Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = Zrt- and Irt-like protein transporter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 1726 KB  
Review
Comprehensive Roles of ZIP and ZnT Zinc Transporters in Metabolic Inflammation
by Susmita Barman, Seetur R. Pradeep and Krishnapura Srinivasan
Targets 2026, 4(1), 5; https://doi.org/10.3390/targets4010005 - 27 Jan 2026
Viewed by 174
Abstract
Zinc homeostasis is fundamental to metabolic health, orchestrated by the coordinated actions of two major zinc transporter families: ZIP (Zrt- and Irt-like proteins) and ZnT (zinc transporters). ZIP transporters facilitate zinc influx into the cytosol from the extracellular space or from the lumen [...] Read more.
Zinc homeostasis is fundamental to metabolic health, orchestrated by the coordinated actions of two major zinc transporter families: ZIP (Zrt- and Irt-like proteins) and ZnT (zinc transporters). ZIP transporters facilitate zinc influx into the cytosol from the extracellular space or from the lumen of intracellular organelles, whereas ZnT transporters control zinc efflux from the cytosol to the extracellular space or facilitate its sequestration into intracellular vesicles and organelles, concurrently harboring the meticulous intracellular zinc homeostasis. This equilibrium is essential for all critical functions like cellular response, metabolic control, and immune pathway alteration. Disruption of this homeostasis is a driver of different pathological alterations like metabolic inflammation, a chronic low-grade inflammatory state underlying obesity; type 2 diabetes; and nonalcoholic fatty liver disease. Recent studies revealed that ZIP and ZnT transporters dynamically regulate metabolic and inflammatory cues, with their tissue-specific expression varying by tissue and acclimating to different physiological and pathological conditions. Recent advanced research in molecular and genetic understanding has helped to deepen our knowledge of the interplay of activity between ZIP and ZnT transporters and their crosstalk in metabolic tissues, underscoring the potential therapeutic prospect for restoring zinc balance and ameliorating metabolic inflammation. This review provides a comprehensive overview that covers the function, regulation, and interactive crosstalk of ZIP and ZnT zinc transporters in metabolic tissues and their pathological conditions. Full article
Show Figures

Graphical abstract

22 pages, 1292 KB  
Review
Modulation of Adverse Health Effects of Environmental Cadmium Exposure by Zinc and Its Transporters
by Ana Cirovic, Aleksandar Cirovic, Supabhorn Yimthiang, David A. Vesey and Soisungwan Satarug
Biomolecules 2024, 14(6), 650; https://doi.org/10.3390/biom14060650 - 31 May 2024
Cited by 10 | Viewed by 5167
Abstract
Zinc (Zn) is the second most abundant metal in the human body and is essential for the function of 10% of all proteins. As metals cannot be synthesized or degraded, they must be assimilated from the diet by specialized transport proteins, which unfortunately [...] Read more.
Zinc (Zn) is the second most abundant metal in the human body and is essential for the function of 10% of all proteins. As metals cannot be synthesized or degraded, they must be assimilated from the diet by specialized transport proteins, which unfortunately also provide an entry route for the toxic metal pollutant cadmium (Cd). The intestinal absorption of Zn depends on the composition of food that is consumed, firstly the amount of Zn itself and then the quantity of other food constituents such as phytate, protein, and calcium (Ca). In cells, Zn is involved in the regulation of intermediary metabolism, gene expression, cell growth, differentiation, apoptosis, and antioxidant defense mechanisms. The cellular influx, efflux, subcellular compartmentalization, and trafficking of Zn are coordinated by transporter proteins, solute-linked carriers 30A and 39A (SLC30A and SLC39A), known as the ZnT and Zrt/Irt-like protein (ZIP). Because of its chemical similarity with Zn and Ca, Cd disrupts the physiological functions of both. The concurrent induction of a Zn efflux transporter ZnT1 (SLC30A1) and metallothionein by Cd disrupts the homeostasis and reduces the bioavailability of Zn. The present review highlights the increased mortality and the severity of various diseases among Cd-exposed persons and the roles of Zn and other transport proteins in the manifestation of Cd cytotoxicity. Special emphasis is given to Zn intake levels that may lower the risk of vision loss and bone fracture associated with Cd exposure. The difficult challenge of determining a permissible intake level of Cd is discussed in relation to the recommended dietary Zn intake levels. Full article
(This article belongs to the Special Issue Zinc in Health and Disease Conditions: 2nd Edition)
Show Figures

Figure 1

19 pages, 5348 KB  
Article
Pan-Genome-Wide Identification and Transcriptome-Wide Analysis of ZIP Genes in Cucumber
by Zimo Wang, Mengmeng Yin, Jing Han, Xuehua Wang, Jingshu Chang, Zhonghai Ren and Lina Wang
Agriculture 2024, 14(1), 133; https://doi.org/10.3390/agriculture14010133 - 16 Jan 2024
Cited by 2 | Viewed by 2754
Abstract
The ZRT/IRT-like proteins (ZIPs) play critical roles in the absorption, transport, and intracellular balance of metal ions essential for various physiological processes in plants. However, little is known about the pan-genomic characteristics and properties of ZIP genes in cucumber (Cucumis sativus L.). [...] Read more.
The ZRT/IRT-like proteins (ZIPs) play critical roles in the absorption, transport, and intracellular balance of metal ions essential for various physiological processes in plants. However, little is known about the pan-genomic characteristics and properties of ZIP genes in cucumber (Cucumis sativus L.). In this study, we identified 10 CsZIP genes from the pan-genome of 13 C. sativus accessions. Among them, only CsZIP10 showed no variation in protein sequence length. We analyzed the gene structure, conserved domains, promoter cis-elements, and phylogenetic relationships of these 10 CsZIP genes derived from “9930”. Based on phylogenetic analysis, the CsZIP genes were classified into three branches. Amino acid sequence comparison revealed the presence of conserved histidine residues in the ZIP proteins. Analysis of promoter cis-elements showed that most promoters contained elements responsive to plant hormones. Expression profiling in different tissues showed that most CsZIP genes were expressed at relatively low levels in C. sativus leaves, stems, and tendrils, and CsZIP7 and CsZIP10 were specifically expressed in roots, indicating their potential involvement in the absorption and transport of metal ions. Transcriptomic data indicated that these 10 ZIP genes displayed responses to both downy mildew and powdery mildew, and CsZIP1 was significantly downregulated after both salt and heat treatments. In conclusion, this study deepens our understanding of the ZIP gene family and enhances our knowledge of the biological functions of CsZIP genes in C. sativus. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

20 pages, 6402 KB  
Article
Floral Development on Vitis vinifera Is Associated with MADS-Box Transcription Factors through the Transcriptional Regulation of VviZIP3
by Germán Saavedra Núñez, Enrique González-Villanueva and Patricio Ramos
Plants 2023, 12(18), 3322; https://doi.org/10.3390/plants12183322 - 20 Sep 2023
Cited by 3 | Viewed by 1990
Abstract
Several grapevine (Vitis vinifera L.) cultivars show a tendency to develop parthenocarpic seedless grapes, affecting fruit yield and quality. This reproductive disorder originates in defective ovule fertilization due to a failure in pollen tube growth. Zinc (Zn) is a crucial trace element, [...] Read more.
Several grapevine (Vitis vinifera L.) cultivars show a tendency to develop parthenocarpic seedless grapes, affecting fruit yield and quality. This reproductive disorder originates in defective ovule fertilization due to a failure in pollen tube growth. Zinc (Zn) is a crucial trace element, playing a vital role in various physiological and metabolic processes. It is particularly essential for the healthy growth of flowers and fruits. Insufficient zinc has been suggested as a potential reason for issues in this development process. This microelement is taken up through a mechanism that involves transporters, including the ZRT-IRT-like protein (ZIP) gene family, associated with the influx of Zn into the cell. In grapevines, 20 genes for ZIP-type transporters have been described. In this study, we analyzed the expression pattern of VviZIP3 during flower development and employ transgenic methods to assess its transcriptional regulation. Furthermore, through computational examination of the promoter region, we identified two CArG boxes, recognized as responsive elements to MADS transcription factors. These factors play a key role in shaping various components of a flower, such as pollen. Our investigation of the VviZIP3 promoter confirms the functionality of these CArG boxes. Overall, our results suggest that the increased expression of VviZIP3 during flowering is likely under the influence of MADS transcription factors. Full article
(This article belongs to the Special Issue Floral Biology 2.0)
Show Figures

Figure 1

11 pages, 2348 KB  
Article
Proton-Pump Inhibitors Suppress T Cell Response by Shifting Intracellular Zinc Distribution
by Wenlei Liu, Jana Jakobs and Lothar Rink
Int. J. Mol. Sci. 2023, 24(2), 1191; https://doi.org/10.3390/ijms24021191 - 7 Jan 2023
Cited by 14 | Viewed by 4828
Abstract
Proton-pump inhibitors (PPI), e.g., omeprazole or pantoprazole, are the most widely used drugs for various gastrointestinal diseases. However, more and more side effects, especially an increased risk of infections, have been reported in recent years. The underlying mechanism has still not yet been [...] Read more.
Proton-pump inhibitors (PPI), e.g., omeprazole or pantoprazole, are the most widely used drugs for various gastrointestinal diseases. However, more and more side effects, especially an increased risk of infections, have been reported in recent years. The underlying mechanism has still not yet been fully uncovered. Hence, in this study, we analyzed the T cell response after treatment with pantoprazole in vitro. Pantoprazole preincubation reduced the production and secretion of interferon (IFN)-γ and interleukin (IL)-2 after the T cells were activated with phytohemagglutinin (PHA)-L or toxic shock syndrome toxin-1 (TSST-1). Moreover, a lower zinc concentration in the cytoplasm and a higher concentration in the lysosomes were observed in the pantoprazole-treated group compared to the untreated group. We also tested the expression of the zinc transporter Zrt- and Irt-like protein (Zip)8, which is located in the lysosomal membrane and plays a key role in regulating intracellular zinc distribution after T cell activation. Pantoprazole reduced the expression of Zip8. Furthermore, we measured the expression of cAMP-responsive element modulator (CREM) α, which directly suppresses the expression of IL-2, and the expression of the phosphorylated cAMP response element-binding protein (pCREB), which can promote the expression of IFN-γ. The expression of CREMα was dramatically increased, and different isoforms appeared, whereas the expression of pCREB was downregulated after the T cells were treated with pantoprazole. In conclusion, pantoprazole downregulates IFN-γ and IL-2 expression by regulating the expression of Zip8 and pCREB or CREMα, respectively. Full article
(This article belongs to the Special Issue Current Topics in Trace Element and Mineral Research)
Show Figures

Figure 1

17 pages, 2822 KB  
Article
Roles of ZnT86D in Neurodevelopment and Pathogenesis of Alzheimer Disease in a Drosophila melanogaster Model
by Banseok Lee, Byoungyun Choi, Youngjae Park, Seokhui Jang, Chunyu Yuan, Chaejin Lim, Jang Ho Lee, Gyun Jee Song and Kyoung Sang Cho
Int. J. Mol. Sci. 2022, 23(19), 11832; https://doi.org/10.3390/ijms231911832 - 5 Oct 2022
Cited by 6 | Viewed by 3342
Abstract
Zinc is a fundamental trace element essential for numerous biological processes, and zinc homeostasis is regulated by the Zrt-/Irt-like protein (ZIP) and zinc transporter (ZnT) families. ZnT7 is mainly localized in the Golgi apparatus and endoplasmic reticulum (ER) and transports zinc into these [...] Read more.
Zinc is a fundamental trace element essential for numerous biological processes, and zinc homeostasis is regulated by the Zrt-/Irt-like protein (ZIP) and zinc transporter (ZnT) families. ZnT7 is mainly localized in the Golgi apparatus and endoplasmic reticulum (ER) and transports zinc into these organelles. Although previous studies have reported the role of zinc in animal physiology, little is known about the importance of zinc in the Golgi apparatus and ER in animal development and neurodegenerative diseases. In this study, we demonstrated that ZnT86D, a Drosophila ortholog of ZnT7, plays a pivotal role in the neurodevelopment and pathogenesis of Alzheimer disease (AD). When ZnT86D was silenced in neurons, the embryo-to-adult survival rate, locomotor activity, and lifespan were dramatically reduced. The toxic phenotypes were accompanied by abnormal neurogenesis and neuronal cell death. Furthermore, knockdown of ZnT86D in the neurons of a Drosophila AD model increased apoptosis and exacerbated neurodegeneration without significant changes in the deposition of amyloid beta plaques and susceptibility to oxidative stress. Taken together, our results suggest that an appropriate distribution of zinc in the Golgi apparatus and ER is important for neuronal development and neuroprotection and that ZnT7 is a potential protective factor against AD. Full article
(This article belongs to the Special Issue Role of Drosophila in Human Disease Research 3.0)
Show Figures

Figure 1

15 pages, 2078 KB  
Article
Cadmium Accumulation in the Goat Liver and Kidney Is Partially Promoted by the Upregulation of Metal Transporter Genes
by Kefyalew Gebeyew, Chunyu Jiang, Qinghua Gao, Liping Zhang, Hanhua Zhu, Yushi Tian, Qi Wang, Yuqing Wei, Zhiliang Tan and Xuefeng Han
Animals 2022, 12(11), 1408; https://doi.org/10.3390/ani12111408 - 30 May 2022
Cited by 5 | Viewed by 3422
Abstract
Metal transporters, including divalent metal-ion transporter-1 (DMT1), Zrt-/Irt-like protein 8 and 14 (ZIP8 and ZIP14), and ferroportin-1 (FPN1), reportedly participate in cellular cadmium (Cd) uptake, but those in farm animals remain unclarified. This study aimed to examine the growth, plasma biochemical indices, Cd [...] Read more.
Metal transporters, including divalent metal-ion transporter-1 (DMT1), Zrt-/Irt-like protein 8 and 14 (ZIP8 and ZIP14), and ferroportin-1 (FPN1), reportedly participate in cellular cadmium (Cd) uptake, but those in farm animals remain unclarified. This study aimed to examine the growth, plasma biochemical indices, Cd accumulation, and expression of metal transporter genes in the liver, kidney, and muscle of goats exposed to rice paddies contaminated with different levels of Cd. Twenty-four goats were randomly assigned across three dietary treatments: 0.23, 0.63, and 1.07 mg of Cd/kg of dry matter (DM) for 60 days. The results showed that dietary Cd exposure increased (p < 0.05) both Cd accumulation and the mRNA expressions of metal transporter genes (DMT1, ZIP, and FPN1) in the liver and kidney but not in the muscle, suggesting dietary Cd exhibited different deposition rates between goat liver, kidney, and muscle. These outcomes suggest that high levels of dietary Cd stimulated the expression of metal transporter genes and thereby enhanced the uptake and accumulation of Cd in the goat liver and kidney. As such, higher Cd concentrations in the liver and kidney observed with Cd diets could be partly explained by upregulation of metal transport genes expression. Full article
Show Figures

Graphical abstract

18 pages, 3036 KB  
Article
Genome-Wide Identification and Expression Profile Reveal Potential Roles of Peanut ZIP Family Genes in Zinc/Iron-Deficiency Tolerance
by Zhen Zhang, Nannan Chen, Zheng Zhang and Gangrong Shi
Plants 2022, 11(6), 786; https://doi.org/10.3390/plants11060786 - 16 Mar 2022
Cited by 13 | Viewed by 3369
Abstract
Zinc/iron-regulated transporter-like protein (ZIP) family genes play crucial roles in metal uptake and transport in plants. However, little is known about their functions in peanut. Here, genome-wide analysis identified 30 peanut AhZIP genes that were divided into four classes. Most AhZIPs experienced [...] Read more.
Zinc/iron-regulated transporter-like protein (ZIP) family genes play crucial roles in metal uptake and transport in plants. However, little is known about their functions in peanut. Here, genome-wide analysis identified 30 peanut AhZIP genes that were divided into four classes. Most AhZIPs experienced whole-genome or segmental duplication. AhZIP proteins harbored 3–8 transmembrane domains and a typical ZIP domain, showing considerable homology with BbZIP from Bordetella bronchiseptica. Clustered AhZIPs generally share similar gene/protein structures; however, unique features were found in AhIRT1.2, AhZIP1.2, AhZIP3.5 and AhZIP7.8. RNA-seq data revealed that AhZIP2.1/2.2, AhZIP4.1/4.2 and AhZIP11.1/11.2 were highly and preferentially expressed in roots, nodule and reproductive tissues. RT-qPCR analysis indicated that transcriptional responses of AhZIPs to Fe/Zn deficiency are cultivar dependent. The expressions of AhIRT1.1, AhIRT1.2 and AhZIP6.1 were closely related to Fe uptake and translocation. AhIRT1.1 and AhZIP7.2 expression were significantly correlated with Zn accumulation. The expression of AhIRT1.1, AhIRT1.2, AhZIP3.6, AhZIP6.1 and AhZIP11.1 was associated with Mn uptake and translocation. The results confirmed that AhZIP genes play crucial roles in the uptake and transport of Fe, Zn and Mn in peanut, providing clues to further functionally characterize AhZIP genes in the future. Full article
(This article belongs to the Special Issue Microelements in Plant and Soil)
Show Figures

Figure 1

12 pages, 2531 KB  
Article
TGF-β1 Potentiates the Cytotoxicity of Cadmium by Induction of a Metal Transporter, ZIP8, Mediated by the ALK5-Smad2/3 and ALK5-Smad3-p38 MAPK Signal Pathways in Cultured Vascular Endothelial Cells
by Keisuke Ito, Tomoya Fujie, Masahiro Shimomura, Tsuyoshi Nakano, Chika Yamamoto and Toshiyuki Kaji
Int. J. Mol. Sci. 2022, 23(1), 448; https://doi.org/10.3390/ijms23010448 - 31 Dec 2021
Cited by 10 | Viewed by 3179
Abstract
Vascular endothelial cells cover the luminal surface of blood vessels in a monolayer and play a role in the regulation of vascular functions, such as the blood coagulation-fibrinolytic system. When the monolayer is severely or repeatedly injured, platelets aggregate at the damaged site [...] Read more.
Vascular endothelial cells cover the luminal surface of blood vessels in a monolayer and play a role in the regulation of vascular functions, such as the blood coagulation-fibrinolytic system. When the monolayer is severely or repeatedly injured, platelets aggregate at the damaged site and release transforming growth factor (TGF)-β1 in large quantities from their α-granules. Cadmium is a heavy metal that is toxic to various organs, including the kidneys, bones, liver, and blood vessels. Our previous study showed that the expression level of Zrt/Irt-related protein 8 (ZIP8), a metal transporter that transports cadmium from the extracellular fluid into the cytosol, is a crucial factor in determining the sensitivity of vascular endothelial cells to cadmium cytotoxicity. In the present study, TGF-β1 was discovered to potentiate cadmium-induced cytotoxicity by increasing the intracellular accumulation of cadmium in cells. Additionally, TGF-β1 induced the expression of ZIP8 via the activin receptor-like kinase 5-Smad2/3 signaling pathways; Smad3-mediated induction of ZIP8 was associated with or without p38 mitogen-activated protein kinase (MAPK). These results suggest that the cytotoxicity of cadmium to vascular endothelial cells increases when damaged endothelial monolayers that are highly exposed to TGF-β1 are repaired. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Advances in Biochemistry)
Show Figures

Figure 1

14 pages, 1586 KB  
Review
The Evolving Role for Zinc and Zinc Transporters in Cadmium Tolerance and Urothelial Cancer
by Soisungwan Satarug, David A. Vesey and Glenda C. Gobe
Stresses 2021, 1(2), 105-118; https://doi.org/10.3390/stresses1020009 - 19 May 2021
Cited by 7 | Viewed by 4709
Abstract
Cadmium (Cd) is an environmental toxicant with serious public health consequences due to its persistence within arable soils, and the ease with which it enters food chains and then, accumulates in human tissues to induce a broad range of adverse health effects. The [...] Read more.
Cadmium (Cd) is an environmental toxicant with serious public health consequences due to its persistence within arable soils, and the ease with which it enters food chains and then, accumulates in human tissues to induce a broad range of adverse health effects. The present review focuses on the role of zinc (Zn), a nutritionally essential metal, to protect against the cytotoxicity and carcinogenicity of Cd in urinary bladder epithelial cells. The stress responses and defense mechanisms involving the low-molecular-weight metal binding protein, metallothionein (MT), are highlighted. The efflux and influx transporters of the ZnT and Zrt-/Irt-like protein (ZIP) gene families are discussed with respect to their putative role in retaining cellular Zn homeostasis. Among fourteen ZIP family members, ZIP8 and ZIP14 mediate Cd uptake by cells, while ZnT1 is among ten ZnT family members solely responsible for efflux of Zn (Cd), representing cellular defense against toxicity from excessively high Zn (Cd) intake. In theory, upregulation of the efflux transporter ZnT1 concomitant with the downregulation of influx transporters such as ZIP8 and ZIP14 can prevent Cd accumulation by cells, thereby increasing tolerance to Cd toxicity. To link the perturbation of Zn homeostasis, reflected by the aberrant expression of ZnT1, ZIP1, ZIP6, and ZIP10, with malignancy, tolerance to Cd toxicity acquired during Cd-induced transformation of a cell model of human urothelium, UROtsa, is discussed as a particular example. Full article
(This article belongs to the Special Issue Responses and Defense Mechanisms against Toxic Metals)
Show Figures

Figure 1

12 pages, 1311 KB  
Article
Zinc, Zinc Transporters, and Cadmium Cytotoxicity in a Cell Culture Model of Human Urothelium
by Soisungwan Satarug, Scott H. Garrett, Seema Somji, Mary Ann Sens and Donald A. Sens
Toxics 2021, 9(5), 94; https://doi.org/10.3390/toxics9050094 - 24 Apr 2021
Cited by 12 | Viewed by 3787
Abstract
We explored the potential role of zinc (Zn) and zinc transporters in protection against cytotoxicity of cadmium (Cd) in a cell culture model of human urothelium, named UROtsa. We used real-time qRT-PCR to quantify transcript levels of 19 Zn transporters of the Zrt-/Irt-like [...] Read more.
We explored the potential role of zinc (Zn) and zinc transporters in protection against cytotoxicity of cadmium (Cd) in a cell culture model of human urothelium, named UROtsa. We used real-time qRT-PCR to quantify transcript levels of 19 Zn transporters of the Zrt-/Irt-like protein (ZIP) and ZnT gene families that were expressed in UROtsa cells and were altered by Cd exposure. Cd as low as 0.1 µM induced expression of ZnT1, known to mediate efflux of Zn and Cd. Loss of cell viability by 57% was seen 24 h after exposure to 2.5 µM Cd. Exposure to 2.5 µM Cd together with 10–50 µM Zn prevented loss of cell viability by 66%. Pretreatment of the UROtsa cells with an inhibitor of glutathione biosynthesis (buthionine sulfoximine) diminished ZnT1 induction by Cd with a resultant increase in sensitivity to Cd cytotoxicity. Conversely, pretreatment of UROtsa cells with an inhibitor of DNA methylation, 5-aza-2’-deoxycytidine (aza-dC) did not change the extent of ZnT1 induction by Cd. The induced expression of ZnT1 that remained impervious in cells treated with aza-dC coincided with resistance to Cd cytotoxicity. Therefore, expression of ZnT1 efflux transporter and Cd toxicity in UROtsa cells could be modulated, in part, by DNA methylation and glutathione biosynthesis. Induced expression of ZnT1 may be a viable mechanistic approach to mitigating cytotoxicity of Cd. Full article
(This article belongs to the Special Issue Adverse Health Effects of Persistent Environmental Toxicants)
Show Figures

Figure 1

12 pages, 1810 KB  
Article
Aberrant Expression of ZIP and ZnT Zinc Transporters in UROtsa Cells Transformed to Malignant Cells by Cadmium
by Soisungwan Satarug, Scott H. Garrett, Seema Somji, Mary Ann Sens and Donald A. Sens
Stresses 2021, 1(2), 78-89; https://doi.org/10.3390/stresses1020007 - 22 Apr 2021
Cited by 9 | Viewed by 3975
Abstract
Maintenance of zinc homeostasis is pivotal to the regulation of cell growth, differentiation, apoptosis, and defense mechanisms. In mammalian cells, control of cellular zinc homeostasis is through zinc uptake, zinc secretion, and zinc compartmentalization, mediated by metal transporters of the Zrt-/Irt-like protein (ZIP) [...] Read more.
Maintenance of zinc homeostasis is pivotal to the regulation of cell growth, differentiation, apoptosis, and defense mechanisms. In mammalian cells, control of cellular zinc homeostasis is through zinc uptake, zinc secretion, and zinc compartmentalization, mediated by metal transporters of the Zrt-/Irt-like protein (ZIP) family and the Cation Diffusion Facilitators (CDF) or ZnT family. We quantified transcript levels of ZIP and ZnT zinc transporters expressed by non-tumorigenic UROtsa cells and compared with those expressed by UROtsa clones that were experimentally transformed to cancer cells by prolonged exposure to cadmium (Cd). Although expression of the ZIP8 gene in parent UROtsa cells was lower than ZIP14 (0.1 vs. 83 transcripts per 1000 β-actin transcripts), an increased expression of ZIP8 concurrent with a reduction in expression of one or two zinc influx transporters, namely ZIP1, ZIP2, and ZIP3, were seen in six out of seven transformed UROtsa clones. Aberrant expression of the Golgi zinc transporters ZIP7, ZnT5, ZnT6, and ZnT7 were also observed. One transformed clone showed distinctively increased expression of ZIP6, ZIP10, ZIP14, and ZnT1, with a diminished ZIP8 expression. These data suggest intracellular zinc dysregulation and aberrant zinc homeostasis both in the cytosol and in the Golgi in the transformed UROtsa clones. These results provide evidence for zinc dysregulation in transformed UROtsa cells that may contribute in part to their malignancy and/or muscle invasiveness. Full article
(This article belongs to the Special Issue Cancer and Stresses)
Show Figures

Figure 1

21 pages, 17080 KB  
Article
Overproduction of Human Zip (SLC39) Zinc Transporters in Saccharomyces cerevisiae for Biophysical Characterization
by Eva Ramos Becares, Per Amstrup Pedersen, Pontus Gourdon and Kamil Gotfryd
Cells 2021, 10(2), 213; https://doi.org/10.3390/cells10020213 - 21 Jan 2021
Cited by 11 | Viewed by 4542
Abstract
Zinc constitutes the second most abundant transition metal in the human body, and it is implicated in numerous cellular processes, including cell division, DNA and protein synthesis as well as for the catalytic activity of many enzymes. Two major membrane protein families facilitate [...] Read more.
Zinc constitutes the second most abundant transition metal in the human body, and it is implicated in numerous cellular processes, including cell division, DNA and protein synthesis as well as for the catalytic activity of many enzymes. Two major membrane protein families facilitate zinc homeostasis in the animal kingdom, i.e., Zrt/Irt-like proteins (ZIPs aka solute carrier 39, SLC39, family) and Zn transporters (ZnTs), essentially conducting zinc flux in the opposite directions. Human ZIPs (hZIPs) regulate import of extracellular zinc to the cytosol, being critical in preventing overaccumulation of this potentially toxic metal, and crucial for diverse physiological and pathological processes, including development of neurodegenerative disorders and several cancers. To date, our understanding of structure–function relationships governing hZIP-mediated zinc transport mechanism is scarce, mainly due to the notorious difficulty in overproduction of these proteins for biophysical characterization. Here we describe employment of a Saccharomyces cerevisiae-based platform for heterologous expression of hZIPs. We demonstrate that yeast is able to produce four full-length hZIP members belonging to three different subfamilies. One target (hZIP1) is purified in the high quantity and homogeneity required for the downstream biochemical analysis. Our work demonstrates the potential of the described production system for future structural and functional studies of hZIP transporters. Full article
Show Figures

Figure 1

22 pages, 395 KB  
Review
Zinc and Cadmium in the Aetiology and Pathogenesis of Osteoarthritis and Rheumatoid Arthritis
by Theoharris Frangos and Wolfgang Maret
Nutrients 2021, 13(1), 53; https://doi.org/10.3390/nu13010053 - 26 Dec 2020
Cited by 72 | Viewed by 10541
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are inflammatory articular conditions with different aetiology, but both result in joint damage. The nutritionally essential metal zinc (Zn2+) and the non-essential metal cadmium (Cd2+) have roles in these arthritic diseases as effectors [...] Read more.
Osteoarthritis (OA) and rheumatoid arthritis (RA) are inflammatory articular conditions with different aetiology, but both result in joint damage. The nutritionally essential metal zinc (Zn2+) and the non-essential metal cadmium (Cd2+) have roles in these arthritic diseases as effectors of the immune system, inflammation, and metabolism. Despite both metal ions being redox-inert in biology, they affect the redox balance. It has been known for decades that zinc decreases in the blood of RA patients. It is largely unknown, however, whether this change is only a manifestation of an acute phase response in inflammation or relates to altered availability of zinc in tissues and consequently requires changes of zinc in the diet. As a cofactor in over 3000 human proteins and as a signaling ion, zinc affects many pathways relevant for arthritic disease. How it affects the diseases is not just a question of zinc status, but also an issue of mutations in the many proteins that maintain cellular zinc homoeostasis, such as zinc transporters of the ZIP (Zrt-/Irt-like protein) and ZnT families and metallothioneins, and the multiple pathways that change the expression of these proteins. Cadmium interferes with zinc’s functions and there is increased uptake under zinc deficiency. Remarkably, cadmium exposure through inhalation is now recognized in the activation of macrophages to a pro-inflammatory state and suggested as a trigger of a specific form of nodular RA. Here, we discuss how these metal ions participate in the genetic, metabolic, and environmental factors that lead to joint destruction. We conclude that both metal ions should be monitored routinely in arthritic disease and that there is untapped potential for prognosis and treatment. Full article
(This article belongs to the Special Issue Diet and Rheumatoid Arthritis)
10 pages, 1682 KB  
Article
Insulin Secretion by β-Cell-Like Cells Derived from Pulp Stem Cells Depends on Augmented Cytosolic Zinc Levels than GABA Levels
by Gyuyoup Kim, Man-Kyo Chung and Eung-Kwon Pae
Appl. Sci. 2020, 10(21), 7476; https://doi.org/10.3390/app10217476 - 24 Oct 2020
Cited by 3 | Viewed by 2535
Abstract
Background: Stem cells harvested from human exfoliated deciduous teeth (SHED) are pluripotent and can be differentiated into insulin-secreting β-cells, i.e., SHED β-cells. Previously, we showed that zinc upregulates insulin secretion from SHED β-cells, potentially providing an extra source for insulin. Rationale: In this [...] Read more.
Background: Stem cells harvested from human exfoliated deciduous teeth (SHED) are pluripotent and can be differentiated into insulin-secreting β-cells, i.e., SHED β-cells. Previously, we showed that zinc upregulates insulin secretion from SHED β-cells, potentially providing an extra source for insulin. Rationale: In this study, we determined the role of ionotropic γ-aminobutyric acid A (GABAA) receptor in zinc-enhanced insulin secretion from SHED β-cells. Autocrine/paracrine activation of GABAA receptors by GABA elevates calcium influx in pancreatic β-cells, in which intracellular chloride is maintained at high levels. Method and Findings: Differentiating SHED into SHED β-cells resulted in an increase in the expression of GABAA receptor subunits and Zrt-/irt-like protein3 (ZIP3), a zinc uptake transporter. Zinc pretreatment elevated the insulin gene transcription, whereas knockdown of ZIP3 reduced levels of intracellular zinc, and concomitantly reduced insulin secretion by SHED β-cells. Zinc-pretreated SHED β-cells exhibited a GABA-induced increase in Ca2+ influx, detected with a ratiometric calcium-sensitive dye, suggesting zinc-mediated regulation of GABAA receptors. Conclusion: Our results indicate that elevated levels of zinc and GABAA receptors are indispensable for efficient insulin secretion by SHED β-cells. These findings suggest an opportunity for using SHED β-cells for treating diabetes. Full article
Show Figures

Figure 1

Back to TopTop