created by the overlap of pz orbitals of boron and nitrogen. BN bonding differs from that in graphene, where carbon states are fully sp2-hybridized. Additionally, π-type bonds in graphene have no ionic contributions, which leads to the formation of Dirac states with linear dispersion close to the K point, closing the band gap. Full article
(This article belongs to the Special Issue Ab Initio Modeling of 2D Semiconductors and Semimetals)
Show Figures

Figure 1

16 pages, 2229 KiB  
Article
Investigation of the Effect of Molecules Containing Sulfonamide Moiety Adsorbed on the FAPbI3 Perovskite Surface: A First-Principles Study
by Shiyan Yang, Yu Zhuang, Youbo Dou, Jianjun Wang, Hongwen Zhang, Wenjing Lu, Qiuli Zhang, Xihua Zhang, Yuan Wu and Xianfeng Jiang
Molecules 2025, 30(11), 2463; https://doi.org/10.3390/molecules30112463 - 4 Jun 2025
Viewed by 520
Abstract
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite [...] Read more.
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite surface, aiming to establish a significant positive correlation between the molecular structures and their regulatory effects on the perovskite surface. A systematic comparison was conducted to evaluate the adsorption stability of the three molecules on the two distinct surface terminations. The results show that all three molecules exhibit strong adsorption on the FAPbI3(001) surface, with C2H12N6O4S demonstrating the most favorable binding stability due to its extended frameworks and multiple electron-donating/withdrawing groups. Simpler molecules lacking carbon skeletons exhibit weaker adsorption and less dependence on surface termination. Ab initio molecular dynamics simulations (AIMD) further corroborated the thermal stability of the stable adsorption configurations at elevated temperatures. Electronic structure analysis reveals that molecular adsorption significantly reconstructs the density of states (DOS) on the PbI2-terminated surface, inducing shifts in band-edge states and enhancing energy-level coupling between molecular orbitals and surface states. In contrast, the FAI-terminated surface shows weaker interactions. Charge density difference (CDD) analysis indicates that the molecules form multiple coordination bonds (e.g., Pb–O, Pb–S, and Pb–N) with uncoordinated Pb atoms, facilitated by –SO2–NH2 groups. Bader charge and work function analyses indicate that the PbI2-terminated surface exhibits more pronounced electronic coupling and interfacial charge transfer. The C2H12N6O4S adsorption system demonstrates the most substantial reduction in work function. Optical property calculations show a distinct red-shift in the absorption edge along both the XX and YY directions for all adsorption systems, accompanied by enhanced absorption intensity and broadened spectral range. These findings suggest that sulfonamide-containing molecules, particularly C2H12N6O4S with extended carbon skeletons, can effectively stabilize the perovskite interface, optimize charge transport pathways, and enhance light-harvesting performance. Full article
Show Figures

Figure 1

10 pages, 5002 KiB  
Communication
Computational Investigation of an All-sp3 Hybridized Superstable Carbon Allotrope with Large Band Gap
by Xiaoshi Ju, Kun Bu, Chunxiao Zhang and Yuping Sun
Materials 2025, 18(11), 2533; https://doi.org/10.3390/ma18112533 - 28 May 2025
Viewed by 432
Abstract
Carbon is one of nature’s basic elements, hosting a tremendous number of allotropes benefiting from its capacity to generate sp, sp2, and sp3 hybridized carbon–carbon bonds. The exploration of novel carbon architectures has remained a pivotal [...] Read more.
Carbon is one of nature’s basic elements, hosting a tremendous number of allotropes benefiting from its capacity to generate sp, sp2, and sp3 hybridized carbon–carbon bonds. The exploration of novel carbon architectures has remained a pivotal focus in the fields of condensed matter physics and materials science for an extended period. In this paper, we, by using first-principles calculation, carry on a detailed investigation an an all-sp3 hybridized carbon structure in a 20-atom tetragonal unit cell with P43212 symmetry (D48, space group No. 96), and call it T20 carbon. The equilibrium energy of T20 carbon is −8.881 eV/atom, only 0.137 eV/atom higher than that of diamond, indicating that T20 is a superstable carbon structure. T20 is also a superhard carbon structure with a large Vicker’s hardness about 83.5 GPa. The dynamical stability of T20 was verified by means of phonon band spectrum calculations. Meanwhile, its thermal stability up to 1000 K was verified via ab initio molecular dynamics simulations. T20 is an indirect band-gap insulator with approximately 5.80 eV of a band gap. This value is obviously greater than the value in the diamond (5.36 eV). Moreover, the simulated X-ray diffraction pattern of T20 displays a remarkable match with the experimental data found in the milled fullerene soot, evidencing that T20 may be a potential modification discovered in this experimental work. Our work has given a systematical understanding on an all-sp3 hybridized superstable and superhard carbon allotrope with large band gap and provided a very competitive explanation for previous experimental data, which will also provide guidance for upcoming studies in theory and experiment. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

22 pages, 5731 KiB  
Article
Ab Initio Study of the Structures, Bonding Interactions, and Thermal Stability of the Li-Decorated 2D Biphenylene Sheet
by María Begoña Torres, Alexandre Lebon, Luis Enrique González, Luis Javier Gallego and Andrés Vega
Nanomaterials 2025, 15(9), 700; https://doi.org/10.3390/nano15090700 - 7 May 2025
Viewed by 857
Abstract
We performed an extensive study on the most stable structures, the electronic properties, and the thermal stability of the 2D biphenylene sheet decorated with Li atoms. Our structural results show that the Li storage capacity of biphenylene is much higher than that recently [...] Read more.
We performed an extensive study on the most stable structures, the electronic properties, and the thermal stability of the 2D biphenylene sheet decorated with Li atoms. Our structural results show that the Li storage capacity of biphenylene is much higher than that recently reported, which increases the interest in this 2D material as a promising anode material for Li-ion batteries, although Li diffusion is not expected at room temperature. Moreover, we found striking phenomena that had not been detected yet, such as the formation of Li zigzag wires and metallic Li monolayers on the biphenylene sheet beyond a certain coverage threshold. In our calculations, we use high-level density-functional theory, quantum chemical topology analysis, and ab initio molecular dynamics simulations. In particular, the latter methodology allows for confirming the stability of the predicted Li-decorated biphenylene structures at room-temperature conditions. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

29 pages, 7563 KiB  
Article
Influence of Fluorine Doping on Rutile TiO2 Nanostructures for Visible-Light-Driven Photocatalysis: A DFT + U Study
by Fikadu Takele Geldasa and Francis Birhanu Dejene
Nanomaterials 2025, 15(9), 694; https://doi.org/10.3390/nano15090694 - 5 May 2025
Cited by 2 | Viewed by 540
Abstract
In this work, a density functional theory (DFT) with Hubbard correction (U) approaches implemented through the Quantum ESPRESSO code is utilized to investigate the effects of fluorine (F) doping on the structural, electronic, and optical properties of rutile TiO2. Rutile TiO [...] Read more.
In this work, a density functional theory (DFT) with Hubbard correction (U) approaches implemented through the Quantum ESPRESSO code is utilized to investigate the effects of fluorine (F) doping on the structural, electronic, and optical properties of rutile TiO2. Rutile TiO2 is a promising material for renewable energy production and environmental remediation, but its wide bandgap limits its application to the UV spectrum, which is narrow and expensive. To extend the absorption edge of TiO2 into the visible light range, different concentrations of F were substituted at oxygen atom sites. The structural analysis reveals that the lattice constants and bond lengths of TiO2 increased with F concentrations. Ab initio molecular dynamics simulations (AIMD) at 1000 K confirm that both pristine and F-doped rutile TiO2 maintains structural integrity, indicating excellent thermal stability essential for high-temperature photocatalytic applications. Band structure calculations show that pure rutile TiO2 has a bandgap of 3.0 eV, which increases as the F concentration rises, with the 0.25 F-doped structures exhibiting an even larger bandgap, preventing it from responding to visible light. The absorption edge of doped TiO2 shifts towards the visible region, as shown by the imaginary part of the dielectric function. This research provides valuable insights for experimentalists, helping them understand how varying F concentrations influence the properties of rutile TiO2 for photocatalytic applications. Full article
Show Figures

Figure 1

16 pages, 1805 KiB  
Article
Diversity of Molecular–Network Conformations in the Over-Stoichiometric Arsenoselenides Covering a Full Thioarsenides Row As4Sen (0 ≤ n ≤ 6)
by Oleh Shpotyuk, Malgorzata Hyla, Zdenka Lukáčová Bujňáková, Yaroslav Shpotyuk and Vitaliy Boyko
Molecules 2025, 30(9), 1963; https://doi.org/10.3390/molecules30091963 - 29 Apr 2025
Viewed by 396
Abstract
Molecular network conformations in the over-stoichiometric arsenoselenides of canonical AsxSe100−x system (40 ≤ x ≤ 100) covering a full row of thioarsenide-type As4Sen entities (0 ≤ n ≤ 6) are analyzed with ab initio quantum-chemical modeling employing [...] Read more.
Molecular network conformations in the over-stoichiometric arsenoselenides of canonical AsxSe100−x system (40 ≤ x ≤ 100) covering a full row of thioarsenide-type As4Sen entities (0 ≤ n ≤ 6) are analyzed with ab initio quantum-chemical modeling employing cluster-simulation code CINCA. Native (melt-quenching-derived) and nanostructurization-driven (activated by nanomilling) polymorphic and polyamorphic transitions initiated by decomposition of the thioarsenide-type As4Sen cage molecules and incorporation of their remnants into a newly polymerized arsenoselenide network are identified on the developed map of molecular network clustering in a binary As-Se system. Within this map, compositional counter lines corresponding to preferential molecular or network-forming tendencies in the examined arsenoselenides are determined, explaining that network-crystalline conformations prevail in the boundary compositions corresponding to n = 6 and n = 0, while molecular-crystalline ones dominate inside the rows corresponding to n = 4 and n = 3. A set of primary and secondary equilibrium lines is introduced in the developed clustering map to account for inter-phase equilibria between the most favorable (regular) and competitive (irregular) thioarsenide phases. Straightforward interpretation of decomposition reactions accompanying induced crystallization and amorphization (reamorphization) in the arsenoselenides is achieved, employing disproportionality analysis of thioarsenide-type molecular network conformations within the reconstructed clustering map. The preference of network clustering at the boundaries of the As4Sen row (at n = 6 and n = 0) disturbs inter-phase equilibria inside this row, leading to unexpected anomalies, such as absence of stable tetra-arsenic triselenide As4Se5 molecular-crystalline species; polyamorphism in mechanoactivated As4Sen alloys (2 ≤ n ≤ 6); breakdown in the glass-forming ability of melt-quenching-derived arsenoselenides in the vicinity of tetra-arsenic biselenide As4Se2 composition; plastically and normally crystalline polymorphism in tetra-arsenic triselenide As4Se3-based thioarsenides, and so on. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 3nd Edition)
Show Figures

Graphical abstract

13 pages, 7137 KiB  
Communication
Co-Doping Effects on the Electronic and Optical Properties of β-Ga2O3: A First-Principles Investigation
by Ya-Rui Wang and Su-Zhen Luan
Materials 2025, 18(9), 2005; https://doi.org/10.3390/ma18092005 - 28 Apr 2025
Viewed by 595
Abstract
To meet the demands for functional layers in inverted flexible perovskite solar cells, high-performance formamidinium-based perovskite solar cells, and high-performance photodetectors in future applications, it is crucial to appropriately reduce the bandgap of third-generation wide-bandgap semiconductor materials. In this study, we first optimized [...] Read more.
To meet the demands for functional layers in inverted flexible perovskite solar cells, high-performance formamidinium-based perovskite solar cells, and high-performance photodetectors in future applications, it is crucial to appropriately reduce the bandgap of third-generation wide-bandgap semiconductor materials. In this study, we first optimized doping sites through Ag-Cl and Ag-S configurations to establish stable substitution patterns, followed by density functional theory (DFT) calculations using the Generalized Gradient Approximation with the Perdew–Burke–Ernzerhof (GGA-PBE) functional, implemented in the Vienna Ab initio Simulation Package (VASP). A plane-wave basis set with a cutoff energy of 450 eV and a 3 × 4 × 3 Γ-centered k-mesh were adopted to investigate the effects of Mg-Cl, Mg-S, Zn-Cl, and Zn-S co-doping on the structural stability, electronic properties, and optical characteristics of β-Ga2O3. Based on structural symmetry, six doping sites were considered, with Ag-S/Cl systems revealing preferential occupation at octahedral Ga(1) sites through site formation energy analysis. The results demonstrate that Mg-Cl, Mg-S, Zn-Cl, and Zn-S co-doped systems exhibit thermodynamic stability. The bandgap of pristine β-Ga2O3 was calculated to be 2.08 eV. Notably, Zn-Cl co-doping achieves the lowest bandgap reduction to 1.81 eV. Importantly, all co-doping configurations, including Mg-Cl, Mg-S, Zn-Cl, and Zn-S, effectively reduce the bandgap of β-Ga2O3. Furthermore, the co-doped systems show enhanced visible light absorption (30% increase at 500 nm) and improved optical storage performance compared to the pristine material. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

25 pages, 8500 KiB  
Article
Further Insight in the High Selectivity of Pb2+ Removal over Cd2+ in Natural and Dealuminated Rich-Clinoptilolite
by Yaneth Stephanie Durán-Avendaño, Norge Cruz Hernández, A. Rabdel Ruiz-Salvador and Mohamed Abatal
Int. J. Mol. Sci. 2025, 26(9), 4154; https://doi.org/10.3390/ijms26094154 - 27 Apr 2025
Viewed by 420
Abstract
This research aims to understand the experimental results on the high selectivity of Pb2+ removal over Cd2+ in natural and dealuminated rich-clinoptilolite. For this purpose, we have considered the results of experimental and Density Functional Theory (DFT)-based simulated annealing (SA) on [...] Read more.
This research aims to understand the experimental results on the high selectivity of Pb2+ removal over Cd2+ in natural and dealuminated rich-clinoptilolite. For this purpose, we have considered the results of experimental and Density Functional Theory (DFT)-based simulated annealing (SA) on sorption of Pb2+ and Cd2+ from aqueous solution. The dealumination process of natural clinoptilolite (Nat-CLI) was done by H2SO4 solutions at different concentrations (0.1–1.0 M). The results show that the maximum sorption capacity (q,max) of Pb2+ and Cd2+ varied from 224.554 × 10−3 to 53.827 × 10−3 meq/g, and between 39.044 × 10−3 to 20.529 × 10−3 meq/g, respectively, when the values of Si/Al ratio change from 4.36 to 9.50. From a theoretical point of view, the global minimum energies of natural and dealuminated clinoptilolites before and after sorption of Pb2+ and Cd2+ were calculated by an SA method, where heating-cooling cycles were modeled by ab initio Molecular Dynamics followed by energy minimization. The theoretical results confirmed that for all Si/Al ratios, the sorption of Pb2+ and Cd2+ takes place, and for dealuminated systems, the exchange energy outcomes are more favorable for the Pb2+ cations. Since such energy differences are very small, it is not explained from a thermodynamic point of view. On the other hand, it could be understood from a kinetic perspective. In this way, we set that the atomic structural properties of the zeolite modify the first hydration coordination sphere of metal cations. Full article
(This article belongs to the Special Issue Molecular Modeling: Latest Advances and Applications)
Show Figures

Graphical abstract

Back to TopTop