Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = ZO doping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6012 KB  
Article
Study of Electrical and Dielectric Behaviors of Copper-Doped Zinc Oxide Ceramic Prepared by Spark Plasma Sintering for Electronic Device Applications
by Majdi Benamara, Kais Iben Nassar, Pedro Rivero-Antúnez, Manel Essid, Silvia Soreto Teixeira, Shanyu Zhao, Albert Serrà and Luis Esquivias
Nanomaterials 2024, 14(5), 402; https://doi.org/10.3390/nano14050402 - 22 Feb 2024
Cited by 25 | Viewed by 3139
Abstract
In this study, Cu-doped ZnO aerogel nanoparticles with a 4% copper concentration (Cu4ZO) were synthesized using a sol–gel method, followed by supercritical drying and heat treatment. The subsequent fabrication of Cu4ZO ceramics through Spark Plasma Sintering (SPS) was characterized by X-ray diffraction (XRD), [...] Read more.
In this study, Cu-doped ZnO aerogel nanoparticles with a 4% copper concentration (Cu4ZO) were synthesized using a sol–gel method, followed by supercritical drying and heat treatment. The subsequent fabrication of Cu4ZO ceramics through Spark Plasma Sintering (SPS) was characterized by X-ray diffraction (XRD), field-emission gun scanning electron microscopy (FE-SEM) equipped with EDS, and impedance spectroscopy (IS) across a frequency range of 100 Hz to 1 MHz and temperatures from 270 K to 370 K. The SPS–Cu4ZO sample exhibited a hexagonal wurtzite structure with an average crystallite size of approximately 229 ± 10 nm, showcasing a compact structure with discernible pores. The EDS spectrum indicates the presence of the base elements zinc and oxygen with copper like the dopant element. Remarkably, the material displayed distinct electrical properties, featuring high activation energy values of about 0.269 ± 0.021 eV. Complex impedance spectroscopy revealed the impact of temperature on electrical relaxation phenomena, with the Nyquist plot indicating semicircular arc patterns associated with grain boundaries. As temperature increased, a noticeable reduction in the radius of these arcs occurred, coupled with a shift in their center points toward the axis center, suggesting a non-Debye-type relaxation mechanism. Dielectric analyses revealed a temperature-driven evolution of losses, emphasizing the material’s conductivity impact. Non-Debye-type behavior, linked to ion diffusion, sheds light on charge storage dynamics. These insights advance potential applications in electronic devices and energy storage. Full article
(This article belongs to the Special Issue Nanomaterials in Aerogel Composites)
Show Figures

Figure 1

16 pages, 9696 KB  
Article
Synthesis of Zinc Oxide Doped Magnesium Hydrate and Its Effect on the Flame Retardant and Mechanical Properties of Polypropylene
by Xue Li, Hongbo Zhang, Xiaoyuan Liu, Zhihui Lv, Yankui Jin, Donghai Zhu and Li Dang
Polymers 2023, 15(21), 4248; https://doi.org/10.3390/polym15214248 - 28 Oct 2023
Cited by 5 | Viewed by 1751
Abstract
In this work, an effective flame retardant consisting of nanoscale zinc oxide doped on the surface of hexagonal lamellar magnesium hydrate (ZO@MH) has been successfully synthesized via a hydrothermal process. Approximately 3-methacryloxypropyltrimethoxysilane (KH-570) is chosen as a modifier of ZO@MH for the purpose [...] Read more.
In this work, an effective flame retardant consisting of nanoscale zinc oxide doped on the surface of hexagonal lamellar magnesium hydrate (ZO@MH) has been successfully synthesized via a hydrothermal process. Approximately 3-methacryloxypropyltrimethoxysilane (KH-570) is chosen as a modifier of ZO@MH for the purpose of enhancing the interfacial interaction between ZO@MH and the polypropylene (PP) matrix and reducing the agglomeration of ZO@MH. Afterwards, ZO@MH and KH-570 modified ZO@MH (KZO@MH) filled PP (PP/ZO@MH and PP/KZO@MH) composites are respectively prepared via the melt blending method. The flame retardant and smoke suppression properties of PP/ZO@MH and PP/KZO@MH composites are estimated by a cone calorimetry test (CCT). The peak value of the heat release rate of the PP/40KZO@MH composite is 327.0 kW/m2, which is 6.1% and 31.2% lower than that of the PP/40ZO@MH and PP/40MH composites, respectively. The lowest peak values of CO and CO2 production, 0.008 and 0.62 g/s, also appeared in the PP/40KZO@MH composite, which are 11.1% and 10.1% lower than those of the PP/40ZO@MH composite. Analysis of char residues indicates that nanoscale ZO and modification of KH-570 improve the amount and quality of char residues, which should be the main reason for the good flame retardant and smoke suppression properties of KZO@MH. Impact strength and nominal strain at break results show that the PP matrix is toughened by ZO@MH rather than KZO@MH. Tensile properties and the quantitative interfacial interaction calculated by the Turcsányi equation both prove the reinforcement of KZO@MH on the PP matrix. Full article
Show Figures

Figure 1

13 pages, 3289 KB  
Article
Impact of Silver on the Structural and Wettability Properties of ZnO Films Grown by Oblique Angle Magnetron Sputtering
by Leo Álvarez-Fraga, Raúl Gago, José de Jesús Araiza, Jon Azpeitia, Ignacio Jiménez and Olga Sánchez
Processes 2023, 11(5), 1428; https://doi.org/10.3390/pr11051428 - 8 May 2023
Cited by 2 | Viewed by 2101
Abstract
Un-doped (uZO) and silver-doped zinc oxide (SZO) films were prepared by oblique incidence sputtering deposition under different process parameters. The crystalline structure, chemical composition, and surface morphology were correlated with the optical properties, as well as with the wettability of the films. In [...] Read more.
Un-doped (uZO) and silver-doped zinc oxide (SZO) films were prepared by oblique incidence sputtering deposition under different process parameters. The crystalline structure, chemical composition, and surface morphology were correlated with the optical properties, as well as with the wettability of the films. In the case of uZO films, the orientation, inclination, and morphology of the columnar structure determined the wettability of the layer, moving from a hydrophilic- to hydrophobic-like character. In the case of SZO films, although almost all of them displayed hydrophobic behavior, the hydrophobic character increased with the Ag content. The most hydrophobic surface was obtained when the Ag content in the layers was greater than 7 at.% and, in these cases, the structural results indicate that the layers were formed by a disordered mixture of Zn and Ag oxides. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

12 pages, 3619 KB  
Article
Enhancement of the Magnetic Properties in Si4+-Li+-Substituted M-Type Hexaferrites for Permanent Magnets
by Jin-Young You, Kang-Hyuk Lee, Young-Min Kang and Sang-Im Yoo
Appl. Sci. 2022, 12(23), 12295; https://doi.org/10.3390/app122312295 - 1 Dec 2022
Cited by 7 | Viewed by 2261
Abstract
A series of charge-balanced Si4+-M1+,2+ (M = Mg2+, K+, Li+) substitution compositions with the chemical formulae of SrFe12−2xSixMgxO19 (x = 0, 0.05, 0.1, 0.2), Sr [...] Read more.
A series of charge-balanced Si4+-M1+,2+ (M = Mg2+, K+, Li+) substitution compositions with the chemical formulae of SrFe12−2xSixMgxO19 (x = 0, 0.05, 0.1, 0.2), Sr1−yFe12−ySiyKyO19 (y = 0.05, 0.1, 0.2), and SrFe12−z(Si0.6Li0.6)zO19 (z = 0.05, 0.1, 0.2, 0.4, 0.6) were prepared using conventional ceramic processes. While the sole doping of Si with x = 0.1 (SrFe12−xSixO19 (x = 0.1)) causes a noticeable Fe2O3 phase formation, the co-doping of Si-Mg and Si-Li allow a single M-type phase formation with x up to x = 0.1 and z = 0.4, respectively. Notably, a 2.6% increase in the saturation magnetization was obtained for Si-Li-substituted SrM with z = 0.05—that is, SrFe11.95Si0.03Li0.03O19. Enhancement of the magnet performance can also be achieved when anisotropic permanent magnets are fabricated based on the substitution composition SrFe11.95Si0.03Li0.03O19. The remnant magnetic flux density was improved by 2.5% compared to that of the unsubstituted SrM (from 4207 to 4314 G). The maximum energy product (BHmax) value also increased from 4.24 to 4.46 M·G·Oe. The enhancement in permanent magnet performance is attributed to the increase in the MS of SrM by the optimal Si-Li substitution. This is a promising result because enhanced permanent magnet performance is achieved with intrinsic magnetic property improvement. Full article
(This article belongs to the Special Issue Magnetic Materials: Characterization and Sensing Application)
Show Figures

Figure 1

26 pages, 7825 KB  
Article
Structural, Optical, Magnetic and Electrical Properties of Sputtered ZnO and ZnO:Fe Thin Films: The Role of Deposition Power
by Ahmed Faramawy, Hamada Elsayed, Carlo Scian and Giovanni Mattei
Ceramics 2022, 5(4), 1128-1153; https://doi.org/10.3390/ceramics5040080 - 1 Dec 2022
Cited by 34 | Viewed by 4298
Abstract
Structural, optical, magnetic, and electrical properties of zinc oxide (henceforth, ZO) and iron doped zinc oxide (henceforth, ZOFe) films deposited by sputtering technique are described by means of Rutherford backscattering spectrometry, grazing incidence X-ray diffraction, scanning electron microscope (SEM), UV–Vis spectrometer, vibrating sample [...] Read more.
Structural, optical, magnetic, and electrical properties of zinc oxide (henceforth, ZO) and iron doped zinc oxide (henceforth, ZOFe) films deposited by sputtering technique are described by means of Rutherford backscattering spectrometry, grazing incidence X-ray diffraction, scanning electron microscope (SEM), UV–Vis spectrometer, vibrating sample magnetometer, and room temperature electrical conductivity, respectively. GIXRD analysis revealed that the films were polycrystalline with a hexagonal phase, and all films had a preferred (002) c-axis orientation. The lattice parameters a and c of the wurtzite structure were calculated for all films. The a parameter remains almost the same (around 3 Å), while c parameter varies slightly with increasing Fe content from 5.18 to 5.31 Å throughout the co-deposition process. The optical gap for undoped and doped ZO was obtained from different numerical methods based on the experimental data and it was increased with the increment of the concentration of Fe dopant from 3.26 eV to 3.35 eV. The highest magnetization (4.26 × 10−4 emu/g) and lowest resistivity (4.6 × 107 Ω·cm) values of the ZO films were found to be at an Fe content of 5% at. %. An explanation for the dependence of the optical, magnetic, and electrical properties of the samples on the Fe concentrations is also given. The enhanced magnetic properties such as saturated magnetization and coercivity with optical properties reveal that Fe doped ZO thin films are suitable for magneto-optoelectronic (optoelectronic and spintronics) device applications. Full article
(This article belongs to the Special Issue Ceramic Coatings for High-Temperature Applications)
Show Figures

Figure 1

17 pages, 4184 KB  
Review
Recent Advances in ZnO-Based Carbon Monoxide Sensors: Role of Doping
by Ana María Pineda-Reyes, María R. Herrera-Rivera, Hugo Rojas-Chávez, Heriberto Cruz-Martínez and Dora I. Medina
Sensors 2021, 21(13), 4425; https://doi.org/10.3390/s21134425 - 28 Jun 2021
Cited by 65 | Viewed by 7539
Abstract
Monitoring and detecting carbon monoxide (CO) are critical because this gas is toxic and harmful to the ecosystem. In this respect, designing high-performance gas sensors for CO detection is necessary. Zinc oxide-based materials are promising for use as CO sensors, owing to their [...] Read more.
Monitoring and detecting carbon monoxide (CO) are critical because this gas is toxic and harmful to the ecosystem. In this respect, designing high-performance gas sensors for CO detection is necessary. Zinc oxide-based materials are promising for use as CO sensors, owing to their good sensing response, electrical performance, cost-effectiveness, long-term stability, low power consumption, ease of manufacturing, chemical stability, and non-toxicity. Nevertheless, further progress in gas sensing requires improving the selectivity and sensitivity, and lowering the operating temperature. Recently, different strategies have been implemented to improve the sensitivity and selectivity of ZnO to CO, highlighting the doping of ZnO. Many studies concluded that doped ZnO demonstrates better sensing properties than those of undoped ZnO in detecting CO. Therefore, in this review, we analyze and discuss, in detail, the recent advances in doped ZnO for CO sensing applications. First, experimental studies on ZnO doped with transition metals, boron group elements, and alkaline earth metals as CO sensors are comprehensively reviewed. We then focused on analyzing theoretical and combined experimental–theoretical studies. Finally, we present the conclusions and some perspectives for future investigations in the context of advancements in CO sensing using doped ZnO, which include room-temperature gas sensing. Full article
(This article belongs to the Special Issue Semiconductor Materials and Nanostructures for Sensors and Devices)
Show Figures

Figure 1

14 pages, 2646 KB  
Article
Enhanced Photocatalytic Removal of Cyanotoxins by Al-Doped ZnO Nanoparticles with Visible-LED Irradiation
by Majdi Benamara, Elvira Gómez, Ramzi Dhahri and Albert Serrà
Toxins 2021, 13(1), 66; https://doi.org/10.3390/toxins13010066 - 17 Jan 2021
Cited by 29 | Viewed by 4617
Abstract
The ZnO-based visible-LED photocatalytic degradation and mineralization of two typical cyanotoxins, microcystin-LR (MC-LR), and anatoxin-A were examined. Al-doped ZnO nanoparticle photocatalysts, in Al:Zn ratios between 0 and 5 at.%, were prepared via sol-gel method and exhaustively characterized by X-ray diffraction, transmission electron microscopy, [...] Read more.
The ZnO-based visible-LED photocatalytic degradation and mineralization of two typical cyanotoxins, microcystin-LR (MC-LR), and anatoxin-A were examined. Al-doped ZnO nanoparticle photocatalysts, in Al:Zn ratios between 0 and 5 at.%, were prepared via sol-gel method and exhaustively characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, and nitrogen adsorption-desorption isotherms. With both cyanotoxins, increasing the Al content enhances the degradation kinetics, hence the use of nanoparticles with 5 at.% Al content (A5ZO). The dosage affected both cyanotoxins similarly, and the photocatalytic degradation kinetics improved with photocatalyst concentrations between 0.5 and 1.0 g L−1. Nevertheless, the pH study revealed that the chemical state of a species decisively facilitates the mutual interaction of cyanotoxin and photocatalysts. A5ZO nanoparticles achieved better outcomes than other photocatalysts to date, and after 180 min, the mineralization of anatoxin-A was virtually complete in weak alkaline medium, whereas only 45% of MC-LR was in neutral conditions. Moreover, photocatalyst reusability is clear for anatoxin-A, but it is adversely affected for MC-LR. Full article
(This article belongs to the Special Issue Removal of Cyanobacteria and Cyanotoxins in Waters)
Show Figures

Figure 1

16 pages, 8608 KB  
Article
NH3 Plasma-Treated Magnesium Doped Zinc Oxide in Biomedical Sensors with Electrolyte–Insulator–Semiconductor (EIS) Structure for Urea and Glucose Applications
by Chun Fu Lin, Chyuan Haur Kao, Chan Yu Lin, Kuan Lin Chen and Yun Hao Lin
Nanomaterials 2020, 10(3), 583; https://doi.org/10.3390/nano10030583 - 23 Mar 2020
Cited by 24 | Viewed by 4244
Abstract
This study compared the sensing characteristics of ZnO (ZO) treated with ammonia (NH3) plasma for 1 min, 3 min, and 6 min, under the EIS structure. The measurement results revealed that, after 3 min of NH3 plasma treatment, the Mg-doped [...] Read more.
This study compared the sensing characteristics of ZnO (ZO) treated with ammonia (NH3) plasma for 1 min, 3 min, and 6 min, under the EIS structure. The measurement results revealed that, after 3 min of NH3 plasma treatment, the Mg-doped ZnO (MZO) sensing film had a high hydrogen ion sensitivity, linearity, hysteresis, and drift rate of 53.82 mV/pH, 99.04%, 2.52 mV, and 1.75 mV/h, respectively. The sensing film was used with sodium and potassium ion solutions, and it performed satisfactorily in sensing hydrogen ions. Additionally, we investigated the biomedical sensing properties of Mg-doped ZnO (MZO) sensing film with regard to urea, creatinine, and glucose solutions and found that the Mg-doped ZnO (MZO) sensing film treated with NH3 plasma for 3 min had the best properties for sensing urea, creatinine, and glucose. Specifically, with glucose, the sensing film achieved the best linearity and sensitivity and of 97.87% and 10.73 mV/mM, respectively. The results revealed that the sensing characteristics varied with the processing environment and are useful in the developing biomedical sensing applications with different sensing elements. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

4 pages, 265 KB  
Proceeding Paper
Near Infrared Plasmonic Gas Sensing with Doped Metal Oxide Nanocrystals
by Marco Sturaro, Enrico Della Gaspera, Carlo Cantalini, Massimo Guglielmi and Alessandro Martucci
Proceedings 2017, 1(4), 319; https://doi.org/10.3390/proceedings1040319 - 5 Sep 2017
Cited by 4 | Viewed by 2509
Abstract
In this paper, we demonstrate the application of ZnO doped with gallium (GZO), aluminum (AZO) and germanium (GeZO) nanocrystals as novel plasmonic and chemiresistive sensors for the detection of hazardous gases including hydrogen (H2) and nitrogen dioxide (NO2). GZO, [...] Read more.
In this paper, we demonstrate the application of ZnO doped with gallium (GZO), aluminum (AZO) and germanium (GeZO) nanocrystals as novel plasmonic and chemiresistive sensors for the detection of hazardous gases including hydrogen (H2) and nitrogen dioxide (NO2). GZO, AZO and GeZO nanocrystals are obtained by non-aqueous colloidal heat-up synthesis with high transparency in the visible range and strong localized surface plasmon resonance (LSPR) in the near IR range, tunable with dopant concentration (up to 20% mol nominal). Thanks to the strong sensitivity of the LSPR to chemical and electrical changes occurring at the surface of the nanocrystals, such optical features can be used to detect the presence of toxic gases. By monitoring the changes in the dopant-induced plasmon resonance in the near infrared, we demonstrate that GZO, AZO and GeZO thin films prepared depositing an assembly of highly doped ZnO colloids are able to optically detect both oxidizing and reducing gases at mild (<100 °C) operating temperatures. Combined optical and electrical measurements show that the dopants within ZnO nanocrystals enhance the gas sensing response compared to undoped ZnO. Full article
(This article belongs to the Proceedings of Proceedings of Eurosensors 2017, Paris, France, 3–6 September 2017)
Show Figures

Figure 1

17 pages, 2048 KB  
Article
Structural Transitions in Nanosized Zn0.97Al0.03O Powders under High Pressure Analyzed by in Situ Angle-Dispersive X-ray Diffraction
by Chih-Ming Lin, Hsin-Tzu Liu, Shi-Yao Zhong, Chia-Hung Hsu, Yi-Te Chiu, Ming-Fong Tai, Jenh-Yih Juang, Yu-Chun Chuang and Yen-Fa Liao
Materials 2016, 9(7), 561; https://doi.org/10.3390/ma9070561 - 12 Jul 2016
Cited by 4 | Viewed by 5825
Abstract
Nanosized aluminum-doped zinc oxide Zn1−xAlxO (AZO) powders (AZO-NPs) with x = 0.01, 0.03, 0.06, 0.09 and 0.11 were synthesized by chemical precipitation method. The thermogravimetric analysis (TGA) indicated that the precursors were converted to oxides from hydroxides near [...] Read more.
Nanosized aluminum-doped zinc oxide Zn1−xAlxO (AZO) powders (AZO-NPs) with x = 0.01, 0.03, 0.06, 0.09 and 0.11 were synthesized by chemical precipitation method. The thermogravimetric analysis (TGA) indicated that the precursors were converted to oxides from hydroxides near 250 °C, which were then heated to 500 °C for subsequent thermal processes to obtain preliminary powders. The obtained preliminary powders were then calcined at 500 °C for three hours. The structure and morphology of the products were measured and characterized by angle-dispersive X-ray diffraction (ADXRD) and scanning electron microscopy (SEM). ADXRD results showed that AZO-NPs with Al content less than 11% exhibited würtzite zinc oxide structure and there was no other impurity phase in the AZO-NPs, suggesting substitutional doping of Al on Zn sites. The Zn0.97Al0.03O powders (A3ZO-NPs) with grain size of about 21.4 nm were used for high-pressure measurements. The in situ ADXRD measurements revealed that, for loading run, the pressure-induced würtzite (B4)-to-rocksalt (B1) structural phase transition began at 9.0(1) GPa. Compared to the predicted phase-transition pressure of ~12.7 GPa for pristine ZnO nanocrystals of similar grain size (~21.4 nm), the transition pressure for the present A3ZO-NPs exhibited a reduction of ~3.7 GPa. The significant reduction in phase-transition pressure is attributed to the effects of highly selective site occupation, namely Zn2+ and Al3+, were mainly found in tetrahedral and octahedral sites, respectively. Full article
(This article belongs to the Special Issue Computational Multiscale Modeling and Simulation in Materials Science)
Show Figures

Figure 1

Back to TopTop