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Abstract: Zinc/iron-regulated transporter-like protein (ZIP) family genes play crucial roles in metal
uptake and transport in plants. However, little is known about their functions in peanut. Here,
genome-wide analysis identified 30 peanut AhZIP genes that were divided into four classes. Most
AhZIPs experienced whole-genome or segmental duplication. AhZIP proteins harbored 3–8 trans-
membrane domains and a typical ZIP domain, showing considerable homology with BbZIP from
Bordetella bronchiseptica. Clustered AhZIPs generally share similar gene/protein structures; however,
unique features were found in AhIRT1.2, AhZIP1.2, AhZIP3.5 and AhZIP7.8. RNA-seq data revealed
that AhZIP2.1/2.2, AhZIP4.1/4.2 and AhZIP11.1/11.2 were highly and preferentially expressed in
roots, nodule and reproductive tissues. RT-qPCR analysis indicated that transcriptional responses
of AhZIPs to Fe/Zn deficiency are cultivar dependent. The expressions of AhIRT1.1, AhIRT1.2 and
AhZIP6.1 were closely related to Fe uptake and translocation. AhIRT1.1 and AhZIP7.2 expression
were significantly correlated with Zn accumulation. The expression of AhIRT1.1, AhIRT1.2, AhZIP3.6,
AhZIP6.1 and AhZIP11.1 was associated with Mn uptake and translocation. The results confirmed
that AhZIP genes play crucial roles in the uptake and transport of Fe, Zn and Mn in peanut, providing
clues to further functionally characterize AhZIP genes in the future.

Keywords: Arachis hypogaea; ZRT/IRT-like protein; iron/zinc deficiency; metal uptake and transport;
cultivar difference

1. Introduction

Iron (Fe) and zinc (Zn) are essential metal micronutrients for virtually all organisms.
Both elements act as catalytic and structural cofactors for a large number of enzymes and
play vital roles in many metabolic processes [1]. Thus, the shortage of Fe or Zn inhibits
plant growth and development, posing major abiotic stresses in crop production. Most
Fe and Zn in the human body are acquired from plant-based diets. However, plants are
not a good source of these micronutrients because staple crops have low concentrations
of Zn and Fe in edible tissues [2]. In fact, plants often suffer from Zn and Fe deficiencies
due to the scarcity of Zn or low availability of Fe in the soil [3,4]. Therefore, billions of
people worldwide suffer from deficiencies of these two elements, leading to nutritional
disorders [5]. It is of great importance to enhance the content of Fe and Zn in edible parts
of crops by improving their capacity for Fe and Zn acquirement.

The zinc/iron-regulated transporter-like protein (ZIP) family plays crucial roles in
the uptake and transport of essential or nonessential divalent metals in plants, including
Fe and Zn. AtIRT1, the first ZIP protein identified in Arabidopsis thaliana, is responsible
for taking up Zn, Mn, Co, Ni and Cd from the rhizosphere to root cells [6–9]. A recent
study indicates that AtIRT1 is also specifically expressed in phloem companion cells and
has a role in Fe translocation in aboveground organs [10]. AtIRT2 localizes the vesicle
membrane and compartmentalizes Fe into vesicles to prevent its toxicity in the cytosol [11].
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AtIRT3 is a plasma membrane localized transporter involved in the uptake of Zn and Fe in
Arabidopsis [12]. AtZIP1 is a vacuolar transporter that is responsible for remobilizing Mn and
Zn from vacuole to cytoplasm in root cells [13]. AtZIP2 is localized to the plasma membrane
and may mediate Mn/Zn uptake into parenchyma cells in the xylem, contributing to xylem
loading and transport of Mn/Zn to the shoot [13]. AtZIP3 plays a role in the uptake of
Zn and Fe from the soil to the plant roots, while AtZIP4 transports Zn intracellularly or
between plant tissues [14,15].

In rice (Oryza sativa), several ZIP members have been functionally characterized.
OsIRT1 and OsIRT2 are Fe transporters that directly absorb the Fe2+, Zn2+, Cu2+, and Cd2+

into root cells [16–18]. OsZIP1 resides in the endoplasmic reticulum and plasma membrane
and functions as a metal exporter in rice under Zn, Cu or Cd excess conditions [19]. OsZIP4
is a Zn transporter that may be involved in the translocation of Zn within plants [20,21].
OsZIP5 and OsZIP8 serve as the plasma membrane-localized transporter involved in Zn
uptake and distribution within rice [22,23]. OsZIP7 is a plasma membrane Zn-specific
transporter that plays a key role in xylem loading in roots and inter-vascular transfer in
nodes to deliver Zn/Cd to developing tissues and grain in rice [24–26].

In contrast to the significant progress of functional characterization for individual
genes, the systematic genome-wide study of ZIP gene family is limited. Since the first
conducted by Guerinot [15], the whole genome identification of ZIP family has been carried
out only in a few plants, including maize (Zea mays) [27], potato (Solanum tuberosum) [28],
poplar (Populus trichocarpa) [29,30] and trifoliate orange (Poncirus trifoliata) [31]. Based on
sequence alignments, the eukaryotic ZIP family is split into four subfamilies (ZIPI, ZIPII,
gufA and LIV-1) [32]. Most of them contain 309–476 amino acid residues with eight putative
transmembrane domains. The majority of ZIP proteins share a similar membrane topology
where the N- and C-terminal ends are extracytoplasmic [32]. A histidine-rich domain
(HRD) is contained in the long variable region of the cytoplasmic loop between TM3 and
TM4, which is considered the metal binding domain playing roles in metal transport.
Amphipathic TM4 and TM5 form cavities through which metal ions pass [15,32].

Peanut (Arachis hypogaea L., 2n = 4x = 40) is the fourth major oil crop widely grown
throughout the world. It provides 20% of edible oil and 11% of food protein for global
people annually. Peanut is a rich source of micronutrients, including Zn, and thus makes it
more important for Zn biofortification [33]. The concentration of Zn in peanut seeds ranged
from 11 to 77 mg kg−1, with an average of 45 mg kg−1 [34]. Unfortunately, peanut produc-
tivity is always affected by Fe and/or Zn deficiencies in soil because a large proportion of
the crop grows in calcareous soils [33,35]. To overcome the deficiencies of Fe and Zn and to
enhance their concentrations in seeds, it is necessary to fully understand the mechanism of
the uptake, distribution and translocation of Fe and Zn in peanut plants.

Although several transporter genes such as AhIRT1 [36] and AhNramp1 [37] have been
identified in peanut, the molecular mechanisms underlying the metal homeostasis remain
unknown. Recently, the whole genome sequences of the cultivated peanut (A. hypogaea cv.
Tifrunner) as well as the two wild ancestral species, A. duranensis and A. ipaënsis, have been
released [38,39]. These studies make it possible for identifying gene families at the whole
genome level. Here, 30 genes of the ZIP family were identified from cultivated peanut, and
their structure, function and evolution were characterized. Moreover, the expression of ZIP
genes in response to Fe/Zn deficiencies was evaluated. Our findings would provide clues
to further characterize the functions of ZIP proteins in the uptake and translocation of Fe
and Zn in peanut plants.
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2. Results
2.1. Identification and Phylogenetic Analysis of the AhZIP Family in Peanut

A total of 30 putative AhZIP genes were identified in peanut, including four AhIRT1,
two AhZIP1, two AhZIP2, six AhZIP3, two AhZIP4, four AhZIP6, eight AhZIP7 and two
AhZIP11 (Table 1). The length of AhZIP genes varied from 937 bp (AhZIP3.6) to 8962 bp
(AhIRT1.1), with CDS lengths from 456 bp (AhIRT1.2) to 1227 bp (AhZIP4.1). The amino
acid number of AhZIP proteins ranged from 151 (AhIRT1.2) to 408 bp (AhZIP4.1), and
the molecular weight varied from 16.55 kDa (AhIRT1.2) to 43.82 kDa (AhZIP4.1). The
instability, GRAVY and aliphatic index of AhZIP proteins ranged from 26.98 (AhZIP2.1) to
47.10 (AhIRT1.2), from 0.167 (AhZIP1.2) to 0.767 (AhZIP11.1) and from 86.03 (AhZIP1.2)
to 117.14 (AhZIP3.6), respectively. The isoelectric point (pI) of all AhZIP proteins less
than 7 ranged from 5.28 (AhIRT1.2) to 6.86 (AhIRT1.3) (Table 1). TMD numbers of AhZIP
proteins ranged from 3 to 8, and most of them were predicted to be plasma membrane
localized except AhZIP1.2, AhZIP3.2, AhZIP3.5 and AhZIP7.8, which were predicted to
localize to the endomembrane system (Table 1).

Table 1. Molecular characterization of AhZIP genes identified in peanut.

Gene
Name Gene ID Gene Length

(bp)
CDS
(bp)

MW a

(kDa) Aa b Instability Aliphatic
Index GRAVY c pI d No. of

TMD e Location

AhIRT1.1 arahy.T4CX6H 8962 1095 38.94 364 33.45 109.29 0.55 6.3 8/out-out PM f

AhIRT1.2 arahy.B3ZT22 2373 456 16.55 151 47.1 109.07 0.654 5.28 3/out-in PM
AhIRT1.3 arahy.234RNS 4415 1089 39.25 362 36.8 111.99 0.573 6.86 8/out-out PM
AhIRT1.4 arahy.8VMZ7D 4094 1101 39.56 366 37.5 108.63 0.53 6.34 8/out-out PM
AhZIP1.1 arahy.XJH13Y 5732 1140 40.51 379 41.77 104.01 0.477 6.29 8/out-out PM
AhZIP1.2 arahy.ZLZ7ZM 1608 714 25.74 237 44.01 86.03 0.167 6.53 3/out-in EMS g

AhZIP2.1 arahy.VX1J70 2322 1062 38.77 353 26.98 107.48 0.495 6.52 8/in-out PM
AhZIP2.2 arahy.1Q0IUD 2309 1059 38.71 352 27.91 103.35 0.472 6.62 8/in-out PM
AhZIP3.1 arahy.CK2LDM 4766 894 32.38 297 39.12 107.71 0.254 6.03 5/out-in PM
AhZIP3.2 arahy.E7VKLQ 1747 831 30.12 276 38.03 110.62 0.288 6.62 5/out-in EMS
AhZIP3.3 arahy.ZVRF07 1554 783 28.26 260 33.11 107.19 0.423 6.08 5/out-in PM
AhZIP3.4 arahy.30BR38 1211 699 25.09 232 33.22 109.66 0.568 5.28 5/out-in PM
AhZIP3.5 arahy.WQ3KQR 2618 888 32.26 295 37.42 99.49 0.212 6.45 3/out-in EMS
AhZIP3.6 arahy.05ZQZB 937 747 26.99 248 31.92 117.14 0.524 5.91 5/out-in PM
AhZIP4.1 arahy.KIJ6L7 2325 1227 43.82 408 42.93 95.22 0.324 6.02 8/out-out PM
AhZIP4.2 arahy.2FF2JF 2561 1101 38.83 366 41.96 95.25 0.34 6.02 8/out-out PM
AhZIP6.1 arahy.58GIJL 2185 999 35.60 332 35.92 106.99 0.631 5.77 8/out-out PM
AhZIP6.2 arahy.78T540 2812 999 35.54 332 35.89 107.29 0.647 5.9 8/out-out PM
AhZIP6.3 arahy.0DI5A2 3196 1035 36.29 344 37.88 106.1 0.629 6.29 8/out-out PM
AhZIP6.4 arahy.E6QUMC 3026 1035 36.31 344 37.66 106.37 0.630 6.29 8/out-out PM
AhZIP7.1 arahy.BTX8K3 1585 819 29.67 272 45.6 103.2 0.400 6.10 5/out-in PM
AhZIP7.2 arahy.092K8V 1514 819 29.61 272 44.17 104.3 0.413 6.58 5/out-in PM
AhZIP7.3 arahy.RP74H9 1398 810 29.45 269 45.52 109.44 0.412 6.04 5/out-in PM
AhZIP7.4 arahy.FX0GN0 1151 819 29.88 272 44.84 103.57 0.347 6.62 5/out-in PM
AhZIP7.5 arahy.1C0EWX 1510 822 29.68 273 44.23 106.78 0.429 6.62 5/out-in PM
AhZIP7.6 arahy.QZI7QE 1207 843 30.33 280 46.91 104.11 0.399 6.62 5/out-in PM
AhZIP7.7 arahy.0E1GBK 1397 822 29.88 273 45.75 104.62 0.408 6.1 5/out-in PM
AhZIP7.8 arahy.NIU36G 3869 480 17.69 159 46.83 99.25 0.432 6.57 4/out-out EMS
AhZIP11.1 arahy.HSP4SF 3404 1038 36.62 345 30.58 112.87 0.767 5.73 8/out-out PM
AhZIP11.2 arahy.W56MR2 2492 1047 36.94 348 32.71 113.05 0.749 5.49 8/out-out PM

a Molecular weight, b amino acid number, c grand average of hydropathicity, d isoelectric points, e transmembrane
domain, f plasma membrane, g endomembrane system.

To reveal the phylogenetic relationship among AhZIP genes, 69 ZIP protein sequences
from peanut, Arabidopsis, rice and trifoliate orange were used to construct phylogeny with
the NJ method. As reported in previous studies [29–31], ZIP members were divided into
four classes: I, II, III and IV (Figure 1). Class I, the largest class, contained 20 AhZIP
members. Class II consisted of AhZIP4.1 and AhZIP4.2. Class III was composed of
AhZIP2.1/2.2 and AhZIP11.1/11.2. Class IV contained four orthologs of AhZIP6 (Figure 1).
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Figure 1. Phylogenetic relationships of ZIP proteins in peanut and other plant species. The species
involved in the evolutionary tree include peanut (AhZIP), Arabidopsis thaliana (AtZIP), Oryza sativa
(OsZIP), and Poncirus trifoliata (PtZIP). The 30 AhZIP proteins of peanut are marked in red.

2.2. Gene Structure, Duplication and Ka/Ks of the AhZIP Family

Exon–intron organizations revealed that AhZIP genes belonging to the same phylogenetic
groups showed similar exon–intron organizations (Figure 2). Most AhZIP genes contained two
exons with one intron. However, eight genes have distinct exon–intron structures, including
AhZIP1.1 (3 exons and 2 introns), AhZIP3.1 (3 exons and 3 introns), AhZIP3.2 (2 exons and
2 introns), AhZIP4.1 (4 exons and 3 introns), AhZIP4.2 (2 exons and 4 introns), AhZIP11.1/11.2
(3 exons and 2 introns) and AhZIP7.8 (5 exons and 4 introns) (Figure 2).

Plants 2022, 11, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 1. Phylogenetic relationships of ZIP proteins in peanut and other plant species. The species 

involved in the evolutionary tree include peanut (AhZIP), Arabidopsis thaliana (AtZIP), Oryza sativa 

(OsZIP), and Poncirus trifoliata (PtZIP). The 30 AhZIP proteins of peanut are marked in red. 

2.2. Gene Structure, Duplication and Ka/Ks of the AhZIP Family 

Exon–intron organizations revealed that AhZIP genes belonging to the same phylo-

genetic groups showed similar exon–intron organizations (Figure 2). Most AhZIP genes 

contained two exons with one intron. However, eight genes have distinct exon–intron 

structures, including AhZIP1.1 (3 exons and 2 introns), AhZIP3.1 (3 exons and 3 introns), 

AhZIP3.2 (2 exons and 2 introns), AhZIP4.1 (4 exons and 3 introns), AhZIP4.2 (2 exons and 

4 introns), AhZIP11.1/11.2 (3 exons and 2 introns) and AhZIP7.8 (5 exons and 4 introns) 

(Figure 2). 

 

Figure 2. Phylogenetic relationships and exon–intron organization of AhZIP genes from peanut. 

UTR and CDS represent untranslated regions and coding sequences, respectively. 

The 30 AhZIP genes were located unevenly in 13 chromosomes. A total of 13 and 17 

AhZIP genes were identified from subgenomes A (Chr. 01–10) and B (Chr. 11–20), respec-

tively (Figure 3). Chr. 01, 04, 11, 14, 17 and 18 contained three AhZIP genes, Chr. 05, 07, 08 

and 15 had two genes in each chromosome, and Chr. 06 and 13 contained only one gene 

each, while no AhZIP gene was identified in Chr. 02, 03, 09, 10, 12, 19 and 20. Most of the 

AhZIP genes experienced gene duplication events except AhIRT1.1/1.3, AhZIP7.2/7.8 and 

Figure 2. Phylogenetic relationships and exon–intron organization of AhZIP genes from peanut. UTR
and CDS represent untranslated regions and coding sequences, respectively.

The 30 AhZIP genes were located unevenly in 13 chromosomes. A total of 13 and
17 AhZIP genes were identified from subgenomes A (Chr. 01–10) and B (Chr. 11–20),
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respectively (Figure 3). Chr. 01, 04, 11, 14, 17 and 18 contained three AhZIP genes, Chr. 05,
07, 08 and 15 had two genes in each chromosome, and Chr. 06 and 13 contained only one
gene each, while no AhZIP gene was identified in Chr. 02, 03, 09, 10, 12, 19 and 20. Most of
the AhZIP genes experienced gene duplication events except AhIRT1.1/1.3, AhZIP7.2/7.8
and AhZIP3.5/3.6, resulting in 16 gene pairs (Figure 3). Among the duplicated genes,
12 collinear blocks resulted from whole-genome duplications (WGDs), and AhZIP6.1/6.3
and AhZIP6.2/6.4 resulted from segmental duplication. No tandem duplication was de-
tected in the AhZIP genes. The Ka/Ks ratios (ratios of the number of nonsynonymous
substitutions per nonsynonymous site/the number of synonymous substitutions per syn-
onymous site) of all gene duplication pairs were less than 1 (Table 2), indicating that the
AhZIP genes evolved under purifying selection [40].
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Figure 3. Chromosomal locations and duplications of peanut AhZIP genes obtained from collinearity analysis.

Table 2. Ka/Ks analysis of all gene duplication pairs for AhZIP genes.

Gene Pairs Duplicate Type Ka a Ks b Ka/Ks c Positive
Selection

AhZIP6.1/6.4 Segmental 0.1912 1.3731 0.1393 No
AhZIP6.1/6.3 Segmental 0.1884 1.3068 0.1442 No
AhZIP6.2/6.4 Segmental 0.1887 1.3548 0.1393 No
AhZIP6.3/6.2 Segmental 0.1859 1.2902 0.1441 No
AhIRT1.2/1.4 Whole-genome 0.0463 0.0956 0.4843 No
AhZIP1.1/1.2 Whole-genome 0.0338 0.0667 0.5068 No
AhZIP2.1/2.2 Whole-genome 0.0112 0.0373 0.3006 No
AhZIP3.1/3.2 Whole-genome 0.0393 0.0474 0.8291 No
AhZIP3.3/3.4 Whole-genome 0.0208 0.0861 0.2415 No
AhZIP4.1/4.2 Whole-genome 0.0024 0.0460 0.0525 No
AhZIP6.3/6.4 Whole-genome 0.0026 0.0485 0.0532 No
AhZIP6.1/6.2 Whole-genome 0.0013 0.0477 0.0277 No
AhZIP7.3/7.4 Whole-genome 0.0180 0.0848 0.2119 No
AhZIP7.1/7.7 Whole-genome 0.0227 0.0835 0.2717 No
AhZIP7.5/7.6 Whole-genome 0.0113 0.0698 0.1620 No
AhZIP11.1/11.2 Whole-genome 0.0077 0.0282 0.2733 No

a The number of nonsynonymous substitutions per nonsynonymous site, b the number of synonymous substitu-
tions per synonymous site, c Ka/Ks ratios.
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2.3. Conserved Motifs, Domain Architectures and Models of AhZIP Proteins

Ten conserved motifs were identified in the sequences of AhZIP proteins; among
them, motifs 1, 2, 3, 5 and 9 were annotated as zinc transporters, according to the Pfam
tools (Figure 4a and Table S1). All AhZIP proteins shared motifs 1 and 2 except AhZIP1.2
(without motif 1) and AhZIP7.8 (without motif 2). The distribution pattern of conserved
motifs varied among phylogenetic clades, whereas it was generally similar within the same
phylogenetic clades. Five proteins, including AhIRT1.2, AhZIP1.1, AhZIP1.2, AhZIP7.8
and AhZIP3.5, were found to have different motif profiles from their orthologs (Figure 4a),
indicating that these proteins might have distinct functions.
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Figure 4. Distributions of the conserved motifs (a) and domains (b) in AhZIP proteins from peanut.

All AhZIP proteins contained only one domain named ZIP, which is the typical
domain of the family (Figure 4b). All AhZIP proteins were well modelled with the template,
6pgi.1.A (Figure S1 and Table S2), which is the A chain of the BbZIP protein from Bordetella
bronchiseptica. BbZIP has been revealed to have a binuclear metal center, where two metal
ions were trapped halfway through the membrane and the two metal-binding sites play
asymmetric roles within the transport pathway [41]. Sequence identity ranged from 13.27%
to 20.16%, the value of GMQE ranged from 0.12 to 0.54 and QMEANDisCo global score
ranged from 0.32 to 0.54 (Table S2). These data are suggestive of the high quality of the 3D
model predictions on AhZIP proteins.

Multiple sequence alignment showed considerable homology between the BbZIP and
AhZIP proteins throughout the TMD, particularly in TM2, TM4 and TM5 (Figure 5). The
TMD structure of AhZIP proteins showed great diversity. Among the 30 AhZIP proteins,
only 14 have the 3 + 5 TMD structure (Figure 5). AhIRT1.2, AhZIP1.2 and AhZIP3.5
only contained the first three TMDs (TM1–TM3), AhZIP7.8 contained the last four TMDs
(TM5–TM8), and the remaining homologs of AhZIP3 and AhZIP7 contained the first five
TMDs (TM1–TM5) (Figure 5). A long chain variable region was found between TM3
and TM4 in most AhZIPs, except for AhIRT1.2 and AhZIP7.8, and most of them contain
various HRDs such as HXHXH, HHH, HHHHH, HXHXHXH and HHXHXHXH (Figure 5).
Additionally, glycine (G) residues are always found near or inside HRDs (Figure 5).
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AhZIP6.3   GTMVY....MCFMFSVTTPMGIVLGMAIFSLTGYDDSNPNALIMEGLLGSISSGVLIYMALVDLIAVDFFHNKLMNSNPKLKKASFLALTLG.SAAMSILALWA*...  344 

AhZIP6.4   GTMVY....MCFMFSVTTPMGIVLGMAIFSLTGYDDSNPNALIMEGLLGSISSGVLIYMALVDLIAVDFFHNKLMNSNPKLKKASFLALTLG.SAAMSILALWA*...  344 
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AhZIP7.4   ............................................................................................................    - 
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AhZIP7.7   ............................................................................................................    - 
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Figure 5. Multiple sequence alignment of BbZIP and AhZIP proteins. BbZIP protein from Bordetella
bronchiseptica and 30 AhZIP proteins were aligned using ClustalW. The red bars indicate that amino
acid residues possibly formed Zn2+ and Cd2+ binding sites in the BbZIP protein. The yellow high-
lighted motifs indicate histidine-rich domains (HRDs) in the long cytoplasmic loop between TM3
and TM4.
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2.4. Expression Profiles of AhZIP Genes in Different Tissues of Peanut

The RNA-seq data showed that all AhZIP genes were tissue-specifically expressed in
peanut plants (Table S3). Generally, the gene expression profiles were similar within the
same phylogenetic classes. The 30 AhZIP genes could be classified into three distinct groups
according to the gene expression patterns (Figure 6). Group 1 consists of two orthologs of
ZIP11 that showed the highest gene expression levels in almost all tissues tested. Group 2
contained AhZIP4.1/4.2, AhZIP6.3/6.4 and AhZIP2.1/2.2, representing intermediate levels of
gene expression. Group 3 is composed of the remaining 22 genes; these genes were not express
in most peanut tissues or showed low expression levels. AhZIP2.1/2.2 is specifically and highly
expressed in the root and nodule. By contrast, AhZIP4.1/4.2 was mainly expressed in roots,
nodules and reproductive tissues (i.e., peg tip to fruit, seed and pericarp); AhZIP11.1/11.2 was
expressed in all tissues but was relatively higher in reproductive tissues (i.e., peg tip to fruit,
fruit and pericarp) and vegetative shoot tips (Figure 6).
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Figure 6. Expression profiles of AhZIP genes across the different tissues. Gene expression is expressed
in lg(TPM + 1). Pattee 1, 3, 5, 6, 7, 8 and 10 represent different developmental stages of peanut pods
according to Pattee et al. [42], who classified peanut pod maturity into 15 categories.

2.5. Gene Expression of AhZIPs in Response to Fe- and Zn-Deficiency

The expression of AhZIP genes differed between the two cultivars in response to
Fe- and Zn-deficiency (Figure 7). Under the control condition, Fenghua 1 showed higher
expressions of AhZIP3.6 and AhZIP11.1 than Silihong, while Silihong showed higher ex-
pressions of AhIRT1.1, AhIRT1.2, AhZIP1.1, AhZIP1.2, AhZIP6.1 and AhZIP7.8 than Fenghua
1. Under Fe-deficiency condition, Fenghua 1 showed higher expressions of AhZIP1.1 and
AhZIP4.1 than Silihong, while Silihong showed higher expressions of AhIRT1.1, AhZIP3.6
and AhZIP7.8 than Fenghua 1 (Figure 7). Under Zn-deficiency condition, Fenghua 1 showed
higher expressions of AhZIP2.1, AhZIP3.5 and AhZIP11.1 than Silihong, while Silihong
showed higher expressions of AhIRT1.1, AhIRT1.2 and AhZIP3.6 than Fenghua 1 (Figure 7).
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Figure 7. Expression levels of 12 AhZIP genes in the root of two peanut cultivars in response to 

Fe/Zn deficiency. Data (means ± SE, n = 4) sharing the same letter(s) above the error bars are not 

significantly different at the 0.05 level based on the Duncan multiple range test. 
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Figure 7. Expression levels of 12 AhZIP genes in the root of two peanut cultivars in response to
Fe/Zn deficiency. Data (means ± SE, n = 4) sharing the same letter(s) above the error bars are not
significantly different at the 0.05 level based on the Duncan multiple range test.

All AhZIP genes tested transcriptionally responded to Fe- and Zn-deficiency in peanut
roots dependent on cultivars (Figure 7). Fe-deficiency enhanced the expressions of AhIRT1.1,
AhIRT1.2 and AhZIP7.2 but reduced those of AhZIP3.5 and AhZIP4.1 for both cultivars,
while other genes showed cultivar differences in response to Fe-deficiency. Fe-deficiency in-
hibited the expressions of AhZIP1.1, AhZIP1.2 and AhZIP6.1 in Silihong, while they were not
affected or increased in Fenghua 1. The expressions of AhZIP3.6, AhZIP7.8 and AhZIP11.1
in Fenghua 1 were inhibited by Fe-deficiency, while in Silihong, they were unaffected.

Zn-deficiency upregulated the expression of AhIRT1.2 for both cultivars, while other
genes showed cultivar differences in response to Zn-deficiency (Figure 7). The influence of
Zn-deficiency on gene expression was more pronounced in Fenghua 1 than in Silihong. The
expressions of AhIRT1.1, AhZIP1.1, AhZIP1.2, AhZIP2.1, AhZIP3.5, AhZIP7.8 and AhZIP11.1
were induced by Zn-deficiency in Fenghua 1, while that in Silihong were unchanged or
downregulated. In contrast, AhZIP3.6 were significantly induced by Zn-deficiency in
Silihong, whereas in Fenghua 1, it was downregulated.

2.6. Metal Accumulation and Translocation in Response to Fe- or Zn-Deficiency

The two peanut cultivars differed from each other in the accumulation of Fe and
Mn (Figure 8). The concentration of Fe in roots and shoots as well as the total amount
of Fe in plants were significantly higher in Fenghua 1 than in Silihong. Compared with
Silihong, Fenghua 1 showed higher root Mn concentrations but lower shoot Mn concentra-
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tions, which resulted in a lower root-to-shoot Mn translocation (Figure 8). Fe-deficiency
significantly reduced Fe concentrations in roots for both cultivars; however, shoot Fe
concentrations were unchanged. This contributed to an increase in Fe translocation in
Fe-deficient plants. The total amount of Fe in plants was decreased by Fe-deficiency in
Fenghua 1 but was unaffected in Silihong. Zn-deficiency increased shoot Fe concentrations
for both cultivars, while root Fe concentrations, total Fe in plants and the percentage of Fe
in shoots were not affected.
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Figure 8. The accumulation and translocation of Fe, Mn and Zn in two peanut cultivars in response 

to Fe- or Zn-deficiency. Data (means ± SE, n = 4) shared the same letter(s) above the error bars are 

not significantly different at the 0.05 level based on the Duncan multiple range test. 

The concentrations of Zn in roots and shoots as well as the total amount of Zn in 

plants were significantly enhanced by Fe-deficiency for both cultivars, while the percent-

age of Zn in shoots was decreased. Zn-deficiency did not change Zn accumulation, but 

reduced Zn translocation from roots to shoots in Fenghua 1 (Figure 8). Fe-deficiency sig-

nificantly increased Mn concentrations in roots and shoots as well as the total amount of 

Mn in plants for both cultivars. The percentage of Mn in shoots declined by Fe-deficiency 

in Fenghua 1, while it was unaffected in Silihong. Zn-deficiency reduced Mn translocation 

for both cultivars, while root Mn concentrations in Silihong were increased (Figure 8). 

2.7. Relationship of Gene Expression of AhZIPs and Metal Accumulation 

To identify the AhZIP genes involved in metal uptake and translocation in peanut 

roots, a stepwise linear regression analysis was performed. As showed in Table 3, the ex-

pression of AhIRT1.1 is significantly correlated with the total amount of Fe in plants, con-

centrations of Zn and Mn in shoots, and the percentage of Fe and Mn in shoots. The ex-

pression of AhIRT1.2 is significantly correlated with Fe concentrations in roots, the total 

amount of Mn in plants, and the percentage of Mn in shoots. The expression of AhZIP3.6 

is significantly correlated with Mn concentrations in shoots and the percentage of Mn in 

shoots. The expression of AhZIP6.1 is significantly correlated with Fe concentrations in 

roots and shoots. The expression of AhZIP7.2 is significantly correlated with Zn concen-

trations in roots and the total amount of Zn in plants. The expression of AhZIP11.1 is sig-

nificantly correlated with Mn concentrations in shoots. 

  

Figure 8. The accumulation and translocation of Fe, Mn and Zn in two peanut cultivars in response
to Fe- or Zn-deficiency. Data (means ± SE, n = 4) shared the same letter(s) above the error bars are
not significantly different at the 0.05 level based on the Duncan multiple range test.

The concentrations of Zn in roots and shoots as well as the total amount of Zn in plants
were significantly enhanced by Fe-deficiency for both cultivars, while the percentage of
Zn in shoots was decreased. Zn-deficiency did not change Zn accumulation, but reduced
Zn translocation from roots to shoots in Fenghua 1 (Figure 8). Fe-deficiency significantly
increased Mn concentrations in roots and shoots as well as the total amount of Mn in plants
for both cultivars. The percentage of Mn in shoots declined by Fe-deficiency in Fenghua
1, while it was unaffected in Silihong. Zn-deficiency reduced Mn translocation for both
cultivars, while root Mn concentrations in Silihong were increased (Figure 8).

2.7. Relationship of Gene Expression of AhZIPs and Metal Accumulation

To identify the AhZIP genes involved in metal uptake and translocation in peanut roots,
a stepwise linear regression analysis was performed. As showed in Table 3, the expression
of AhIRT1.1 is significantly correlated with the total amount of Fe in plants, concentrations
of Zn and Mn in shoots, and the percentage of Fe and Mn in shoots. The expression of
AhIRT1.2 is significantly correlated with Fe concentrations in roots, the total amount of Mn
in plants, and the percentage of Mn in shoots. The expression of AhZIP3.6 is significantly
correlated with Mn concentrations in shoots and the percentage of Mn in shoots. The
expression of AhZIP6.1 is significantly correlated with Fe concentrations in roots and shoots.
The expression of AhZIP7.2 is significantly correlated with Zn concentrations in roots and
the total amount of Zn in plants. The expression of AhZIP11.1 is significantly correlated
with Mn concentrations in shoots.
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Table 3. Stepwise linear regression analysis (β value) of metal accumulation and the expression of
AhZIP genes in the roots of Fenghua 1 and Silihong (n = 24).

Gene
Expression a [Fe]root

b [Fe]shoot
c Total Fe in

Plants
% of Fe in

Shoots [Zn]root
d [Zn]shoot

e Total Zn in
Plants [Mn]shoot

f Total Mn
in Plants

% of Mn
in Shoots

AhIRT1.1 −0.07 −0.08 −0.52 ** 0.65 ** 0.21 0.60 ** 0.16 1.19 *** 0.05 0.95 ***
AhIRT1.2 −0.39 * 0.02 0.10 0.16 0.30 0.32 0.28 0.06 0.44 * −0.34 *
AhZIP1.1 0.10 0.11 −0.14 −0.07 −0.21 −0.17 −0.20 −0.06 −0.27 0.15
AhZIP1.2 −0.01 0.12 −0.24 −0.05 0.13 0.03 −0.12 −0.05 −0.26 0.10
AhZIP2.1 0.01 0.21 −0.30 0.07 0.18 0.16 −0.12 −0.04 −0.11 0.01
AhZIP3.5 0.06 0.27 −0.14 0.09 0.26 0.28 0.09 −0.12 −0.05 −0.14
AhZIP3.6 −0.12 −0.15 −0.32 0.11 0.04 0.10 −0.26 0.57 ** −0.25 0.70 ***
AhZIP4.1 0.00 0.13 −0.35 −0.11 −0.06 −0.02 −0.17 −0.18 −0.22 0.05
AhZIP6.1 −0.60 ** −0.42 * 0.02 0.06 0.02 −0.04 0.10 0.13 0.37 −0.15
AhZIP7.2 0.10 −0.04 0.15 0.09 0.49 * 0.06 0.45 * 0.07 0.28 −0.10
AhZIP7.8 0.01 0.13 −0.27 −0.08 0.21 0.13 −0.10 −0.03 −0.18 −0.01

AhZIP11.1 0.11 0.23 0.19 0.26 −0.05 0.43 −0.03 0.56 * 0.20 −0.14

a Gene expression is calculated as −∆∆CT, b Fe concentration in roots, c Fe concentration in shoots, d Zn concentration
in roots, e Zn concentration in shoots, f Zn concentration in shoots, * p < 0.05, ** p < 0.01, *** p < 0.001.

3. Discussion

In this study, 30 ZIP members were identified in peanut, which is the largest compared
with the reported plant species. For example, 12 ZIP genes were identified in most plant
species such as potato, trifoliate orange and maize, while 15, 16 and 21 ZIP members
were reported in Arabidopsis, rice and P. trichocarpa, respectively [27–31]. Peanut is an
allotetraploid species that essentially contains two complete sets of subgenome (A and
B) from two diploid ancestral species: A. duranensis (AA) and A. ipaensis (BB) [39]. Here,
we showed that all AhZIPs are multicopy genes, and most of them resulted from WGDs
(Figure 3). AhZIP genes are unevenly distributed in the two subgenomes of peanut. The
subgenome A contained 13 AhZIP genes, while 17 genes were distributed in the subgenome
B (Figure 3). This phenomenon indicates that gene loss or gain occurred during the
evolutionary process.

In agreement with previous studies [27,30,31], most of the AhZIP proteins were
predicted to localize to the plasma membrane, and AhZIP1.2, AhZIP3.2, AhZIP3.5 and
AhZIP7.8 localize to the endomembrane system (Table 1). AtIRT1, AtIRT3 and AtZIP2 from
Arabidopsis have been confirmed to be localized to the plasma membrane [9,12,13], while
AtIRT2 and AtZIP1 localized to the vesicle or vacuolar membranes [11,13]. In rice, OsIRT1,
OsIRT2, OsZIP1, OsZIP4, OsZIP5, OsZIP7 and OsZIP8 have been proven to localize to the
plasma membrane [16,17,19–26].

AhZIPs showed a wide variation in TMDs, ranging from 3 to 8 TMDs (Table 1). More
than half of AhZIPs have 3–5 TMDs, which is not consistent with the results of Guerinot [15],
who proposed that ZIP proteins typically contained 8 TMDs. The variation in TMD number
in ZIP proteins has been reported in several plant species such as maize (6–13 TMDs), potato
(6–9 TMDs), trifoliate orange (6–9 TMDs) and P. trichocarpa (3–13 TMDs) [27,28,30,31]. The
ZIP family was generally predicted to have a 3 + 5 TMD architecture [15]. However, the
TMD structure is more diverse in AhZIP proteins. Among 30 AhZIP proteins, only 14 have
the 3 + 5 TMD structure (Figure 5). The unusual arrangement of TMDs suggests that the
peanut AhZIP family has a distinctive evolutionary process and significant divergence of
physiological functions.

The HRD within the long cytoplasmic loop between TM3 and TM4 has been postulated
to serve as a potential Zn2+ binding site in many ZIPs [15,43]. The histidine residues have
been proven to coordinate Zn2+ in the intracellular loop between TM3 and TM4 of human
hZIP4 [43]. In the current study, all AhZIP proteins except AhIRT1.2 and AhZIP7.8 have
the large intracellular loop and most of them contain HRDs including HXHXH, HHH,
HHHHH, HXHXHXH and HHXHXHXH (Figure 5). Additionally, a glycine (G) residue
is always found near or inside HRDs in the intracellular loop between TM3 and TM4 of
AhZIP proteins. Moreover, almost all TMDs contained a conserved glycine (Figure 5). These
findings indicate that glycine residues might be essential for the structure and function of
AhZIP proteins. In human hZIP4, six conserved G residues (G330, G374, G512, G526, G535
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and G630) were identified to be located at or near the TM–TM interface, suggesting a role
in mediating TM packing [41].

All AhZIP proteins contained the typical domain of the family, zip, and are perfectly
modeled on the template, 6pgi.1.A (the A chain of BbZIP protein from B. bronchiseptica).
BbZIP as a Zn2+ and Cd2+ transporter has a binuclear metal center, where two metal
ions are trapped halfway through the membrane, and the two metal-binding sites play
asymmetric roles within the transport pathway [41]. A pairwise sequence alignment
showed considerable homology between BbZIP and AhZIPs throughout the TMD (Figure 5).
BbZIP has been proven to have six Zn2+ binding sites and one Cd2+ binding site, which
were formed by 13 amino acid residues including D89 from TM2; M99 and D144 from
TM3; H177, N178 and E181 from TM4; Q207, D208 and E211 from TM5; E240 from TM6;
H275 and E276 from TM7; and H286 from TM8 [41]. Almost all of them were mapped to
conserved amino acid residues of AhZIP proteins, particularly the two metal-binding motifs
“177HNLPEG182” from TM4 and “207QDVPEG212” from TM5, which form the binuclear
metal center of BbZIP: M1 (H177, E181, Q207 and E211) and M2 (N178, E181, D208, E211,
and E239 from TM6) (Figure 5). The similar structures suggest that AhZIPs might have
equivalent physiological functions as BbZIP.

The 30 AhZIP members were divided into four classes: I, II, III and IV (Figure 1).
The classification concurred with those reported in previous studies [29–31]. Class I, as
the largest class, contained 20 AhZIP members, including eight orthologs of AhZIP7, six
orthologs of AhZIP3, four orthologs of AhIRT1 and two orthologs of AhZIP1. Most of
the AhZIPs belonging to class I shared six motifs (4, 8, 2, 3, 5 and 1), except for AhZIP7.8,
AhIRT1.2, AhZIP3.5 and AhZIP1.2, which have less motifs (Figure 4a). Motifs 1, 2, 3 and 5
were annotated as zinc transporters (Table S1). The motif composition indicates that the
class I proteins might be responsible for metal transport in peanut.

It is noteworthy that several genes belonging to class I significantly differed from other
orthologous genes in the gene/protein structures. AhZIP7.8, encoding 159 aa with four
TMDs (TM5-TM8) and one motif (motif 1), has a distinctive gene structure (five exons and
four introns). AhIRT1.2 contained three motifs and three TMDs, which are greatly less than
the other three orthologs. AhZIP1.2 has three TMDs and four motifs, which are less than
half of AhZIP1.1. AhZIP1.2 contained two exons and one intron, while AhZIP1.1 contained
three exons and two introns. AhZIP3.5 contained three TMDs (TM1–TM3) and five motifs,
while other orthologs contained five TMDs (TM1–TM5) and six motifs. Moreover, AhZIP7.8,
AhZIP3.5 and AhZIP1.2 were predicted to be located in the endomembrane system. The
distinctive features indicate that these genes might differ from their orthologous genes in
physiological functions.

Class II consisted of AhZIP4.1 and AhZIP4.2. The two members are significantly
similar in protein structure and physiochemical traits, implying similar functions in peanut
plants. However, they differed from each other in gene structure. AhZIP4.1 contained
four exons and three introns, while AhZIP4.2 contained two exons and four introns. The
difference in exon/intron organization indicates a significant gene divergence during
the evolutionary process. Class III includes AhZIP2.1/2.2 and AhZIP11.1/11.2. The four
members shared a similar motif composition (motifs 1, 2, 6, 7 and 10). However, the
gene structure is different between AhZIP2 (two exons and one intron) and AhZIP11
(three exons and two introns). Class IV contained four orthologous genes of AhZIP6,
which were derived from both WGD and segmental duplication. The four members are
greatly similar in physiochemical features, TMDs, subcellular location, and gene/protein
structures, indicating similar physiological functions. The Ks values of AhZIP6.1/6.3 (1.3068)
and AhZIP6.2/6.4 (1.3548) were considerably higher than that of AhZIP6.1/6.2 (0.0477) and
AhZIP6.3/6.4 (0.0485) (Table 2), indicating that segmental duplication may occur earlier
than WGD.

Gene duplication is a major source of novel genes, contributing to the evolution of new
functions [44]. However, before the functional divergence, duplicated genes are usually
functionally redundant, which may induce gene loss [45]. To avoid gene loss during
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evolution processes, the expression of duplicated genes is reduced compared with the
ancestral gene [45]. In the present study, 22 AhZIP genes, including all members of class I
as well as two orthologs of AhZIP6 (AhZIP6.1/6.2), showed low expression in the 22 peanut
tissues under normal conditions, and most of them have more than four orthologous genes
(Figure 6). Our results are in accordance with those of Qian et al. [45], suggesting that the
low expression of these genes might be beneficial for long-term maintenance of duplicate
genes and their functional redundancy. Despite this, the RT-qPCR results indicated that
these low expressed genes in peanut roots can be induced by Fe- and Zn-deficiency in a
cultivar-dependent manner (Figure 7). It was observed that AhZIP2.1/2.2, AhZIP4.1/4.2
and AhZIP11.1/11.2 were preferentially expressed in roots, nodule and reproductive tissues
(i.e., peg tip to fruit, seed and pericarp) (Figure 6). These genes might be involved in metal
uptake and translocation by the root and might be responsible for the development of pods
or seeds by regulating the metal transport.

The expression of AhZIP genes showed wide differences in response to Fe- and Zn-
deficiency depending on cultivars (Figure 7). Fe-deficiency enhanced the expressions
of AhIRT1.1 and AhIRT1.2 for both cultivars. Moreover, the expression of AhIRT1.2 was
also upregulated by Zn-deficiency for both cultivars. Phylogenetic analysis showed that
AhIRT1.1 and AhIRT1.2 have a close relationship with AtIRT1 and AtIRT2 (Figure 1).
AtIRT1 is a Fe transporter responsible for taking up Zn, Mn, Co, Ni and Cd from the
rhizosphere to root cells [6–9]. AtIRT2 is involved in the compartmentalization of Fe into
vesicles to avoid its toxicity in the cytosol [11]. Fe-deficiency significantly increased the
concentration of Zn and Mn in roots and shoots as well as the total amount of Zn and Mn in
plants for both cultivars (Figure 8). The expression of AhIRT1.1 significantly correlated with
the total amount of Fe in plants, concentrations of Zn and Mn in shoots, and the percentage
of Fe and Mn in shoots (Table 3). The expression of AhIRT1.2 significantly correlated with
Fe concentrations in roots, the total amount of Mn in plants and the percentage of Mn in
shoots (Table 3). These findings suggested that AhIRT1.1 and AhIRT1.2 might be responsible
for the uptake of Fe, Zn and Mn in peanut plants. PtIRT1 from trifoliate orange, which was
closely related to AhIRT1.1 and AhIRT1.2, has been proven to be responsible for Fe, Zn and
Mn uptake [31].

Fe-deficiency induced the expression of AhZIP7.2 for both cultivars. The stepwise
linear regression analysis revealed that the expression of AhZIP7.2 significantly correlated
with Zn concentrations in roots and the total amount of Zn in plants (Table 3). The results
indicate that AhZIP7.2 might be involved in Fe/Zn uptake in peanut plants. The expression
of AhZIP3.6 was positively correlated with Mn concentrations in shoots and the percentage
of Mn in shoots (Table 3), indicating a possible role in Mn translocation from roots to
shoots. Phylogenetic analysis showed that AhZIP1/3/7 has a closer relationship with
OsZIP3/4/5/8/9 (Figure 1). OsZIP3 is most likely to be localized at the plasma membrane
and responsible for xylem unloading of Zn in the nodes of rice [46]. OsZIP4 is a Zn
transporter involved in the translocation of Zn within plants [20,21]. OsZIP5 and OsZIP8
serve as the plasma membrane-localized transporter involved in Zn uptake and distribution
within rice [22,23]. OsZIP5 and OsZIP9 are tandem duplicates that act synergistically in
Zn/Cd uptake [47].

The expression of AhZIP6.1 was repressed by Zn-deficiency, while its response to
Fe-deficiency was dependent on cultivars (Figure 7). Fe-deficiency upregulated the ex-
pression of AhZIP6.1 in Fenghua 1 but downregulated that in Silihong. The expression of
AhZIP6.1 is significantly correlated with Fe concentrations in roots and shoots (Table 3).
These data indicate that AhZIP6.1 might be responsible for the transport of Fe in peanut
plants. Phylogenetic analysis showed that AhZIP6.1 has a close relationship to OsZIP6
(Figure 1), which is suggested to competitively take up Fe2+ and Co2+ [48]. TcZNT6 of
Thlaspi caerulescens is a metal transporter that is responsible for the transport of Zn, Cd,
and Fe or Mn [49]. ZIP6 from Arabidopsis halleri mainly expressed in vascular tissues and
encodes a Zn/Cd transporter [50].
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The expression of AhZIP11.1 in Fenghua 1 was inhibited by iron deficiency but induced
by zinc deficiency, whereas its expression in Silihong was not affected (Figure 7). Stepwise
linear regression analysis revealed that the expression of AhZIP11.1 was significantly
correlated with Mn concentrations in shoots (Table 3). It seems that AhZIP11.1 is involved in
Mn transport in peanut. Similarly, PtZIP11 from trifoliate orange has been suggested to be
involved in Mn transport but not Zn or Fe [31]. However, AtZIP11 from Arabidopsis [13] and
NtZIP11 from Nicotiana tabacum [51] were shown to mediate Zn uptake but not Fe or Mn.

In agreement with previous studies [52], we found that Silihong showed a higher
capacity for tolerance of Fe-deficiency than Fenghua 1 (Figure 8). This might be attributed
to lower Fe requirement under normal conditions and higher Fe translocation in case of
iron deficiency. In addition, the higher expression of AhIRT1.1 in the root of Silihong under
iron deficiency might enhance its capacity for Fe acquirement, therefore contributing to
tolerance of Fe-deficiency. Moreover, Silihong has a higher capacity for the translocation
of Mn from roots to shoots than Fenghua 1 (Figure 8). Stepwise linear regression analysis
revealed that the expressions of AhIRT1.1, AhIRT1.2, and AhZIP3.6 were significantly related
to the translocation of Mn in peanut plants (Table 3). Silihong showed higher expressions
of AhIRT1.1 and AhZIP3.6 than Fenghua 1. Thus, a higher capacity for Mn translocation in
Silihong might result from the higher expression of AhIRT1.1 and AhZIP3.6.

4. Materials and Methods
4.1. Identification of ZIP Genes in Peanut

The protein sequences of 15 AtZIPs from Arabidopsis and 12 OsZIPs from rice were
retrieved from Phytozome database (https://phytozome-next.jgi.doe.gov/, accessed on
12 August 2021). The sequences obtained were used as queries for BLASTP against the
genome of cultivated peanut (cv. Tifrunner) on Phytozome. All candidates were further ex-
amined with the hmmscan tool (https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan,
accessed on 15 August 2021). The sequences that contain the ZIP domain (Pfam: PF02535)
were recognized as AhZIP proteins. Thereafter, physiochemical parameters including
molecular weight, amino acid number, GRAVY and pI were analyzed using the ProtParam
tool (https://web.expasy.org/protparam/, accessed on 27 August 2021) [53]. The TMDs of
AhZIPs were identified using TOPCONS (http://topcons.net/, accessed on 1 September
2021) [54]. Subcellular targeting sites of AhZIP proteins were predicted using Plant-mPLoc
(http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/, accessed on 31 August 2021) [55].

4.2. Phylogenetic and Structural Analysis of AhZIP Proteins

Sequences of ZIP proteins of Arabidopsis, rice and trifoliate orange retrieved from Phyto-
zome database were aligned using ClustalW integrated in MEGA-X software (v. 10.2.6). Based
on the sequence alignment, a phylogenetic tree was constructed by the neighbor-joining (NJ)
method with the No. of no-difference models. A bootstrap test of 1000 replicates was used for
estimating the reliability of the phylogenetic tree. The tree was drawn and modified using iTOL
(https://itol.embl.de/itol.cgi, accessed on 5 September 2021) [56].

The conserved motifs and domains of AhZIP proteins were analyzed using the MEME
(https://meme-suite.org/meme/tools/meme, accessed on 31 January 2022) [57] and Pfam
tool (http://pfam.xfam.org/search#tabview=tab1, accessed on 2 February 2022) [58], re-
spectively, and were visualized using TBtools software [59]. Their homology-modelled
3D structures were predicted using the SwissModel (https://swissmodel.expasy.org/,
accessed on 5 February 2022) [60].

4.3. Structure, Duplication and Ka/Ks of AhZIP Genes

The exon/intron structures of AhZIP genes were detected with genomic and cod-
ing sequences using GSDS v. 2.0 (http://gsds.gao-lab.org/, accessed on 11 September
2021) [61]. Gene collinearity and Ka/Ks were analyzed by the One Step MCScanX and
Simple Ka/Ks calculator (NJ) integrated in the TBtools software, respectively [59]. Diagrams
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of the exon/intron organization and gene duplication event were drawn using the TBtools
software [59].

4.4. Gene Expression Analysis Based on RNA-Seq Data

The expression profiles of the AhZIP genes from Tifrunner were identified using
RNA-seq data obtained from the PeanutBase database (https://www.peanutbase.org/,
accessed on 6 February 2022) [62]. The read counts were transformed to TPM (Transcripts
Per Kilobase of exon model per Million mapped reads), and the heatmap diagram was
constructed with lg(TPM + 1) using TBtools [59].

4.5. Plant Growth, Metal Determination and RT-qPCR Analysis

Two peanut cultivars differing in Fe-deficiency tolerance, Fenghua 1 (Fe-deficiency
sensitive cultivar) and Silihong (Fe-deficiency tolerant cultivar), were used for determining
the relationships between the expression of AhZIP genes and metal accumulation in peanut
plants [52]. After surface sterilized with 5% sodium hypochlorite (1 min), the seeds were
presoaked in distilled water for 24 h, and then, they were sown in sand for germination.
Three-day-old uniform seedlings were transferred to polyethylene pots and cultured as
previously reported [63]. The seven-day-old seedlings were treated with Fe- (without Fe)
or Zn-deficiency (without Zn) in hydroponic cultures, with the normal nutrition solution
containing 50 µM Fe-EDTA and 3.8 µM ZnSO4 as the control [64]. The experiment was
arranged in a randomized complete design with four replications (pots) for each treatment.
Each replication includes three seedlings. During the growing period, pots were randomly
arranged and moved daily for minimizing position effects. After 14 days of treatment,
plants were harvested and fresh tissues of roots were sampled for RT-qPCR analysis.

The harvested plants were separated into roots and shoots and oven-dried to constant
weight. After weighing, plant tissues were ground into powder and were digested with
a mixture of HNO3 and HClO4 (3:1, v/v) using the method described by Su et al. [63].
The levels of Fe, Zn and Mn were determined by flame atomic absorbance spectrometry
(WFX-110, Beijing Rayleigh Analytical Instrument Company, Beijing, China).

The expression levels of 12 AhZIP genes representing unique gene and protein struc-
tures were detected using RT-qPCR with the method described previously [52] and with
Ah60S as the endogenous reference gene. The primers are listed in Table S4. Four biological
replicates were performed for each treatment, and three technical replicates were performed
for each sample. The relative gene expression was calculated using the 2−∆∆CT method [65].

4.6. Statistical Analysis

Data were subjected to one-way ANOVA, and significant variations among means
were determined by the Duncan’s multiple-range test at 0.05 probability. Stepwise linear
regression analysis was performed on the expression of AhZIP genes and metal accumu-
lation. All statistical analyses were conducted using IBM SPSS Statistics v. 22 (IBM, New
York, NY, USA).

5. Conclusions

In conclusion, a total of 30 ZIP genes were identified in peanut, which were divided
into four classes. All AhZIP proteins contained the typical zip domain and are perfectly
modeled on the 6pgi.1.A template, suggesting a role of metal transport in peanut. Un-
like previous reports, AhZIP proteins showed a wide variation in TMDs (3–8 TMDs) and
only 14 AhZIPs have the 3 + 5 TMD structure. Clustered AhZIPs generally share similar
gene/protein structures; however, unique features were found in AhIRT1.2, AhZIP1.2,
AhZIP3.5 and AhZIP7.8. Most AhZIP genes showed reduced expression under normal
conditions, while AhZIP2.1/2.2, AhZIP4.1/4.2 and AhZIP11.1/11.2 are highly and preferen-
tially expressed in roots, nodule and reproductive tissues, suggesting an essential role in
pod and seed development. Transcriptional responses of AhZIPs to Fe/Zn deficiency in
peanut roots are dependent on cultivar, which might be, at least partially, responsible for
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the different metal accumulation between Fenghua 1 and Silihong. The findings provide
essential information to further functionally characterize AhZIP genes in the uptake and
translocation of metal ions in peanut plants, which is great of importance for screening or
breeding cultivars for Fe/Zn biofortification.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/plants11060786/s1, Figure S1: Predicted 3D structure of peanut
AhZIP proteins using the SwissModel. Models were visualized in rainbow color from N to C termini;
Table S1: Analysis of the ten conserved motifs of AhZIP proteins in peanut; Table S2: The best
templates of peanut AhZIP proteins selected from the SwissModel template library for building 3D
structure models; Table S3: Expression profiles (TPM) of AhZIP genes in different tissues of peanut;
Table S4: Primers of peanut AhZIP genes selected for RT-qPCR analysis.
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