Analysis of Blackening Reaction of Zn-Mg-Al Alloy-Coated Steel Prepared by Water Vapor Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Material Characterization
3.2. Optical Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babolhavaeji, M.; Vakilian, M.A.; Slambolchi, A. The role of product color in consumer behavior. Adv. Soc. Humanit. Manag. 2015, 2, 9–15. [Google Scholar]
- Labrecque, L.I.; Patrick, V.M.; Milne, G.R. The marketers’ prismatic palette: A review of color research and future directions. Psychol. Mark. 2013, 30, 187–202. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.; Choi, C.; Chung, W. Nanoporous anodic alumina oxide layer and its sealing for the enhancement of radiative heat dissipation of aluminum alloy. Nano Energy 2017, 31, 504–513. [Google Scholar] [CrossRef]
- Park, J.S.; Yun, D.B.; Kim, S.H.; Kim, T.Y.; Kim, S.J. Effects of hairline treatment on surface blackening and thermal diffusion of Zn-Al-Mg alloy-coated steel sheet. J. Korean Soc. Surf. Sci. Eng. 2023, 56, 69–76. [Google Scholar]
- Nakano, T.; Yamamoto, M.; Taketsu, H. Method for Producing Black-Plated Steel Sheet, and Method for Producing Molded Article of Black-Plated Steel Sheet. U.S. Patent 9,598,759, 21 March 2017. [Google Scholar]
- Nakano, T.; Ueno, S.; Yamamoto, M. Method for Manufacturing Black Plated Steel Sheet, Apparatus for Manufacturing Black Plated Steel Sheet, and System for Manufacturing Black Plated Steel Sheet. U.S. Patent 10,697,053, 30 June 2020. [Google Scholar]
- Porwal, T. Paint pollution harmful effects on environment. Soc. Issues Environ. Probl. 2015, 3, 2394–3629. [Google Scholar] [CrossRef]
- Nakano, T.; Yamamoto, M.; Taketsu, H. Black-Plated Steel Sheet. U.S. Patent 9,863,027, 9 January 2018. [Google Scholar]
- Lee, K.H.; Jeong, J.I.; Kim, H.J.; Yang, J.H. Black Plated Steel Sheet and Manufacturing Method Thereof. U.S. Patent 11,555,240, 17 January 2023. [Google Scholar]
- Kim, S.J.; Kwak, Y.J.; Kim, T.Y.; Jung, W.S.; Kim, K.Y. Surface darkening phenomenon of Zn–Mg alloy coated steel exposed to aqueous environment at high temperature. J. Mater. Res. 2015, 30, 3605–3615. [Google Scholar] [CrossRef]
- Masuda, R.; Kowalski, D.; Kitano, S.; Aoki, Y.; Nozawa, T.; Habazaki, H. Characterization of dark-colored nanoporous anodic films on zinc. Coatings 2020, 10, 1014. [Google Scholar] [CrossRef]
- Rai, P.K.; Rout, D.; Satish Kumar, D.; Sharma, S.; Balachandran, G. Effect of magnesium on corrosion behavior of hot-dip Zn-Al-Mg coating. J. Mater. Eng. Perform. 2021, 30, 4138–4147. [Google Scholar] [CrossRef]
- Zou, Y.; Wu, X.; Tang, S.; Zhu, Q.; Song, H.; Guo, M.; Cao, L. Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios. J. Mater. Sci. Technol. 2021, 85, 106–117. [Google Scholar] [CrossRef]
- Kim, K.; Grandhi, S.; Oh, M. Improving the Coatability of Zn–Mg–Al Alloy on Steel Substrate by the Surface Pretreatment of SnCl2-Added Zinc Ammonium Chloride. Appl. Sci. 2023, 13, 950. [Google Scholar] [CrossRef]
- Son, I.R.; Kim, T.C.; Ju, G.I.; Kim, M.S.; Kim, J.S. Development of PosMAC® Steel and Its Application Properties. Korean J. Met. Mater. 2021, 59, 613–623. [Google Scholar] [CrossRef]
- Kim, T.C.; Kim, S.H.; Kim, S.Y.; Oh, M.S.; Yu, B.H.; Kim, J.S. Hot dip Zn-Al-Mg Alloy Plated Steel Sheet Having Excellent Corrosion Resistance and Method for Manufacturing. K.R. Patent 101,568,509, 20 November 2015. [Google Scholar]
- Saadi, N.S.; Hassan, L.B.; Karabacak, T. Metal oxide nanostructures by a simple hot water treatment. Sci. Rep. 2017, 7, 7158. [Google Scholar] [CrossRef] [PubMed]
- Dutta, M.; Halder, A.K.; Singh, S.B. Morphology and properties of hot dip Zn–Mg and Zn–Mg–Al alloy coatings on steel sheet. Surf. Coat. Technol. 2010, 205, 2578–2584. [Google Scholar] [CrossRef]
- Hruška, P.; More-Chevalier, J.; Novotný, M.; Čížek, J.; Melikhova, O.; Fekete, L.; Poupon, M.; Bulíř, J.; Volfová, L.; Butterling, M. Effect of roughness and nanoporosity on optical properties of black and reflective Al films prepared by magnetron sputtering. J. Alloys Compd. 2021, 872, 159744. [Google Scholar] [CrossRef]
- Honson, V.; Huynh-Thu, Q.; Arnison, M.; Monaghan, D.; Isherwood, Z.J.; Kim, J. Effects of shape, roughness and gloss on the perceived reflectance of colored surfaces. Front. Psychol. 2020, 11, 485. [Google Scholar] [CrossRef] [PubMed]
- Zywitzki, O.; Modes, T.; Scheffel, B.; Metzner, C. Examination of the Mg-Zn Phase Formation in Hot-Dip Galvanized Steel Sheet. Pract. Metallogr. 2012, 49, 210–220. [Google Scholar] [CrossRef]
- Epp, J. X-ray diffraction (XRD) techniques for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Elsevier: Amsterdam, The Netherlands, 2016; pp. 81–124. [Google Scholar]
- Li, X.; Wang, Y.; Liu, W.; Jiang, G.; Zhu, C. Study of oxygen vacancies′ influence on the lattice parameter in ZnO thin film. Mater. Lett. 2012, 85, 25–28. [Google Scholar] [CrossRef]
- Lauermann, I.; Bär, M.; Fischer, C. Synchrotron-based spectroscopy for the characterization of surfaces and interfaces in chalcopyrite thin-film solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 1495–1508. [Google Scholar] [CrossRef]
- Cho, S.W.; Kim, K.S.; Jung, S.H.; Cho, H.K. Towards environmentally stable solution-processed oxide thin-film transistors: A rare-metal-free oxide-based semiconductor/insulator heterostructure and chemically stable multi-stacking. J. Mater. Chem. C 2017, 5, 10498–10508. [Google Scholar] [CrossRef]
- Shen, J.; Li, Y.; He, J. On the Kubelka–Munk absorption coefficient. Dyes Pigment. 2016, 127, 187–188. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Huang, B.; Ma, Y.; Liu, Y.; Qin, X.; Zhang, X.; Dai, Y. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 2012, 4, 4024–4030. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhai, B.; Huang, Y.M. Rendering visible-light photocatalytic activity to undoped ZnO via intrinsic defects engineering. Catalysts 2020, 10, 1163. [Google Scholar] [CrossRef]
- Jubu, P.R.; Obaseki, O.S.; Nathan-Abutu, A.; Yam, F.K.; Yusof, Y.; Ochang, M.B. Dispensability of the conventional Tauc’s plot for accurate bandgap determination from UV–vis optical diffuse reflectance data. Results Opt. 2022, 9, 100273. [Google Scholar] [CrossRef]
- Das, O.P.; Pandey, S.K. Optical, Compositional and Electrical Properties of Transparent MgO Thin Film for ReRAM Devices. J. Phys. Conf. Ser. 2023, 2426, 012031. [Google Scholar] [CrossRef]
- Qasem, A.; Mostafa, M.S.; Yakout, H.A.; Mahmoud, M.; Shaaban, E.R. Determination of optical bandgap energy and optical characteristics of Cd30Se50S20 thin film at various thicknesses. Opt. Laser Technol. 2022, 148, 107770. [Google Scholar] [CrossRef]
- Dostanko, A.P.; Ageev, O.A.; Golosov, D.A.; Zavadski, S.M.; Zamburg, E.G.; Vakulov, D.E.; Vakulov, Z.E. Electrical and optical properties of zinc-oxide films deposited by the ion-beam sputtering of an oxide target. Semiconductors 2014, 48, 1242–1247. [Google Scholar] [CrossRef]
- Wang, J.; Chen, R.; Xiang, L.; Komarneni, S. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review. Ceram. Int. 2018, 44, 7357–7377. [Google Scholar] [CrossRef]
- Zhang, C.; Geng, X.; Liao, H.; Li, C.; Debliquy, M. Room-temperature nitrogen-dioxide sensors based on ZnO1− x coatings deposited by solution precursor plasma spray. Sens. Actuators B Chem 2017, 242, 102–111. [Google Scholar] [CrossRef]
- Kanakkillam, S.S.; Krishnan, B.; Guzman, S.S.; Martinez, J.A.A.; Avellaneda, D.A.; Shaji, S. Defects rich nanostructured black zinc oxide formed by nanosecond pulsed laser irradiation in liquid. Appl. Surf. Sci. 2021, 567, 150858. [Google Scholar] [CrossRef]
- Xia, T.; Wallenmeyer, P.; Anderson, A.; Murowchick, J.; Liu, L.; Chen, X. Hydrogenated black ZnO nanoparticles with enhanced photocatalytic performance. RSC Adv. 2014, 4, 41654–41658. [Google Scholar] [CrossRef]
Point | Zn (wt.%) | Mg (wt.%) | Al (wt.%) | O (wt.%) |
---|---|---|---|---|
1 | 94.12 | 1.03 | 2.58 | 1.53 |
2 | 89.31 | 4.95 | 6.58 | 0.64 |
3 | 83.96 | 3.92 | 6.12 | 4.51 |
Point | Zn (wt.%) | Mg (wt.%) | Al (wt.%) | O (wt.%) |
---|---|---|---|---|
1 | 71.45 | 5.89 | 8.47 | 14.19 |
2 | 65.98 | 6.83 | 10.13 | 17.06 |
3 | 59.16 | 6.15 | 13.13 | 21.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Kang, Y.-J.; Lee, K.-H.; Kang, J.; Lee, M.-H.; Yun, Y.-S. Analysis of Blackening Reaction of Zn-Mg-Al Alloy-Coated Steel Prepared by Water Vapor Treatment. Coatings 2024, 14, 93. https://doi.org/10.3390/coatings14010093
Kim S-H, Kang Y-J, Lee K-H, Kang J, Lee M-H, Yun Y-S. Analysis of Blackening Reaction of Zn-Mg-Al Alloy-Coated Steel Prepared by Water Vapor Treatment. Coatings. 2024; 14(1):93. https://doi.org/10.3390/coatings14010093
Chicago/Turabian StyleKim, Sang-Hee, You-Jin Kang, Kyung-Hwang Lee, Jun Kang, Myeong-Hoon Lee, and Yong-Sup Yun. 2024. "Analysis of Blackening Reaction of Zn-Mg-Al Alloy-Coated Steel Prepared by Water Vapor Treatment" Coatings 14, no. 1: 93. https://doi.org/10.3390/coatings14010093
APA StyleKim, S. -H., Kang, Y. -J., Lee, K. -H., Kang, J., Lee, M. -H., & Yun, Y. -S. (2024). Analysis of Blackening Reaction of Zn-Mg-Al Alloy-Coated Steel Prepared by Water Vapor Treatment. Coatings, 14(1), 93. https://doi.org/10.3390/coatings14010093