Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = Zero Velocity Update

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3491 KB  
Article
Stationary State Recognition of a Mobile Platform Based on 6DoF MEMS Inertial Measurement Unit
by Marcin Bogucki, Waldemar Samociuk, Paweł Stączek, Mirosław Rucki, Arturas Kilikevicius and Radosław Cechowicz
Appl. Sci. 2026, 16(2), 729; https://doi.org/10.3390/app16020729 - 10 Jan 2026
Viewed by 159
Abstract
The article presents the analytic method for real-time detection of the stationary state of a vehicle based on information retrieved from 6 DoF IMU sensor. Reliable detection of stillness is essential for the application of resetting the inertial sensor’s output bias, called Zero [...] Read more.
The article presents the analytic method for real-time detection of the stationary state of a vehicle based on information retrieved from 6 DoF IMU sensor. Reliable detection of stillness is essential for the application of resetting the inertial sensor’s output bias, called Zero Velocity Update method. It is obvious that the signal from the strapped on inertial sensor differs while the vehicle is stationary or moving. Effort was then made to find a computational method that would automatically discriminate between both states with possibly small impact on the vehicle embedded controller. An algorithmic step-by-step method for building, optimizing, and implementing a diagnostic system that detects the vehicle’s stationary state was developed. The proposed method adopts the “Mahalanobis Distance” quantity widely used in industrial quality assurance systems. The method transforms (fuses) information from multiple diagnostic variables (including linear accelerations and angular velocities) into one scalar variable, expressing the degree of deviation in the robot’s current state from the stationary state. Then, the method was implemented and tested in the dead reckoning navigation system of an autonomous wheeled mobile robot. The method correctly classified nearly 93% of all stationary states of the robot and obtained only less than 0.3% wrong states. Full article
(This article belongs to the Special Issue Recent Advances and Future Challenges in Manufacturing Metrology)
Show Figures

Figure 1

25 pages, 5206 KB  
Article
Nonlinear Probabilistic Model Predictive Control Design for Obstacle Avoiding Uncrewed Surface Vehicles
by Nurettin Çerçi and Yaprak Yalçın
Automation 2026, 7(1), 10; https://doi.org/10.3390/automation7010010 - 1 Jan 2026
Viewed by 186
Abstract
The primary objective of this research is to develop a probabilistic nonlinear model predictive control structure (NMPC) that efficiently operates uncrewed surface vehicles (USVs) in an environment that has probabilistic disturbances, such as wind, waves, and currents of the water, while simultaneously maneuvering [...] Read more.
The primary objective of this research is to develop a probabilistic nonlinear model predictive control structure (NMPC) that efficiently operates uncrewed surface vehicles (USVs) in an environment that has probabilistic disturbances, such as wind, waves, and currents of the water, while simultaneously maneuvering the vehicle in a way that avoids stationary or moving stochastic obstacles in its path. The proposed controller structure considers the mean and covariances of the inputs or state variables of the vehicle in the cost function to handle probabilistic disturbances, where an extended Kalman filter (EKF) is utilized to calculate the mean, and the covariances are calculated dynamically via a linear matrix equality based on this mean and obtained system matrices with successive linearization for every sampling instance. The proposed control structure deals with non-zero-mean probabilistic disturbances such as water current via an innovative approach that treats the mean of the disturbance as a deterministic part, which is estimated by a disturbance observer and eliminated by a control term in the controller in addition to the control signal obtained via MPC optimization; the effect of the remaining zero-mean part is handled over its covariance during the probabilistic MPC optimization. The probabilistic constraints are also dealt with by converting them to deterministic constraints, as in linear probabilistic MPC. However, unlike the linear MPC, these constraints updated each sampling instance with the information obtained via successive linearization. The control structure incorporates the velocity obstacle (VO) method for collision avoidance. In order to ensure stability, the proposed NMPC adopts a dual-mode strategy, and a stability analysis is presented. In the second mode, an LQG design that ensures stability in the existence of non-zero mean disturbance is also provided. The simulation results demonstrate that the proposed probabilistic NMPC framework effectively handles probabilistic disturbances as well as both stationary and moving obstacles, ensuring collision avoidance while reaching the desired position and orientation through optimal path tracking, outperforming the conventional NMPC. Full article
(This article belongs to the Section Control Theory and Methods)
Show Figures

Figure 1

29 pages, 1457 KB  
Article
A Globally Exponential, Convergent, Adaptive Velocity Observation for Multiple Nonholonomic Mobile Robots with Discrete-Time Communications
by Man Liu, Xinghui Zhu and Haoyi Que
Appl. Sci. 2025, 15(17), 9646; https://doi.org/10.3390/app15179646 - 2 Sep 2025
Viewed by 696
Abstract
The widespread application of multi-agent robotic systems in domains such as agricultural collaboration and automation has accentuated the challenges faced in seeking to achieve rapid synchronization and sustain high-performance control under conditions where velocity states remain unmeasurable. To relieve these challenges, a synchronization [...] Read more.
The widespread application of multi-agent robotic systems in domains such as agricultural collaboration and automation has accentuated the challenges faced in seeking to achieve rapid synchronization and sustain high-performance control under conditions where velocity states remain unmeasurable. To relieve these challenges, a synchronization control framework is proposed for multi-agent systems, employing non-uniform sampling communication protocols. Initially, a state-variable transformation is applied to construct a composite Lyapunov function that integrates a sampling term. An explicit relation is then derived between the communication interval and the global exponential synchronization rate, thereby establishing a theoretical foundation for the design of non-periodic sampling-based control strategies. Second, a linear-state feedback controller is introduced, which balances convergence speed with the limited frequency of information updates, ensuring asymptotic stability even under prolonged sampling intervals. Third, a velocity observer was designed based on Immersion and Invariance (I&I) theory to solve the problem of unmeasurable velocity states, ensuring the exponential convergence of the estimation error. Finally, the simulation results demonstrate that, with sampling intervals of h[0.03,0.08] s, the position errors qiqd,i of all six robots converge to below 102 within 7 s; meanwhile, the velocity estimation errors decay to nearly zero within 7 s, confirming the effectiveness of the proposed method. The main contributions of this work can be summarized as follows: (1) a new I&I velocity observer is tailored for discrete-time communication; (2) rigorous proof of global exponential convergence is provided via a composite Lyapunov energy function; (3) a reproducible MATLAB simulation framework is presented that enhances both the verifiability and applicability of the proposed approach. Full article
Show Figures

Figure 1

10 pages, 2087 KB  
Proceeding Paper
Terrain-Based Parameter Optimization for Zero Velocity Update Inertial Navigation Solutions
by Taylor Knuth and Paul Groves
Eng. Proc. 2025, 88(1), 67; https://doi.org/10.3390/engproc2025088067 - 18 Jul 2025
Viewed by 3382
Abstract
This paper demonstrates the benefits of adapting Zero Velocity Update (ZVU) algorithms in foot-mounted pedestrian inertial navigation by finely tuning the algorithm to account for the type of terrain over which the pedestrian travels. Conventional ZVU algorithms for foot-mounted inertial navigation are designed [...] Read more.
This paper demonstrates the benefits of adapting Zero Velocity Update (ZVU) algorithms in foot-mounted pedestrian inertial navigation by finely tuning the algorithm to account for the type of terrain over which the pedestrian travels. Conventional ZVU algorithms for foot-mounted inertial navigation are designed for indoor use and do not account for differences from various terrains. Different terrains affect the natural pedestrian gait and how zero velocity intervals (ZVIs) are identified. By tuning the algorithm to account for accelerometer and gyroscope magnitude and walking cycle duration across four terrains (concrete, grass, pebbles and sand), the accuracy is improved up to 31.04%, dependent on the terrain, and is viable for outdoor use. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

24 pages, 9349 KB  
Article
Enhanced Pedestrian Navigation with Wearable IMU: Forward–Backward Navigation and RTS Smoothing Techniques
by Yilei Shen, Yiqing Yao, Chenxi Yang and Xiang Xu
Technologies 2025, 13(7), 296; https://doi.org/10.3390/technologies13070296 - 9 Jul 2025
Viewed by 1710
Abstract
Accurate and reliable pedestrian positioning service is essential for providing Indoor Location-Based Services (ILBSs). Zero-Velocity Update (ZUPT)-aided Strapdown Inertial Navigation System (SINS) based on foot-mounted wearable Inertial Measurement Units (IMUs) has shown great performance in pedestrian navigation systems. Though the velocity errors will [...] Read more.
Accurate and reliable pedestrian positioning service is essential for providing Indoor Location-Based Services (ILBSs). Zero-Velocity Update (ZUPT)-aided Strapdown Inertial Navigation System (SINS) based on foot-mounted wearable Inertial Measurement Units (IMUs) has shown great performance in pedestrian navigation systems. Though the velocity errors will be corrected once zero-velocity measurement is available, the navigation system errors accumulated during measurement outages are yet to be further optimized by utilizing historical data during both stance and swing phases of pedestrian gait. Thus, in this paper, a novel Forward–Backward navigation and Rauch–Tung–Striebel smoothing (FB-RTS) navigation scheme is proposed. First, to efficiently re-estimate past system state and reduce accumulated navigation error once zero-velocity measurement is available, both the forward and backward integration method and the corresponding error equations are constructed. Second, to further improve navigation accuracy and reliability by exploiting historical observation information, both backward and forward RTS algorithms are established, where the system model and observation model are built under the output correction mode. Finally, both navigation results are combined to achieve the final estimation of attitude and velocity, where the position is recalculated by the optimized data. Through simulation experiments and two sets of field tests, the FB-RTS algorithm demonstrated superior performance in reducing navigation errors and smoothing pedestrian trajectories compared to traditional ZUPT method and both the FB and the RTS method, whose advantage becomes more pronounced over longer navigation periods than the traditional methods, offering a robust solution for positioning applications in smart buildings, indoor wayfinding, and emergency response operations. Full article
Show Figures

Figure 1

9 pages, 2181 KB  
Proceeding Paper
Integrating Multi-Sensor Augmented PNT to Enhance Outdoor Human Motion Capture Using Low-Cost GNSS Receivers
by Andrea Maffia, Georgii Kurshakov, Tiziano Cosso, Vittorio Sanguineti and Giorgio Delzanno
Eng. Proc. 2025, 88(1), 44; https://doi.org/10.3390/engproc2025088044 - 8 May 2025
Viewed by 888
Abstract
We are working on an innovative approach to outdoor human motion capture, using a wearable device that integrates a low-cost GNSS (Global Navigation Satellite System) receiver and an INS (Inertial Navigation System) via a zero-velocity update (ZUPT) methodology. In this study, we focused [...] Read more.
We are working on an innovative approach to outdoor human motion capture, using a wearable device that integrates a low-cost GNSS (Global Navigation Satellite System) receiver and an INS (Inertial Navigation System) via a zero-velocity update (ZUPT) methodology. In this study, we focused on using these devices to reconstruct the foot trajectory. Our work addresses the challenge of capturing precise foot movements in uncontrolled outdoor environments, a task traditionally constrained by the limitations of laboratory settings. We equipped devices that combine inertial measurement units (IMUs) with GNSS receivers in the following configuration: one on each foot and one on the head. We experimented with different GNSS data processing techniques, such as Post-Processed Kinematic (PPK) positioning with and without Moving Base (MB), and after the integration with the IMU, we obtained centimeter-level precision in horizontal and vertical positioning for various walking speeds. This integration leverages a loosely coupled GNSS/INS approach, where the GNSS solution is independently processed and subsequently used to refine the INS outputs. Enhanced by ZUPT and Madgwick filtering, this method significantly improves the trajectory reconstruction accuracy. Indeed, our research includes a study of the impact of moving speed on the performance of these low-cost GNSS receivers. These insights pave the way for future exploration into tightly coupled GNSS/INS integration using low-cost GNSS receivers, promising advancements in fields like sports science, rehabilitation, and well-being. This work seeks not only to contribute to the field of wearable technology, but also to open possibilities for further innovation in affordable, high-accuracy personal navigation and activity monitoring devices. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

20 pages, 9790 KB  
Article
Research on Wearable Devices for Pedestrian Navigation Based on the Informer Model Zero-Velocity Update Architecture
by Shuai Zhang, Haotian Gao and Fushengong Yang
Sensors 2025, 25(8), 2587; https://doi.org/10.3390/s25082587 - 19 Apr 2025
Viewed by 1337
Abstract
When natural disasters such as earthquakes occur, accurate navigation and positioning information may not be available, making a purely inertial pedestrian navigation system particularly important for rescuers. In this paper, researchers propose a zero-velocity update architecture for pedestrian navigation based on the Informer [...] Read more.
When natural disasters such as earthquakes occur, accurate navigation and positioning information may not be available, making a purely inertial pedestrian navigation system particularly important for rescuers. In this paper, researchers propose a zero-velocity update architecture for pedestrian navigation based on the Informer model, which is integrated into wearable devices. This architecture modifies the fully connected layer of the Informer model to be used for the binary classification task of the zero-velocity update method (ZUPT), allowing for accurate identification of gait information at each moment using only inertial measurement data. By wearing the device on the foot during natural disasters like earthquakes, the location of the pedestrian can be more accurately determined, facilitating rescue efforts. During the experimental process, a Kalman filter model was constructed to achieve zero-velocity updating of the pedestrian’s motion trajectory. A 2000 m walking experiment and a 210 m mixed-gait experiment were conducted to accurately identify gait information at each moment, thereby reducing the cumulative error of the inertial system. Subsequently, a convolutional neural network (CNN) model and a model combining CNN with a long short-term memory network (CNN + LSTM) were introduced as comparative experiments to verify the performance of the proposed architecture. The experimental results demonstrate that the proposed architecture enhances the adaptability of the zero-velocity update algorithm in underground or sheltered spaces, with all results outperforming the other two models. Full article
(This article belongs to the Special Issue Advanced Sensor Fusion in Industry 4.0)
Show Figures

Figure 1

18 pages, 7248 KB  
Article
Multi-Condition Constrained Pedestrian Localization Algorithm Based on IMU
by Xiao-Yan Yan, Chen-Lu Yu, Xiao-Ting Guo, Hui-Hua Kong and Xiu-Yuan Li
Appl. Sci. 2025, 15(5), 2259; https://doi.org/10.3390/app15052259 - 20 Feb 2025
Viewed by 968
Abstract
The MEMS inertial sensors based on the pedestrian localization system assisted by the zero-velocity update (ZUPT) algorithm has gained widespread attention, due to its effective independent localization in indoor environments. However, in the realistic pedestrian localization test, the system often appears to drift [...] Read more.
The MEMS inertial sensors based on the pedestrian localization system assisted by the zero-velocity update (ZUPT) algorithm has gained widespread attention, due to its effective independent localization in indoor environments. However, in the realistic pedestrian localization test, the system often appears to drift because of the long-term error accumulation of inertial sensors and the limitation of the error suppression of traditional pedestrian localization algorithms. In this article, based on full analysis of existing constraint-based methods, a multi-condition constrained pedestrian localization algorithm is proposed, which integrates zero velocity detection based on phase threshold constraint, single and dual feet fusion constraint algorithms, to suppress drift and improve localization accuracy. The experimental results demonstrate that the multi-condition constraint algorithm can reduce localization errors by 59% compared to the unconstrained approach, and by 42% and 26% compared to algorithms using only single-foot or dual-feet constraints, respectively. The trajectory generated from the experiments further shows that the proposed algorithm produces a trajectory that more closely aligns with the actual walking path. Full article
Show Figures

Figure 1

35 pages, 13196 KB  
Review
Enhancing Intelligent Shoes with Gait Analysis: A Review on the Spatiotemporal Estimation Techniques
by Anna M. Joseph, Azadeh Kian and Rezaul Begg
Sensors 2024, 24(24), 7880; https://doi.org/10.3390/s24247880 - 10 Dec 2024
Cited by 5 | Viewed by 6769
Abstract
The continuous, automated monitoring of sensor-based data for walking capacity and mobility has expanded gait analysis applications beyond controlled laboratory settings to real-world, everyday environments facilitated by the development of portable, cost-efficient wearable sensors. In particular, the integration of Inertial Measurement Units (IMUs) [...] Read more.
The continuous, automated monitoring of sensor-based data for walking capacity and mobility has expanded gait analysis applications beyond controlled laboratory settings to real-world, everyday environments facilitated by the development of portable, cost-efficient wearable sensors. In particular, the integration of Inertial Measurement Units (IMUs) into smart shoes has proven effective for capturing detailed foot movements and spatiotemporal gait characteristics. While IMUs enable accurate foot trajectory estimation through the double integration of acceleration data, challenges such as drift errors necessitate robust correction techniques to ensure reliable performance. This review analyzes current literature on shoe-based systems utilizing IMUs to estimate spatiotemporal gait parameters and foot trajectory characteristics, including foot–ground clearance. We explore the challenges and advancements in achieving accurate 3D foot trajectory estimation using IMUs in smart shoes and the application of advanced techniques like zero-velocity updates and error correction methods. These developments present significant opportunities for achieving reliable and efficient real-time gait assessment in everyday environments. Full article
Show Figures

Figure 1

15 pages, 11432 KB  
Article
A Triangular Structure Constraint for Pedestrian Positioning with Inertial Sensors Mounted on Foot and Shank
by Jianyu Wang, Jing Liang, Chao Wang, Wanwei Tang, Mingzhe Wei and Yiling Fan
Electronics 2024, 13(22), 4496; https://doi.org/10.3390/electronics13224496 - 15 Nov 2024
Cited by 1 | Viewed by 1088
Abstract
To suppress pedestrian positioning drift, a velocity constraint commonly known as zero-velocity update (ZUPT) is widely used. However, it cannot correct the error in the non-zero velocity interval (non-ZVI) or observe heading errors. In addition, the positioning accuracy will be further affected when [...] Read more.
To suppress pedestrian positioning drift, a velocity constraint commonly known as zero-velocity update (ZUPT) is widely used. However, it cannot correct the error in the non-zero velocity interval (non-ZVI) or observe heading errors. In addition, the positioning accuracy will be further affected when a velocity error occurs in the ZVI (e.g., foot tremble). In this study, the foot, ankle, and shank were regarded as a triangular structure. Consequently, an angle constraint was established by utilizing the sum of the internal angles. Moreover, in contrast to the traditional ZUPT algorithm, a velocity constraint method combined with Coriolis theorem was constructed. Magnetometer measurements were used to correct heading. Three groups of experiments with different trajectories were carried out. The ZUPT method of the single inertial measurement unit (IMU) and the distance constraint method of dual IMUs were employed for comparisons. The experimental results showed that the proposed method had high accuracy in positioning. Furthermore, the constraints built by the lower limb structure were applied to the whole gait cycle (ZVI and non-ZVI). Full article
(This article belongs to the Special Issue Intelligent Perception and Control for Robotics)
Show Figures

Figure 1

34 pages, 3921 KB  
Article
Soft Actor-Critic Approach to Self-Adaptive Particle Swarm Optimisation
by Daniel von Eschwege and Andries Engelbrecht
Mathematics 2024, 12(22), 3481; https://doi.org/10.3390/math12223481 - 7 Nov 2024
Cited by 5 | Viewed by 1840
Abstract
Particle swarm optimisation (PSO) is a swarm intelligence algorithm that finds candidate solutions by iteratively updating the positions of particles in a swarm. The decentralised optimisation methodology of PSO is ideally suited to problems with multiple local minima and deceptive fitness landscapes, where [...] Read more.
Particle swarm optimisation (PSO) is a swarm intelligence algorithm that finds candidate solutions by iteratively updating the positions of particles in a swarm. The decentralised optimisation methodology of PSO is ideally suited to problems with multiple local minima and deceptive fitness landscapes, where traditional gradient-based algorithms fail. PSO performance depends on the use of a suitable control parameter (CP) configuration, which governs the trade-off between exploration and exploitation in the swarm. CPs that ensure good performance are problem-dependent. Unfortunately, CPs tuning is computationally expensive and inefficient. Self-adaptive particle swarm optimisation (SAPSO) algorithms aim to adaptively adjust CPs during the optimisation process to improve performance, ideally while reducing the number of performance-sensitive parameters. This paper proposes a reinforcement learning (RL) approach to SAPSO by utilising a velocity-clamped soft actor-critic (SAC) that autonomously adapts the PSO CPs. The proposed SAC-SAPSO obtains a 50% to 80% improvement in solution quality compared to various baselines, has either one or zero runtime parameters, is time-invariant, and does not result in divergent particles. Full article
(This article belongs to the Special Issue Heuristic Optimization and Machine Learning)
Show Figures

Figure 1

21 pages, 991 KB  
Article
A Novel Online Position Estimation Method and Movement Sonification System: The Soniccup
by Thomas H. Nown, Madeleine A. Grealy, Ivan Andonovic, Andrew Kerr and Christos Tachtatzis
Sensors 2024, 24(19), 6279; https://doi.org/10.3390/s24196279 - 28 Sep 2024
Viewed by 4164
Abstract
Existing methods to obtain position from inertial sensors typically use a combination of multiple sensors and orientation modeling; thus, obtaining position from a single inertial sensor is highly desirable given the decreased setup time and reduced complexity. The dead reckoning method is commonly [...] Read more.
Existing methods to obtain position from inertial sensors typically use a combination of multiple sensors and orientation modeling; thus, obtaining position from a single inertial sensor is highly desirable given the decreased setup time and reduced complexity. The dead reckoning method is commonly chosen to obtain position from acceleration; however, when applied to upper limb tracking, the accuracy of position estimates are questionable, which limits feasibility. A new method of obtaining position estimates through the use of zero velocity updates is reported, using a commercial IMU, a push-to-make momentary switch, and a 3D printed object to house the sensors. The generated position estimates can subsequently be converted into sound through sonification to provide audio feedback on reaching movements for rehabilitation applications. An evaluation of the performance of the generated position estimates from a system labeled ‘Soniccup’ is presented through a comparison with the outputs from a Vicon Nexus system. The results indicate that for reaching movements below one second in duration, the Soniccup produces positional estimates with high similarity to the same movements captured through the Vicon system, corresponding to comparable audio output from the two systems. However, future work to improve the performance of longer-duration movements and reduce the system latency to produce real-time audio feedback is required to improve the acceptability of the system. Full article
Show Figures

Figure 1

18 pages, 10601 KB  
Article
The Zero-Velocity Correction Method for Pipe Jacking Automatic Guidance System Based on Fiber Optic Gyroscope
by Wenbo Zhang, Lu Wang and Yutong Zu
Sensors 2024, 24(18), 5911; https://doi.org/10.3390/s24185911 - 12 Sep 2024
Cited by 3 | Viewed by 1936
Abstract
The pipe jacking guidance system based on a fiber optic gyroscope (FOG) has gained extensive attention due to its high degree of safety and autonomy. However, all inertial guidance systems have accumulative errors over time. The zero-velocity update (ZUPT) algorithm is an effective [...] Read more.
The pipe jacking guidance system based on a fiber optic gyroscope (FOG) has gained extensive attention due to its high degree of safety and autonomy. However, all inertial guidance systems have accumulative errors over time. The zero-velocity update (ZUPT) algorithm is an effective error compensation method, but accurately distinguishing between moving and stationary states in slow pipe jacking operations is a major challenge. To address this challenge, a “MV + ARE + SHOE” three-conditional zero-velocity detection (TCZVD) algorithm for the fiber optic gyroscope inertial navigation system (FOG-INS) is designed. Firstly, a Kalman filter model based on ZUPT is established. Secondly, the TCZVD algorithm, which combines the moving variance of acceleration (MV), angular rate energy (ARE), and stance hypothesis optimal estimation (SHOE), is proposed. Finally, experiments are conducted, and the results indicate that the proposed algorithm achieves a zero-velocity detection accuracy of 99.18% and can reduce positioning error to less than 2% of the total distance. Furthermore, the applicability of the proposed algorithm in the practical working environment is confirmed through on-site experiments. The results demonstrate that this method can effectively suppress the accumulated error of the inertial guidance system and improve the positioning accuracy of pipe jacking. It provides a robust and reliable solution for practical engineering challenges. Therefore, this study will contribute to the development of pipe jacking automatic guidance technology. Full article
(This article belongs to the Special Issue Advances in Optical Sensing, Instrumentation and Systems: 2nd Edition)
Show Figures

Figure 1

15 pages, 11142 KB  
Article
Inertial Methodology for the Monitoring of Structures in Motion Caused by Seismic Vibrations
by Julio C. Rodríguez-Quiñonez, Jorge Alejandro Valdez-Rodríguez, Moises J. Castro-Toscano, Wendy Flores-Fuentes and Oleg Sergiyenko
Infrastructures 2024, 9(7), 116; https://doi.org/10.3390/infrastructures9070116 - 19 Jul 2024
Cited by 3 | Viewed by 2216
Abstract
This paper presents a non-invasive methodology for structural health monitoring (SHM) integrated with inertial sensors and signal conditioning techniques. The proposal uses the signal of an IMU (inertial measurement unit) tri-axial accelerometer and gyroscope to continuously measure the displacements of a structure in [...] Read more.
This paper presents a non-invasive methodology for structural health monitoring (SHM) integrated with inertial sensors and signal conditioning techniques. The proposal uses the signal of an IMU (inertial measurement unit) tri-axial accelerometer and gyroscope to continuously measure the displacements of a structure in motion due to seismic vibrations. A system, called the “Inertial Displacement Monitoring System” or “IDMS”, is implemented to attenuate the signal error of the IMU with methodologies such as a Kalman filter to diminish the influence of white noise, a Chebyshev filter to isolate the frequency values of a seismic motion, and a correction algorithm called zero velocity observation update (ZVOB) to detect seismic vibrations and diminish the influence of external perturbances. As a result, the IDMS is a methodology developed to measure displacements when a structure is in motion due to seismic vibration and provides information to detect failures opportunely. Full article
Show Figures

Figure 1

15 pages, 6203 KB  
Article
Experimental Research on Shipborne SINS Rapid Mooring Alignment with Variance-Constraint Kalman Filter and GNSS Position Updates
by Zhipeng Fan, Hua Chai, Xinghui Liang and Hubiao Wang
Sensors 2024, 24(11), 3487; https://doi.org/10.3390/s24113487 - 28 May 2024
Cited by 5 | Viewed by 1284
Abstract
Analytical coarse alignment and Kalman filter fine alignment based on zero-velocity are typically used to obtain initial attitude for inertial navigation systems (SINS) on a static base. However, in the shipboard mooring state, the static observation condition is corrupted. This paper presents a [...] Read more.
Analytical coarse alignment and Kalman filter fine alignment based on zero-velocity are typically used to obtain initial attitude for inertial navigation systems (SINS) on a static base. However, in the shipboard mooring state, the static observation condition is corrupted. This paper presents a rapid alignment method for SINS on swaying bases. The proposed method begins with a coarse alignment technique in the inertial frame to obtain an initial rough attitude. Subsequently, a Kalman filter with position updates is employed to estimate the remaining misalignment error. To enhance the filter estimation performance, an appropriate lower boundary is set to the target states’ variances according to a carefully designed relative convergence index. The variance-constraint Kalman filter (VCKF) approach is proposed in this paper, and the shipborne experiments validate its effectiveness. The results demonstrate that the VCKF approach significantly reduces the time requirement for fine alignment to achieve the same accuracy on a swaying base, from 90 min in the classic Kalman filter to 30 min. Additionally, the parameter estimation performance in the Kalman filter is also improved, particularly in situations where unpredicted external interference is involved during fine alignment. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

Back to TopTop