Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Zn–Mg–Al alloy-coated steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 38081 KB  
Article
Dynamic Testing of Materials for Galvanising Pot Roll Bearings with Improved Performance
by Giovanni Paolo Alparone, James Sullivan, Christopher Mills, James Edy and David Penney
Materials 2024, 17(23), 5837; https://doi.org/10.3390/ma17235837 - 28 Nov 2024
Viewed by 1293
Abstract
Galvanising pot roll bearings are subjected to severe deterioration due to the corrosion of the bearing materials in liquid Zn, resulting in maintenance stops that can cost thousands of pounds per hour in downtime. Dynamic wear testing in molten Zn-Al and Zn-Al-Mg was [...] Read more.
Galvanising pot roll bearings are subjected to severe deterioration due to the corrosion of the bearing materials in liquid Zn, resulting in maintenance stops that can cost thousands of pounds per hour in downtime. Dynamic wear testing in molten Zn-Al and Zn-Al-Mg was conducted to assess the corrosion and wear resistance of three material pairs using a bespoke testing rig. The materials investigated in this study were Wallex6TM coated with WC-Co, stainless steel 316L coated with Al2O3, and as-received Wallex6TM and Wallex4TM alloys. It was found that only the Al2O3 coating remained unreactive in Zn alloy, whereas the materials containing Co were corroded, as evidenced by the formation of intermetallic compounds containing Al-Co-Zn-Fe. The results also highlighted that the dissolution of the Co matrix and diffusion of Zn and Al from the bath occurred in Wallex6TM and Wallex4TM. However, the diffusion of Zn into the WallexTM alloys was reduced by approximately 60% in the Zn-Al-Mg bath compared to Zn-Al. The wear scars were analysed to determine the wear coefficient of the worn specimens. Out of the three material couplings investigated in this study, minimal wear damage in both Zn-Al and Zn-Al-Mg was only obtained by pairing Wallex6TM with Al2O3 coatings. Full article
Show Figures

Figure 1

17 pages, 19222 KB  
Article
Characterisation of Fe Distribution in the Liquid–Solid Boundary of Al–Zn–Mg–Si Alloy Using Synchrotron X-ray Fluorescence Microscopy
by He Tian, Dongdong Qu, Nega Setargew, Daniel J. Parker, David J. Paterson, David StJohn and Kazuhiro Nogita
Materials 2024, 17(14), 3583; https://doi.org/10.3390/ma17143583 - 19 Jul 2024
Viewed by 1516
Abstract
Al–Zn–Mg–Si alloy coatings have been developed to inhibit the corrosion of cold-rolled steel sheets by offering galvanic and barrier protection to the substrate steel. It is known that Fe deposited from the steel strip modifies the microstructure of the alloy. We cast samples [...] Read more.
Al–Zn–Mg–Si alloy coatings have been developed to inhibit the corrosion of cold-rolled steel sheets by offering galvanic and barrier protection to the substrate steel. It is known that Fe deposited from the steel strip modifies the microstructure of the alloy. We cast samples of Al–Zn–Mg–Si coating alloys containing 0.4 wt% Fe and directionally solidified them using a Bridgman furnace to quantify the effect of this Fe addition between 600 °C and 240 °C. By applying a temperature gradient, growth is encouraged, and by then quenching the sample in coolant, the microstructure may be frozen. These samples were analysed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to determine the morphological effects of the Fe distribution across the experimental temperature range. However, due to the sub 1 wt% concentration of Fe, synchrotron X-ray fluorescence microscopy (XFM) was applied to quantitatively confirm the Fe distribution. Directionally solidified samples were scanned at 7.05 keV and 18.5 keV using X-ray fluorescence at the Australian Synchrotron using the Maia array detector. It was found that a mass nucleation event of the Fe-based τ6 phase occurred at 495 °C following the nucleation of the primary α-Al phase as a result of a peritectic reaction with remaining liquid. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

13 pages, 18105 KB  
Article
Al2O3 Coatings for Protection of Stainless Steel 316L against Corrosion in Zn-Al and Zn-Al-Mg
by Giovanni Paolo Alparone, David Penney, James Sullivan, James Edy and Christopher Mills
Coatings 2024, 14(5), 606; https://doi.org/10.3390/coatings14050606 - 11 May 2024
Cited by 3 | Viewed by 3012
Abstract
The production and quality of automotive-grade galvanised steel are affected by the limited service life of the pot roll bearings used in continuous galvanising lines. The journal bearings are subjected to severe degradation as they react with the molten Zn bath, and coatings [...] Read more.
The production and quality of automotive-grade galvanised steel are affected by the limited service life of the pot roll bearings used in continuous galvanising lines. The journal bearings are subjected to severe degradation as they react with the molten Zn bath, and coatings can provide corrosion protection to the bearing materials. This research investigates the performance of Al2O3 coatings applied via the HVOF thermal spray process to stainless steel 316L substrates. Immersion tests were conducted in baths of different compositions, namely GI (Zn-0.3 wt.% Al) and ZMA (Zn-1.5 wt.% Al-1.5 wt.% Mg). Material characterisation after testing showed evidence of coating degradation after 1 week, as the coating tended to crack and detach from the substrate, allowing the molten Zn to attack the underlying steel. The coefficient of thermal expansion of Al2O3 and steel was measured, and a difference of 13 × 10−6 K−1 was found, leading to the development of cracks in the coatings. Zn penetration through cracks was determined to be the main failure mechanism of the Al2O3 coatings, which otherwise remained inert to Zn-Al. Conversely, the coatings immersed in Zn-Al-Mg reacted with the Mg in the molten metal bath, showing that changing bath composition affected the performance of the coatings in molten Zn alloy. Full article
Show Figures

Figure 1

14 pages, 19146 KB  
Article
Self-Healing Phenomenon at the Cut Edge of Zn-Al-Mg Alloy Coated Steel in Chloride Environments
by Sang-Hee Kim, Seo-Yun Jin, Ji-Hoon Yang, Jeong-Hyeon Yang, Myeong-Hoon Lee and Yong-Sup Yun
Coatings 2024, 14(4), 485; https://doi.org/10.3390/coatings14040485 - 15 Apr 2024
Cited by 3 | Viewed by 4376
Abstract
This study explores the self-healing phenomenon at the cut edges of Zn-Al-Mg alloy coated steel in chloride environments, a critical consideration for materials exposed to marine conditions. Zn-Al-Mg coatings offer superior resistance to cut-edge corrosion. This research aims to unravel the self-healing properties [...] Read more.
This study explores the self-healing phenomenon at the cut edges of Zn-Al-Mg alloy coated steel in chloride environments, a critical consideration for materials exposed to marine conditions. Zn-Al-Mg coatings offer superior resistance to cut-edge corrosion. This research aims to unravel the self-healing properties observed in these coatings. Through cyclic corrosion tests (CCTs), we compared the corrosion resistance of Zn-Al-Mg coated steel with traditional zinc alloy coatings. Our findings show a notable reduction in corrosion with ZMA4 coatings after 120 CCT cycles. This is due to the formation of corrosion products, namely layered double hydroxides (LDHs) and Mg(OH)2. X-ray diffraction and X-ray photoelectron spectroscopy analyses were employed to confirm the presence of these products and elucidate their roles in the self-healing process. This study highlights the potential of Zn-Al-Mg coatings for enhancing the durability of steel structures in corrosive environments, suggesting a paradigm shift in corrosion protection strategies for marine applications. The development of coatings that exhibit self-healing capabilities in chloride-rich environments could significantly mitigate the challenges posed by cut-edge corrosion, promising extended service life and reduced maintenance costs. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

12 pages, 3586 KB  
Article
Calculation and Experimental Verification of Zn–Al–Mg Phase Diagram
by Zhao Li, Yuanpeng Li, Sheming Jiang, Jie Zhang, Xin Liu, Qifu Zhang and Qiuyuan Liu
Coatings 2024, 14(4), 468; https://doi.org/10.3390/coatings14040468 - 12 Apr 2024
Cited by 4 | Viewed by 5094
Abstract
The liquid phase projection diagram, three-dimensional phase diagram, and vertical section diagram of the Zn–x%Al–x%Mg alloy system was calculated using the phase diagram calculation software Pandat. Simultaneously making full use of the self-developed hot-dip galvanizing process simulation machine by [...] Read more.
The liquid phase projection diagram, three-dimensional phase diagram, and vertical section diagram of the Zn–x%Al–x%Mg alloy system was calculated using the phase diagram calculation software Pandat. Simultaneously making full use of the self-developed hot-dip galvanizing process simulation machine by China Steel Research produced a 75%Zn–19%Al–6%Mg coating. A method combining phase diagram calculations and experimental verification was used to investigate the equilibrium phases and solidification process of the alloy. The microstructure of the 75%Zn–19%Al–6%Mg coating was studied using scanning electron microscopy and energy dispersive spectrometry. The results indicate that the coating structure consists of primary Al dendrite phase, MgZn2 inter-metallic compound and Zn-rich phase. There is no ternary eutectic structure in the coating structure. Al dendrites grow on the surface of the coating, while there are no Al dendrites on the cross-section. The experimental results strongly concur with the calculated results from the Pandat phase diagram. The solidification sequence of the 75%Zn–19%Al–6%Mg coating is L→L + Al→L + Al + MgZn2→Al + MgZn2 + Zn. The phase diagram guides industrial production significantly, avoiding the waste of transitional materials and zinc caused by small scale trial and error experiments, thus reducing unnecessary production costs. The factory can select a reasonable coating composition designing scheme in the phase diagram, based on the performance requirements of customers for the coating. Full article
(This article belongs to the Special Issue Dip Coating: From Preparation to Application)
Show Figures

Figure 1

13 pages, 14003 KB  
Article
Effects of Si Addition on Interfacial Microstructure and Corrosion Resistance of Hot-Dip Zn–Al–Mg–Si Alloy-Coated Steel
by Seong-Min So, Srinivasulu Grandhi, Eui-Pyo Kwon and Min-Suk Oh
Crystals 2024, 14(4), 294; https://doi.org/10.3390/cryst14040294 - 22 Mar 2024
Cited by 4 | Viewed by 2590
Abstract
Alloy coatings protect steel from corrosion in various applications. We investigated the effects of Si addition on the microstructure, electrochemical behavior, and corrosion resistance of steel sheets coated with a hot-dip Zn–Mg–Al–Si alloy using a batch-type galvanization process. Microstructural analysis revealed that the [...] Read more.
Alloy coatings protect steel from corrosion in various applications. We investigated the effects of Si addition on the microstructure, electrochemical behavior, and corrosion resistance of steel sheets coated with a hot-dip Zn–Mg–Al–Si alloy using a batch-type galvanization process. Microstructural analysis revealed that the Zn–Al–Mg alloy coating layer contained a significant amount of Fe that diffused from the substrate, leading to delamination due to the formation of brittle Fe–Zn intermetallic compounds. However, the introduction of Si resulted in the formation of a stable Fe2Al3Si inhibition layer at the substrate–coating interface; this layer prevented interdiffusion of Fe as well as enhanced the coating adhesion. Additionally, the formation of acicular Mg2Si phases on the coating surface improved the surface roughness. As the Si content increased, the corrosion resistance of the coating improved. Specifically, the Zn–Al–Mg coating layer with 0.5 wt.% Si exhibited excellent anti-corrosion performance, without red rust formation on its surface even after 2600 h, during a salt spray test. Full article
Show Figures

Figure 1

21 pages, 5467 KB  
Article
Changes in Corrosion Behaviour of Zinc and Aluminium Coatings with Increasing Seawater Acidification
by Cezary Senderowski, Wojciech Rejmer, Nataliia Vigilianska and Arkadiusz Jeznach
Materials 2024, 17(3), 536; https://doi.org/10.3390/ma17030536 - 23 Jan 2024
Cited by 7 | Viewed by 7666
Abstract
The increase in greenhouse gas emissions has led to seawater acidification, increasing the corrosion rate of metal structures in marine applications. This paper indicates that the spraying of four types of coatings, namely Zn, Al, Zn-Al, and Al-Mg, using the arc-spraying technique on [...] Read more.
The increase in greenhouse gas emissions has led to seawater acidification, increasing the corrosion rate of metal structures in marine applications. This paper indicates that the spraying of four types of coatings, namely Zn, Al, Zn-Al, and Al-Mg, using the arc-spraying technique on steel substrate S235JR, creates effective protective coatings that interact differently with various pH solutions exposed to varying levels of seawater acidification. The study analyses the structural properties of the coating materials using SEM and XRD techniques. Electrochemical parameters are evaluated in solutions with different pH and salinity levels. The results demonstrate that alloy metallic coatings provide excellent resistance to corrosion in low-pH solutions. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Inhibition of Metals and Their Alloys II)
Show Figures

Figure 1

13 pages, 8439 KB  
Article
Analysis of Blackening Reaction of Zn-Mg-Al Alloy-Coated Steel Prepared by Water Vapor Treatment
by Sang-Hee Kim, You-Jin Kang, Kyung-Hwang Lee, Jun Kang, Myeong-Hoon Lee and Yong-Sup Yun
Coatings 2024, 14(1), 93; https://doi.org/10.3390/coatings14010093 - 10 Jan 2024
Cited by 4 | Viewed by 3039
Abstract
In the context of high-temperature water vapor treatment, Zn-Mg-Al alloy-coated steel sheets exhibit the emergence of a black surface. This study aims to explore the factors and mechanisms contributing to surface blackening by inducing black surfaces on Zn-Mg-Al alloy-coated steel sheets, which were [...] Read more.
In the context of high-temperature water vapor treatment, Zn-Mg-Al alloy-coated steel sheets exhibit the emergence of a black surface. This study aims to explore the factors and mechanisms contributing to surface blackening by inducing black surfaces on Zn-Mg-Al alloy-coated steel sheets, which were fabricated through molten coating subjected to water vapor treatment at 150 degrees Celsius. The surface composition was predominantly identified as zinc oxide (ZnO) film validated through X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Morphological analysis of the surface and cross-section post-water vapor treatment revealed a disrupted lamellar structure with diffused features, resulting from the formation of an oxide film. Optical properties analysis demonstrated an increased absorbance and a decreased bandgap energy after water vapor treatment, which is indicative of an augmented blackening effect. Consequently, the high-temperature water vapor treatment led to the formation of oxides on the surface with the highly reactive Mg and Al extracting oxygen from the predominantly present ZnO surface. This process resulted in the creation of an oxygen-deficient oxide, ultimately causing surface blackening. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

14 pages, 10202 KB  
Article
Liquid Metal Embrittlement Susceptibility of Hot Formed Zn-Al-Mg Coated Steel with Eutectic Coating Microstructure
by Yubo Yang, Yu Fu, Guangxin Wu, Hongliang Liu, Yu Chen, Qun Luo and Qian Li
Metals 2023, 13(9), 1523; https://doi.org/10.3390/met13091523 - 27 Aug 2023
Cited by 4 | Viewed by 2980
Abstract
Liquid metal embrittlement (LME) in Zn-based coating plates during hot stamping is an abnormal phenomenon where intimate contact between liquid Zn and a steel matrix results in the penetration of liquid Zn into the matrix, causing ruptures. In order to alleviate LME phenomenon, [...] Read more.
Liquid metal embrittlement (LME) in Zn-based coating plates during hot stamping is an abnormal phenomenon where intimate contact between liquid Zn and a steel matrix results in the penetration of liquid Zn into the matrix, causing ruptures. In order to alleviate LME phenomenon, this paper designed a series of eutectic Zn-Al-Mg coating alloys to improve the uniformity of the Zn element distribution in the coating during heat treatment and inhibit the reaction between Fe and Zn. The high temperature mechanical properties of the coated steels are determined using thermal simulation to calculate the relative reduction in fracture energy, which is used to evaluate the LME level of the different composition coatings. It is suggested that the Zn-4.5Al-3.0Mg coating shows the highest LME resistance at 920 °C. The microstructure of these Zn-Al-Mg coated steels is observed after austenitization at 850 °C~920 °C for 3 min, which shows that the uniformity of the microstructure after austenitizing is affected by the composition of the coating and the austenitizing temperature. The higher temperature benefits the homogenization of the coating and steel and inhibits LME. The findings of this study provide valuable insights for the development of ternary Zn based LME resistant coatings. Full article
(This article belongs to the Special Issue Grain Refinement and Mechanical Properties of Cast Alloys)
Show Figures

Figure 1

19 pages, 9550 KB  
Article
Effect of Coating on Stress Corrosion Performance of Bridge Cable Steel Wire
by Zeling Zhang, Linfeng Wang, Shenyou Song, Liang Tang, Hailiang Zhang, Hao Zhou and Feng Fang
Coatings 2023, 13(8), 1339; https://doi.org/10.3390/coatings13081339 - 29 Jul 2023
Cited by 13 | Viewed by 3265
Abstract
Hot galvanization on steel surfaces can isolate the steel from corrosive environments and alleviate the stress corrosion cracking caused by the anodic dissolution mechanism. However, the cathodic protection potential of the coating is excessively negative, which may aggravate the hydrogen embrittlement problem. The [...] Read more.
Hot galvanization on steel surfaces can isolate the steel from corrosive environments and alleviate the stress corrosion cracking caused by the anodic dissolution mechanism. However, the cathodic protection potential of the coating is excessively negative, which may aggravate the hydrogen embrittlement problem. The effect of a coating on the stress corrosion performance of bridge cable wire was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), a thermal desorption analysis (TDA), an electrochemical workstation, and an FIP test. The results show that hot-dip ZnAl and ZnAlMg alloy coatings can significantly prolong the stress corrosion fracture time of steel wire substrates. From a macroscopic perspective, the stress corrosion cracking fracture is a brittle fracture caused by hydrogen embrittlement. Moreover, the coating type has little effect on the fracture morphology of bridge cable wire. In NH4SCN solution (50 °C, 20 wt.%), a corrosion product layer composed of ZnS and Al2O3 was formed on the surface of the coated steel wire. The electrochemical analysis showed that the corrosion resistance of the ZnAlMg coating was better than that of the ZnAl coating, which was the main reason for the improvement of the stress corrosion performance. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Prevention in Extreme Environments)
Show Figures

Figure 1

15 pages, 5767 KB  
Article
Crystal Structure and Properties of Zinc Phosphate Layers on Aluminum and Steel Alloy Surfaces
by Beáta Herbáth, Kristóf Kovács, Miklós Jakab and Éva Makó
Crystals 2023, 13(3), 369; https://doi.org/10.3390/cryst13030369 - 21 Feb 2023
Cited by 10 | Viewed by 8133
Abstract
Many studies have been carried out on the phosphating of steel and aluminum alloys used in automotive engineering, but characterization of the properties of the phosphate layers formed by the co-phosphating of these alloys in the presence of different base metals is still [...] Read more.
Many studies have been carried out on the phosphating of steel and aluminum alloys used in automotive engineering, but characterization of the properties of the phosphate layers formed by the co-phosphating of these alloys in the presence of different base metals is still lacking. In this study, the crystal structure and properties of the phosphate conversion layers formed on the surface of the aluminum alloys important in vehicle manufacturing (cast and forged AlSi1MgMn, and AA6014 panel) and the CRS SAE 1008/1010 reference steel plate by co-deposition prior to painting were investigated. On a process line set up for the phosphating of typical iron and steel alloys, the phosphate coating was formed using nitrite and nitroguanidine accelerators under identical technological parameters. The microstructure of the formed phosphate layers was examined using scanning electron microscopy (SEM), its phase composition using X-ray diffraction (XRD), and its elemental composition using energy-dispersive X-ray analysis (EDX). The suggested main crystalline phase (Zn2.3(Ni0.1Mn0.6)(PO4)2·4H2O) in the surface phosphate layer of both aluminum alloys studied was similar to hopeite, whereas in the steel plate, a minor hopeite phase were identified in addition to the main crystalline phosphophyllite phase (~95%). It can be concluded that, during the combined phosphating treatments, the surfaces of different aluminum and steel alloys behaved similarly to the individual treatments and did not impede the coating reactions of the other metal. To obtain an adequate coating of aluminum and steel alloys, fluoride should always be present in the production line. Comparing the effects of accelerators, we found that the use of nitrite accelerator with the same amount of fluoride resulted in a higher coverage and better quality of the surface protective layer of the aluminum alloys. However, for the steel plate, there was no significant difference between the phosphate coatings prepared with the two different accelerators. Full article
Show Figures

Figure 1

11 pages, 5624 KB  
Communication
Improving the Coatability of Zn–Mg–Al Alloy on Steel Substrate by the Surface Pretreatment of SnCl2-Added Zinc Ammonium Chloride
by Ki-yeon Kim, Srinivasulu Grandhi and Min-Suk Oh
Appl. Sci. 2023, 13(2), 950; https://doi.org/10.3390/app13020950 - 10 Jan 2023
Cited by 6 | Viewed by 3729
Abstract
The applicability of galvanized products in various industries has increased the demand for highly corrosion-resistant coatings to counter harsh environments. Among these, Zn–Mg–Al ternary alloy coatings have excellent corrosion resistance, resulting in their commercialization and industrial demand. To increase the diversification of their [...] Read more.
The applicability of galvanized products in various industries has increased the demand for highly corrosion-resistant coatings to counter harsh environments. Among these, Zn–Mg–Al ternary alloy coatings have excellent corrosion resistance, resulting in their commercialization and industrial demand. To increase the diversification of their products, the ideal flux composition in these coatings should be optimized. In this study, we investigated the effects of conventional flux (ZnCl2:NH4Cl) in the hot-dip galvanization of Zn–Mg–Al ternary alloy coatings. Additionally, we developed a new flux to improve the coating properties of Zn–Mg–Al ternary alloy coatings on steel sheets. During hot dipping, SnCl2 on the steel substrate decomposed faster than conventional flux, thereby eliminating the AlCl3 residues in the coating and surface defects. The thermogravimetric-differential thermal analysis studies unveiled the mechanisms for improved coatings. The thermodynamic calculations confirmed the spontaneous substitution owing to the presence of SnCl2 in the flux. Therefore, the developed and optimized flux enhanced the adhesion of the alloy coating. Full article
(This article belongs to the Special Issue Corrosion Inhibitors and Protective Coatings)
Show Figures

Figure 1

26 pages, 7881 KB  
Article
Cathodic Protection of Mild Steel Using Aluminium-Based Alloys
by Maria del Rosario Silva Campos, Carsten Blawert, Nico Scharnagl, Michael Störmer and Mikhail L. Zheludkevich
Materials 2022, 15(4), 1301; https://doi.org/10.3390/ma15041301 - 10 Feb 2022
Cited by 35 | Viewed by 6069
Abstract
Typically, steel is protected from corrosion by employing sacrificial anodes or coatings based on Zn, Mg, Al or Cd. However, stricter environmental regulations require new environmentally friendly alternatives to replace Cd. Traditionally, Al-based anodes have been employed to cathodically protect steel in marine [...] Read more.
Typically, steel is protected from corrosion by employing sacrificial anodes or coatings based on Zn, Mg, Al or Cd. However, stricter environmental regulations require new environmentally friendly alternatives to replace Cd. Traditionally, Al-based anodes have been employed to cathodically protect steel in marine applications or as ion vapour deposition (IVD)-Al sacrificial coatings for aerospace applications. However, Al tends to passivate, thus losing its protective effect. Therefore, it is important to identify possible alloys that can provide a constantly sufficient current. In this study, Al-X alloys (X = Ag, Bi, Ca, Cr, Cu, Ga, Gd, In, Mg, Mn, Ni, Sb, Si, Sn, V, Ti, Zn and Zr) were firstly tested for a screening of the sacrificial properties of binary systems. Al-0.5Cr, Al-1Sn, Al-0.2Ga, Al-0.1In, Al-2Si and Al-5Zn alloys were suggested as promising sacrificial Al-based alloys. Suitable heat treatments for each system were implemented to reduce the influence of the secondary phases on the corrosion properties by minimising localised attack. extensive evaluation of the corrosion properties, including galvanic coupling of these alloys to steel, was performed in the NaCl electrolyte. A comparative analysis was conducted in order to choose the most promising alloy(s) for avoiding the passivation of Al and for efficient cathodic protection to steel. Full article
(This article belongs to the Section Corrosion)
Show Figures

Graphical abstract

15 pages, 10361 KB  
Article
Prediction of Thermal Spray Coatings Performance in Marine Environments by Combination of Laboratory and Field Tests
by Rosa Grinon-Echaniz, Shiladitya Paul, Rob Thornton, Philippe Refait, Marc Jeannin and Alvaro Rodriguez
Coatings 2021, 11(3), 320; https://doi.org/10.3390/coatings11030320 - 11 Mar 2021
Cited by 23 | Viewed by 5577
Abstract
Cost-effective corrosion mitigation of offshore steel structures can be achieved by thermal spray coatings. These coatings, when comprised of Al, Zn and their alloys, provide a physical barrier against the environment when intact, and cathodic protection to underlying steel when damaged. Due to [...] Read more.
Cost-effective corrosion mitigation of offshore steel structures can be achieved by thermal spray coatings. These coatings, when comprised of Al, Zn and their alloys, provide a physical barrier against the environment when intact, and cathodic protection to underlying steel when damaged. Due to the complexity of marine environments, laboratory tests should be combined with field work in order to understand the corrosion protection offered by these coatings. The work presented here was carried out with thermal spray coatings of aluminum alloys (AA1050, AA1100, Al-5Mg) and Zn-15Al prepared by Twin Wire Arc Spray onto low carbon steel substrates. The resulting coatings were ~300 μm in thickness, and 5% of surface area defects were artificially machined in order to expose the steel substrate, simulating mechanical damage or erosion of the coating. Electrochemical data collected over a 90 days period showed a good correlation between laboratory and real marine environment results. Aluminum alloys showed better corrosion protection in fully immersed conditions, while zinc alloys performed better in atmospheric and splash zones. Overall, these results aim to improve design of thermal spray coatings to protect carbon steel in marine environments. Full article
(This article belongs to the Special Issue Coatings Challenges in Harsh Environments)
Show Figures

Graphical abstract

14 pages, 27338 KB  
Article
Effect of Oxide Scale on Hot Dip Zn-Al-Mg Alloy Coating Prepared by Reduction Combined with Induction Heating
by Yijie Zhang, Minyun Xu, Ruina Ma, An Du, Yongzhe Fan, Xue Zhao and Xiaoming Cao
Metals 2020, 10(11), 1519; https://doi.org/10.3390/met10111519 - 17 Nov 2020
Cited by 11 | Viewed by 4293
Abstract
Hot dipping Zn-Al-Mg coatings were prepared by rapid induction heating combined with gas protection. The influence of oxide scale on the structure and surface quality of a hot-dip Zn-6Al-3Mg alloy coating was studied in this paper. The results showed that the reaction of [...] Read more.
Hot dipping Zn-Al-Mg coatings were prepared by rapid induction heating combined with gas protection. The influence of oxide scale on the structure and surface quality of a hot-dip Zn-6Al-3Mg alloy coating was studied in this paper. The results showed that the reaction of Fe-Al was suppressed by the scale on the surface of the steel plate. When the thickness of scale was 10 μm and the steel entry temperature was 900 °C, the surface quality of the coating was good. The Zn-Al-Mg coatings mainly consisted of the ternary eutectic structure of Zn/Al/MgZn2 and Fe4Al13 at the interface. When the scale thickness was 2–3 μm with the same steel entry temperature, the surface quality of the coating was poor, and serious stripe-like protrusion defects were formed on the surface of the coating, which was mainly caused by the Fe4Al13 phase separating from the substrate / coating interface into the overlay. Full article
Show Figures

Graphical abstract

Back to TopTop