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Abstract: In this work, an effective flame retardant consisting of nanoscale zinc oxide doped on
the surface of hexagonal lamellar magnesium hydrate (ZO@MH) has been successfully synthesized
via a hydrothermal process. Approximately 3-methacryloxypropyltrimethoxysilane (KH-570) is
chosen as a modifier of ZO@MH for the purpose of enhancing the interfacial interaction between
ZO@MH and the polypropylene (PP) matrix and reducing the agglomeration of ZO@MH. Afterwards,
ZO@MH and KH-570 modified ZO@MH (KZO@MH) filled PP (PP/ZO@MH and PP/KZO@MH)
composites are respectively prepared via the melt blending method. The flame retardant and smoke
suppression properties of PP/ZO@MH and PP/KZO@MH composites are estimated by a cone
calorimetry test (CCT). The peak value of the heat release rate of the PP/40KZO@MH composite
is 327.0 kW/m2, which is 6.1% and 31.2% lower than that of the PP/40ZO@MH and PP/40MH
composites, respectively. The lowest peak values of CO and CO2 production, 0.008 and 0.62 g/s,
also appeared in the PP/40KZO@MH composite, which are 11.1% and 10.1% lower than those of the
PP/40ZO@MH composite. Analysis of char residues indicates that nanoscale ZO and modification of
KH-570 improve the amount and quality of char residues, which should be the main reason for the
good flame retardant and smoke suppression properties of KZO@MH. Impact strength and nominal
strain at break results show that the PP matrix is toughened by ZO@MH rather than KZO@MH.
Tensile properties and the quantitative interfacial interaction calculated by the Turcsányi equation
both prove the reinforcement of KZO@MH on the PP matrix.

Keywords: zinc oxide; magnesium hydrate; polypropylene; flame retardant; mechanical properties

1. Introduction

As an environment-friendly, non-toxicity, and low-cost flame retardant, magnesium hy-
drate (MH) has been applied in many flammable polymer matrixes, such as polypropylene
(PP) [1,2], polyvinyl chloride (PVC) [3,4], high density polyethylene (HDPE) [5,6], linear
low-density polyethylene (LLDPE) [7,8], ethylene-vinyl acetate (EVA) [9,10], polyurethane
(PU) [11,12], polystyrene (PS) [13,14], polyethylene terephthalate (PET) [15,16], silicone
rubber (SR) [5,17], and so on. However, at the mercy of low flame retardant efficiency,
almost all of the polymer/MH composites exhibit good flame-retardant properties with
quite a high filler content of MH. As a result, the processability and mechanical perfor-
mance of the composites are greatly sacrificed. In theory, MH acts as a flame retardant
in three ways: (i) oxygen and flammable volatiles around combustion zones are diluted
by plenty of vapor generated from the thermal decomposition of MH; (ii) a magnesium
oxide-containing barrier layer on the surface of the polymer matrix is formed to hinder the
transportation of heat and flammable volatiles; and (iii) the temperature of the combusted
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polymer matrix is lowered through the endothermic decomposition of MH. It is interesting
that MH also plays a special role in some particular polymers. For example, the hydrogen
chloride produced from the dehydrochlorination of PVC can be neutralized by MH or
generated magnesium oxide, which is good for the smoke suppression of PVC composites.

Mixing with other kinds of flame retardants to obtain a synergistic effect is a useful
method for reducing the mass loading of MH flame retardant. For example, carbon
compounds like carbon microspheres [16], reduced graphene oxide [18], multiwalled
carbon nanotubes [19], expandable graphite [12,20], carbon black [21], etc., phosphorous
compounds including miciroencapsulated red phosphorous [22], tripheyl phosphate [23],
DOPO [24], etc., boron compounds just like zinc borate [18], boron nitride [11], boron
oxide and anhydrous borax [25], etc., minerals such as montmorillonoid [26], organically
modified montmorillonite (OMMT) [27], sepiolite [28], etc. are all reported as synergists of
MH. The flame retardant efficiency of MH is ingeniously improved via the introduction
of different flame retardant mechanisms, such as free radical trapping and the catalytic
charring effect. Adding aluminum hydroxide [29] or magnesium carbonate [30] with MH
can also show a considerable synergistic flame retardant effect, which is ascribed to the
different decomposition temperatures.

In addition to these, transition metal oxides, such as zinc oxide and molybdenum tri-
oxide, have drawn more and more attention to the flame retardant and smoke suppression
properties of polymer matrix. The flame retardancy and smoke suppression mechanisms
of transition metal oxides are summarized as follows: (1) catalyzed and cross-linked char-
forming by Lewis acid (such as molybdenum trioxide, ammonium octamolybdate, etc.);
and (2) reduction and coupling char-forming by the low-valent compounds of polyvalent
transition metal oxides (such as Cu2O, oxalates, and formates, etc.). It should be pointed
out that the flame retardant effect of transition metal oxides is often poor when they are
used alone [31–33]. The combination of MH and transition metal oxides should generate
a synergetic effect in flame retardancy and smoke suppression since they have entirely
different mechanisms. In fact, we have successfully synthesized a hierarchical magnesium
hydrate doped with molybdenum trioxide nanoparticles (MO@MH) via a hydrothermal
process, which performs excellently in flame retardancy and smoke suppression of flexi-
ble PVC (fPVC) [18]. However, the high price of molybdate or molybdenum-containing
compounds greatly limits the large-scale application of MO@MH. Hence, for this time, zinc
oxide, another kind of transition metal oxide, is chosen as a synergist of MH for flame
retardant and smoke suppression of PP due to its low price and potential catalyzed and
cross-linked char-forming effect.

In this study, nanoscale zinc oxide is successfully introduced on the surface of hexago-
nal lamellar MH to synthesize zinc oxide-doped MH (ZO@MH) via a hydrothermal route.
The morphology, composition, and structure of ZO@MH are characterized by scanning elec-
tron microscopy (SEM), elemental mapping, and X-ray powder diffraction (XRD). Approxi-
mately 3-methacryloxypropyltrimethoxysilane (KH-570) modified ZO@MH (KZO@MH)
is evaluated and characterized by water contact angle, SEM, elemental mapping, and
X-ray photoelectron spectroscopy (XPS). Afterwards, MH, ZO@MH, or KZO@MH-filled
PP (PP/ZO@MH and PP/KZO@MH) composites are respectively prepared via the melt
blending method. The flame retardant and smoke suppression effects of ZO@MH and
KZO@MH on PP are estimated by the cone calorimetry test (CCT). The char residues are
analyzed by SEM and XPS for the sake of a possible condensed-phase flame retardant
mechanism. At last, the mechanical properties of the composites are also tested via impact
and tensile tests. The compatibility is observed by SEM, and the interfacial interaction is
calculated by the linear fitting of the Turcsányi equation.
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2. Experimental
2.1. Materials

Sodium hydroxide (AR) and magnesium chloride hexahydrate (AR) were purchased
from Tianjin Kemiou Chemical Regent Co., Ltd. (Tianjin, China). Zinc chloride (AR) was
purchased from Tianjin Kaitong Chemical Regent Co., Ltd. (Tianjin, China). Approximately
3-methacryloxypropyltrimethoxysilane (≥95%) was purchased from Dongguan Dinghai
Plastic Chemical Co., Ltd. (Dongguan, China). Ethanol (AR) and acetic acid (AR) were
purchased from Sinopharm Chemical Regent Co., Ltd. (Shanghai, China). Polypropylene
(T30S, 0.90 cm3/g) was purchased from Maoming Petrochemical Co., Ltd. (Maoming,
China). Antioxidant 1010 (95.0%) was purchased from Tokyo Chemical Industry (Tokyo,
Japan). All other materials were commercially available and used as received, unless
otherwise noted.

2.2. Preparation of ZO@MH

Firstly, a certain amount of magnesium chloride hexahydrate was dissolved in deion-
ized water to prepare a 0.5 mol/L magnesium chloride aqueous solution. Then, a certain
amount of sodium hydroxide was added to the solution (molar ratio of Mg2+:OH− = 1:2)
and stirred for 0.5 h. The obtained suspension was aged for 12 h for crystal growth of
magnesium hydrate. After that, a certain volume (molar ratio of Zn:Mg = 1:5) of 0.1 mol/L
zinc chloride aqueous solution was dropwise added to the magnesium hydrate slurry
with mechanical stirring, and the mixed solution was transferred to an autoclave. After
hydrothermal reaction for 20 h at 90 ◦C, a ZO@MH hybrid was synthesized.

2.3. Preparation of KH-570 Functionalized ZO@MH

A total of 5.00 g of ZO@MH was added into 100 mL of deionized water with magnetic
stirring for 3 h in order to obtain a pre-dispersed slurry of ZO@MH. KH-570, ethanol,
and deionized water were mixed in a volume ratio of 18:1:1 to accomplish the hydrolysis
process [34,35]. The pH value was adjusted to 4~6 by acetic acid. After 3 h of hydrolysis, a
certain amount of KH-570 solution (mass ratio of ZO@MH:KH-570 = 100:9) was added to
the pre-dispersed slurry of ZO@MH, which had been heated to 50 ◦C. The modification
reaction was continued under magnetic stirring at 30 rpm for 1 h. The product (KZO@MH)
was cooled to room temperature, then filtered and washed with plenty of ethanol and
deionized water successively to remove excessive KH-570. The sample was collected and
dried at 60 ◦C for 12 h.

2.4. Preparation of PP Composites

All fillers were dried at 60 ◦C for more than 8 h to remove moisture, and then PP
granules, MH, ZO@MH, KZO@MH, and antioxidant 1010 were mixed based on a certain
percentage with an RM-200C torque rheometer (HAPRO, Harbin, China) at 190 ◦C with a
rotor speed of 60 rpm for 15 min. The composition and nomenclature used for samples in
this article are presented in Table 1. Film samples with different thicknesses were obtained
by compression molding with an XH-406B press vulcanizer (Xihua, Dongguan, China) at
190 ◦C for 8 min without pressure and 7 min under a pressure of 15 MPa, respectively.
Then, the film samples were cooled to room temperature at the same pressure for 5 min.
All the samples were stored at room temperature (23 ± 2 ◦C).

Table 1. Composition and nomenclature used in this article.

Label Filler Type phr a of Filler

neat PP /

I = 1, 4, 7, 10, 20, 40
PP/iMH MH

PP/iZO@MH ZO@MH
PP/iKZO@MH KZO@MH

a parts per hundred.
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2.5. Characterization

The morphologies of ZO@MH, KZO@MH, and char residues after CCT were examined
using a Merlin Compact scanning electron microscope (Zeiss, Jena, Germany) equipped
with an energy-dispersive X-ray spectrometer (EDS). All samples were adhered to a copper-
conductive belt and sputter-coated with a conductive gold layer.

The X-ray powder diffraction (XRD) patterns were determined by an X’Pert X-ray
spectrometer (Philips, Eindhoven, The Netherlands) using Cu Kα radiation with a tube
voltage of 40 kV and a tube current of 35 mA.

Water contact angle was measured by an OCA50 contact angle goniometer (Data-
physics, Stuttgart, Germany) at room temperature.

X-ray photoelectron spectroscopy (XPS) was carried out using an ESCALAB Xi+

multifunction electron spectrometer (Thermo Scientific, Waltham, MA, USA) equipped
with an Al Kα X-ray source. The XPS spectra were taken in the constant analyzer energy
mode with a pass energy of 100 eV and an energy step size of 0.4 eV, and high-resolution
XPS spectra of C1s and Si2p were also recorded with an energy step size of 0.125 eV.

Cone calorimetry tests (CCT) were performed with samples of 100 mm × 100 mm ×
3.0 mm on a CCT cone calorimeter (Motis Fire Technology (China) Co. Ltd., Suzhou, China)
on the basis of standard GB/T 16172-2007. All samples were wrapped in an aluminum foil
layer and then horizontally irradiated at a heat flux of 50 kW/m2.

Tensile properties were measured at room temperature using a 104B-EX electronic
universal testing machine (Shenzhen Wance Testing Machine Co., Ltd., Shenzhen, China)
according to GB/T 1040.2-2006. Dumbbell-shaped specimens (1AB) with a length of 75 mm
and a thickness of 2 mm were employed, and the test speed was 10 mm/min. The results
of each measurement were the average value of six samples, at least.

Impact strength was also measured at room temperature with a 501J-4 instrumental
plastic impact testing machine (Shenzhen Wance Testing Machine Co., Ltd.,
Shenzhen, China) according to GB/T 1043-2008. The size of the testing samples was
80 mm × 10 mm × 4.0 mm with a V-type groove in the middle part. The maximum energy
of the pendulum hammer was 11 J. The results of each measurement were the average
value of six samples, at least.

3. Results and Discussion
3.1. Characterization of ZO@MH

The XRD patterns of ZO, MH, and ZO@MH are presented in Figure 1a–c. The uniform
diffraction peaks at 2θ of 18.6◦, 32.8◦, 38.0◦, 50.8◦, 57.8◦, 62.0◦, 68.1◦, 72.0◦, and 80.3◦ are
respectively assigned to (001), (100), (101), (102), (110), (111), (013), (021) and (022) crystal
faces of MH (JCPDS: 84-2163) [36]. The peaks at 2θ of 31.8◦, 34.5◦, 36.3◦, 47.7◦, 56.7◦,
63.0◦, 66.5◦, 68.1◦, 69.3◦, and 77.2◦ are respectively assigned to (100), (002), (101), (102),
(110), (103), (200), (112), (201), and (202) crystal faces of ZO (JCPDS: 75-0576) [37]. As for
ZO@MH, these diffraction peaks all appeared to have quite good fits. Hence, it is believed
that the as-prepared sample contains MH and ZO. What more is, the high intensity of
peaks and narrow peak widths both indicate the excellent crystallinity of ZO@MH. The
detailed morphologies of ZO@MH are presented in Figure 1d–f. Obviously, ZO@MH is
hierarchically constructed with hexagonal lamellar MH and nanoscale ZO particles on
the surface. The length of the side and thickness of MH are about 1 µm and 100 nm,
respectively. The size of ZO particles is about 50~100 nm, as pointed out by the yellow
arrows in Figure 1e,f. In addition, the composition of ZO@MH is also explored using
elemental mapping, as shown in Figure 1g–j. It is definitely true that ZO@MH is composed
of Mg, Zn, and O elements (it also contains H elements, which cannot be detected by
elemental mapping). The weight contents of Mg and Zn elements are 29.06 wt% and
14.68 wt%, respectively. Hence, the molar ratio of Mg:Zn is calculated as 5.3, which
corresponds to the added ratio of Mg:Zn in the synthesis process.
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Figure 1. XRD patterns of MH (a), ZO (b), and ZO@MH (c); SEM images of ZO@MH (d–f); Element
mappings (g) of ZO@MH: (h) for Mg, (i) for O, (j) for Zn.

3.2. Characterization of KZO@MH

After modification with KH-570, KZO@MH maintains the same structure as ZO@MH,
as shown in Figure 2a,b. The apparent hexagonal lamellar and nanoscale particles still
exist, which not only indicates that KH-570 modification does not alter the morphologies
of ZO@MH but also indicates that the degree of crystallinity of ZO@MH is not damaged
during the modification process. However, the hydrophilicity surface of ZO@MH com-
pletely translates to a hydrophobicity surface of KZO@MH with a water contact angle
of 69.9◦, as shown in Figure 2c. The existence and distribution of KH-570 on the surface
of KZO@MH are investigated by elemental mapping, as shown in Figure 2d–i. It can be
inferred that KH-570 evenly coats the surface of ZO@MH because of the evenly distributed
C element, as shown in Figure 2h. However, as shown in Figure 2i, the quite low content of
Si (2.36 wt%) leads to an unconspicuous distribution compared with Figure 2d. The more
detailed composition information, such as the varieties and states of different elements, is
acquired by XPS. In Figure 2j, both ZO@MH and KZO@MH show several main character
peaks located at 1304, 979, 533, 308, 285 Ev, 90 Ev, and 52 Ev, which were assigned to Mg1s,
O Auger, O1s, Mg KLL, C1s, Mg2s, and Mg2p signals, respectively. The Si2p signal at
102 eV only appeared in the KZO@MH spectrum. The high-resolution spectrum of the
Si2p signal of KZO@MH presented in Figure 2k can be split into two peaks, indicating two
kinds of silicon-containing bonds in KZO@MH. The peak at 102.3 eV is assigned to the Si-O
bond, which can be traced to the reaction between the OH- of ZO@MH and the Si-OH of
KH-570. The peak at 101.5 eV is assigned to the Si-C bond, which comes from KH-570′s
main chain [38]. In addition to these, the high-resolution spectra of C1s are markedly
different between ZO@MH and KZO@MH. The appearance of the C-O signal at 286.2 eV
and the decreasing percentage of the C-C/C-H signal at 284.8 eV both demonstrate the
existence of KH-570 [39]. All these variations indicated that KH-570 is well bound to the
surface of ZO@MH after surface modification.
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3.3. Fire Hazards of PP Composites
3.3.1. Fire Hazards Assessed by CCT

As is well known, CCT is probably the most important method for rapidly evaluating
the flame retardant and smoke suppression properties of various materials. Figure 3
shows the heat release rate (HRR) and fire growth rate index (FIGRA) of neat PP and its
composites at a heat flux of 50 kW/m2, and the corresponding data are listed in Table 2.
A high and narrow HRR curve of neat PP is observed in Figure 3a, with the peak and
average values of HRR (pHRR and avHRR) reaching 932.7 and 174.5 kW/m2, respectively,
as shown in Table 2. The immediate burning of neat PP is effectively suppressed with
the addition of ZO@MH. When 40 phr (parts per hundred) of ZO@MH is added, the
pHRR and avHRR values are decreased to 348.4 and 163.9 kW/m2, respectively, which are
62.6% and 6.1% lower than those of neat PP. For comparison, 40 phr of KZO@MH or MH
are respectively added to the PP matrix, and the HRR curves are presented in Figure 3c.
Obviously, PP/40ZO@MH and PP/40KZO@MH composites show lower pHRR and avHRR
values than those of PP/40MH composites, indicating the better flame retardancy of
ZO@MH and KZO@MH than MH. What is more notable is that the KH-570 modification
further improves the flame retardancy of ZO@MH. The lowest pHRR and avHRR of
PP/40KZO@MH are 327.0 and 137.2 kW/m2, respectively, which are 6.1% and 16.3% lower
than those of the PP/40ZO@MH composite. Considering the small amount of KH-570 in
the modification process, the result is satisfactory. In our opinion, the KH-570 modification
mainly ameliorates the agglomeration and interfacial compatibility issues of ZO@MH in
the PP matrix. A well-distributed polymer/filler composite can perform the functions
of fillers better than a PP/ZO@MH composite. In addition, the possible flame retardant
synergism effect between ZO@MH and KH-570 is another non-negligible reason [17].

The tendency of FIGRA variations of neat PP and its composites is presented in
Figure 3b,d. Broadly speaking, it is very similar to the tendency of HRR variations in
Figure 3a,c. The peak values of FIGRA (pFIGRA) of PP composites decrease with the
increasing ZO@MH amount. When 40 phr of ZO@MH is added, the pFIGRA value is
decreased to 2928.7 W/(m2 × s), which is 59.4% lower than that of neat PP. In other words,
fire growth is effectively inhibited by the addition of ZO@MH. In fact, the size and intensity
of the flame for PP/ZO@MH composites are remarkably reduced, as observed during the
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test process. In addition, Figure 3d shows the superiority of KZO@MH in flame retardancy
again. The lowest pFIGRA value of PP/40KZO@MH is 2621.2 W/(m2 × s), which is 63.6%
and 10.5% lower than that of neat PP and PP/40ZO@MH composite, respectively.
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Table 2. CCT data for neat PP and its composites.

Sample pHRR
(kW/m2)

avHRR
(kW/m2)

pFIGRA
(W/(m2 × s)) pCOP (g/s) pCO2P (g/s) Residue (wt%)

neat PP 932.7 174.5 7208.3 0.044 2.27 0.79
PP/10ZO@MH 862.3 183.8 5489.5 0.036 2.10 16.14
PP/20ZO@MH 577.5 182.3 3966.0 0.017 1.22 26.69
PP/40ZO@MH 348.4 163.9 2928.7 0.009 0.69 31.25
PP/40KZO@MH 327.0 137.2 2621.3 0.008 0.62 37.23

PP/40MH 475.1 153.7 2883.6 0.012 1.05 34.93

Smoke, typified by CO and CO2, is another key issue during the burning process, since
asphyxia is considered the main cause of fatalities in a real fire. As shown in Figure 4a,b,
the peak values of CO and CO2 production (pCOP and pCO2P) of PP composites are
both greatly lowered by the addition of ZO@MH, indicating the good smoke suppression
effect of ZO@MH. As for the PP/40ZO@MH composite, the pCOP and pCO2P values are
decreased to 0.009 and 0.69 g/s, respectively, which are 79.5% and 69.6% lower than those
of neat PP. Hence, the smoke safety class of neat PP is significantly improved. It is worth
mentioning that the pCOP and pCO2P values of the PP/40ZO@MH composite are also
lower than those of the PP/40MH composite, as shown in Figure 4c,d and Table 2, indicating
the importance of nanoscale ZO doping on the surface of MH. Last but not least, the
lowest pCOP and pCO2P values, 0.008 and 0.62 g/s, also appeared in the PP/40KZO@MH
composite, indicating the importance of KH-570 modification. The reduction of CO and
CO2 production by ZO@MH can be attributed to the char-forming catalysis effect of
nanoscale ZO [40]. However, the char residue of PP/40MH composite (34.93%) is even
higher than that of PP/40ZO@MH composite (31.25%), as shown in Table 2, probably due
to the restricted performance of unevenly distributed ZO@MH in the PP matrix.
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Figure 4. CO (a,c) and CO2 (b,d) production curves of PP composites.

3.3.2. Analysis of Char Residue

Not only the amount but also the quality of the char residue can greatly affect the flame
retardant and smoke suppression effects of PP composites. As shown in Figure 5, PP/40MH,
PP/40KZO@MH, and PP/40ZO@MH composites all turn into white char residues after
burning. The strength of these char residues is quite low, so a finger touch caused the
structure to crumble to dust, especially for the char residue of the PP/40MH composite.
The top views show that PP/40KZO@MH char residue contains a relatively complete
structure compared with the other two. Cracks and holes are more commonly seen in the
char residues of PP/40MH and PP/40ZO@MH composites. The lateral views show that
there is no expansion for the three kinds of char residues. However, bubble structures are
observed on the surface of the char residues of PP/40MH and PP/40ZO@MH composites.
It can be imagined that abundant vapor is generated in the thermal decomposition of MH
in a very short time, and then a “boiling” phenomenon is formed, as for PP/40MH and
PP/40ZO@MH composites. The flat structure of the char residue of the PP/40KZO@MH
composite reveals the slower decomposition of KZO@MH than ZO@MH and MH. The
more detailed information on the surface layer of char residues can be obtained from the
SEM images in Figure 6. Both PP/40KZO@MH and PP/40ZO@MH composites show a
loose-structured char residue, which dominates and contains decomposed MH and slightly
carbon particles. The hexagonal lamellar MH (or MgO) is clearly seen in Figure 6c.

The inner layers of the char residues of PP/40KZO@MH and PP/40ZO@MH compos-
ites are stronger and harder than the outers, due to the higher content of carbons. In other
words, ZO@MH and KZO@MH migrate to the surface of composites during the burning
process and finally form a loose outer layer [41]. XPS is used to further analyze the varieties
and states of different elements in the inner layers of the char residues of PP/40KZO@MH
and PP/40ZO@MH composites. As shown in Figure 7a, the full-scan XPS spectra of char
residues of PP/40KZO@MH and PP/40ZO@MH composites show several main character
peaks located at 1304, 1021, 979, 533, 308, 285, 139, 88 eV, and 50 eV, which were assigned
to Mg1s, Zn2p, O Auger, O1s, Mg KLL, C1s, Zn3s, Zn3p, and Mg2p signals, respectively.
Si2p signal at 102 eV only appears in the char residue of the PP/40KZO@MH composite
spectrum. The high-resolution spectrum presented in Figure 7b is split into two peaks,
indicating two kinds of silicon-containing bonds in the char residue of the PP/40KZO@MH
composite. The peak at 102.2 eV is also assigned to the Si-O bond, and the peak at 101.3 eV
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is also assigned to the Si-C bond. In addition to these, the high-resolution spectra of C1s are
markedly different between the char residues of PP/40ZO@MH and PP/40KZO@MH com-
posites. Except for the C=O signal at 288.8/288.7 eV and the C-C/C-H signal at 284.8 eV, the
C-O signal at 285.6 eV and the C-Si signal at 284.2 eV only appeared in the high-resolution
spectrum of C1s of the char residue of the PP/40KZO@MH composite. All these variations
indicated that KH-570 deeply participates in the formation of the condensed phase and
plays a vital role in the better flame retardant and smoke suppression effects.

Polymers 2023, 15, 4248 9 of 16 
 

 

nals, respectively. Si2p signal at 102 eV only appears in the char residue of the 
PP/40KZO@MH composite spectrum. The high-resolution spectrum presented in Figure 
7b is split into two peaks, indicating two kinds of silicon-containing bonds in the char 
residue of the PP/40KZO@MH composite. The peak at 102.2 eV is also assigned to the 
Si-O bond, and the peak at 101.3 eV is also assigned to the Si-C bond. In addition to these, 
the high-resolution spectra of C1s are markedly different between the char residues of 
PP/40ZO@MH and PP/40KZO@MH composites. Except for the C=O signal at 288.8/288.7 
eV and the C-C/C-H signal at 284.8 eV, the C-O signal at 285.6 eV and the C-Si signal at 
284.2 eV only appeared in the high-resolution spectrum of C1s of the char residue of the 
PP/40KZO@MH composite. All these variations indicated that KH-570 deeply partici-
pates in the formation of the condensed phase and plays a vital role in the better flame 
retardant and smoke suppression effects. 

 
Figure 5. Photos of the char residues of PP/40MH (a1–a3), PP/40KZO@MH (b1–b3), and 
PP/40ZO@MH (c1–c3) composites before (serial number 1) and after (serial number 2 for top view 
and serial number 3 for side view) CCT test. 

Figure 5. Photos of the char residues of PP/40MH (a1–a3), PP/40KZO@MH (b1–b3), and
PP/40ZO@MH (c1–c3) composites before (serial number 1) and after (serial number 2 for top view
and serial number 3 for side view) CCT test.

Polymers 2023, 15, 4248 10 of 16 
 

 

 
Figure 6. SEM images of char residues of PP/40KZO@MH (a–c) and PP/40ZO@MH (d–f) compo-
sites. 

 
Figure 7. Full-scan XPS spectra (a), Si2p (b), and C1s (c) high-resolution spectra of char residues of 
PP/40ZO@MH and PP/40KZO@MH composites. 

3.4. Mechanical Properties of PP Composites 
3.4.1. Impact Properties 

Figure 8 shows the impact strength of PP/ZO@MH and PP/KZO@MH composites 
with different filler contents, and the corresponding data are summarized in Table 3. 
Firstly, an apparent increasing trend of impact strength is observed with the increasing 
ZO@MH. When 10 phr of ZO@MH is added, the impact strength of the PP/10ZO@MH 
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3.4. Mechanical Properties of PP Composites
3.4.1. Impact Properties

Figure 8 shows the impact strength of PP/ZO@MH and PP/KZO@MH composites
with different filler contents, and the corresponding data are summarized in Table 3. Firstly,
an apparent increasing trend of impact strength is observed with the increasing ZO@MH.
When 10 phr of ZO@MH is added, the impact strength of the PP/10ZO@MH composite
reaches 9.38 kJ/m2, which is 26.9% higher than that of neat PP. Hence, the toughening effect
of ZO@MH on the PP matrix is undeniable. Secondly, the impact strengths of PP/KZO@MH
composites are always lower than those of PP/ZO@MH composites when filler content is
the same. For example, the impact strength of PP/7KZO@MH composite is 7.67 kJ/m2,
which is 13.8% lower than that of PP/7ZO@MH composite, as shown in Table 3. For the
PP/1KZO@MH composite, the impact strength is only 6.49 kJ/m2, which is even 12.2%
lower than that of neat PP. The introduction of KH-570 does not benefit the toughening
effect of ZO@MH, probably due to the too strong interfacial interactions between the
PP matrix and KZO@MH, which go against interfacial debonding and finally lead to
brittle fracture of composites with an obvious decrease in impact strength. The possible
conversion of different kinds of PP crystal (α, β, and γ) results from the introduction of
ZO@MH or KZO@MH, which may be another factor in toughening [42]. In addition, the
tensile toughness of PP/ZO@MH and PP/KZO@MH composites exhibits a similar trend,
as shown in Figure 9d. When ZO@MH is replaced by the same amount of KZO@MH, the
nominal strain at break of PP composites decreases by 14.6~6.7%, as shown in Table 3.
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Table 3. Data on the tensile and impact properties of neat PP and its composites.

Sample
Impact

Strength
(kJ/m2)

Tensile
Strength

(MPa)

Yield
Strength

(MPa)

Elasticity
Modulus

(MPa)

Nominal
Strains at
Break (%)

neat PP 7.39 41.76 34.85 252.99 400.15
PP/1ZO@MH 7.39 45.13 34.57 295.86 524.20
PP/4ZO@MH 8.08 46.04 35.43 320.39 510.80
PP/7ZO@MH 8.90 44.43 34.72 305.62 443.74
PP/10ZO@MH 9.38 43.54 35.49 331.88 415.14
PP/1KZO@MH 6.49 46.58 35.97 307.50 447.44
PP/4KZO@MH 7.80 48.52 36.60 336.79 438.37
PP/7KZO@MH 7.67 47.71 37.24 345.56 415.56
PP/10KZO@MH 8.33 45.75 37.73 336.09 387.49
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3.4.2. Tensile Properties

Figure 9 shows the tensile properties, such as tensile strength, yield strength, elasticity
modulus, and nominal strain at break, of PP/ZO@MH and PP/KZO@MH composites with
different filler content, and the corresponding data are also summarized in Table 3. From
Figure 9a–c, the tensile strength, yield strength, and elasticity modulus of PP/ZO@MH
composites are always improved with the substitution of ZO@MH by KZO@MH. For
instance, the tensile strength, yield strength, and elasticity modulus of the PP/7KZO@MH
composite are 47.71, 37.24, and 345.56 MPa, which are 7.38%, 7.28%, and 11.6% higher than
those of the PP/7ZO@MH composite, as shown in Table 3. The remarkable reinforcement
of KZO@MH on PP matrix can be attributed to two reasons: (i) better distribution and lesser
agglomerations of KZO@MH, as proved by the SEM images of Figure 10, and (ii) stronger
interfacial interactions between PP matrix and KZO@MH. On the one hand, KH-570 is well
bound to the surface of ZO@MH after surface modification. On the other hand, the long
chain structure, C=C, and C=O structures in KH-570 improve the interfacial compatibility
and entanglement between the KZO@MH and PP matrix. As shown in Figure 10e,f, the
interfaces between fillers (KZO@MH) and the PP matrix are blurry and unclear, which can
effectively transfer the stress from the matrix to the fillers. The quantitative calculations of
interfacial interaction are also executed by the famous Turcsányi equation [43,44].

σyc = σyp
1− φf

1 + 2.5φf
exp(Bφf) (1)

where σyc and σyp are the yield strengths of composites and neat polymers, respectively. φf
is the volume fraction of fillers in composites. B represents the strength of interfacial inter-
actions. The bigger the value of B, the stronger the interfacial interactions between fillers
and matrix. In general, Formula (1) can be converted into Formula (2) after the logarithm.

ln
(

σyc

σyp

)
+ ln

(
1 + 2.5φf

1− φf

)
= Bφf (2)
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pylene (PP) matrix and reducing the agglomeration of ZO@MH. Scanning electron mi-
croscopy (SEM) images, X-ray photoelectron spectroscopy (XPS), and water contact angle 
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Figure 10. SEM images of PP/10ZO@MH (a–c) and PP/10KZO@MH (d–f) composites.

Figure 11 shows the linear fitting result of the Turcsányi equation for PP composites.
It should be pointed out that the volume fractions of ZO@MH or KZO@MH are calculated
by the apparent density of MH (2.36 g/cm3) and ZO (5.6 g/cm3) with the molar ratio
of MH:ZO = 5.3:1. The mixing effect on volume and other capacity properties is not
considered in this situation. As shown in Figure 11, the B values of PP/ZO@MH and
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PP/KZO@MH composites are calculated as 3.94 and 5.68, respectively, indicating stronger
interfacial interactions between KZO@MH and the PP matrix. KH-570 acts as a bridge
between inorganic ZO@MH and the PP matrix.
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4. Conclusions

In this study, an effective flame retardant consisting of nanoscale zinc oxide doped on
the surface of hexagonal lamellar magnesium hydrate (ZO@MH) has been successfully syn-
thesized via a hydrothermal process. Approximately 3-methacryloxypropyltrimethoxysilane
(KH-570) is chosen as a modifier of ZO@MH for the purpose of enhancing the interfacial inter-
action between ZO@MH and the polypropylene (PP) matrix and reducing the agglomeration
of ZO@MH. Scanning electron microscopy (SEM) images, X-ray photoelectron spectroscopy
(XPS), and water contact angle measurement results indicate that KH-570 modifications do not
alter the morphologies of ZO@MH but covert the hydrophilicity surface of ZO@MH to a hy-
drophobicity surface of KZO@MH with a water contact angle of 69.9◦. Afterwards, ZO@MH
and KH-570 modified ZO@MH (KZO@MH) filled PP (PP/ZO@MH and PP/KZO@MH)
composites are respectively prepared via the melt blending method. The peak value of heat
release rate (pHRR) of PP/40KZO@MH is 327.0 kW/m2, which is 6.1% and 31.2% lower than
that of PP/40ZO@MH and PP/40MH composites, respectively. The average value of heat
release rate (avHRR) of the PP/40KZO@MH composite is 137.2 kW/m2, which is 16.3% and
10.7% lower than that of the PP/40ZO@MH and PP/40MH composites, respectively. The
lowest peak values of CO and CO2 production (pCOP and pCO2P), 0.008 and 0.62 g/s, also
appeared in the PP/40KZO@MH composite, which are 11.1% and 10.1% lower than those of
the PP/40ZO@MH composite. In comparison with PP/40MH, the pCOP and pCO2P values of
the PP/40KZO@MH composite are about 30~40% lowered, indicating an apparent advantage
of KZO@MH on flame retardant and smoke suppressed PP matrix. Analysis of char residues
indicates that nanoscale ZO and modification of KH-570 improve the amount and quality
of char residues, which should be the main reason for the good flame retardant and smoke
suppression properties of KZO@MH. When 10 phr of ZO@MH is added, the impact strength
of the PP/10ZO@MH composite reaches 9.38 kJ/m2, which is 26.9% higher than that of neat
PP. However, the impact strength of the PP/7KZO@MH composite is 7.67 kJ/m2, which is
13.8% lower than that of the PP/7ZO@MH composite. Tensile properties and the quantitative
interfacial interaction calculated by the Turcsányi equation both prove the reinforcement of
KZO@MH on the PP matrix. The remarkable reinforcement of KZO@MH on PP matrix can
be attributed to two reasons: (i) better distribution and lesser agglomerations of KZO@MH,
and (ii) stronger interfacial interactions between PP matrix and KZO@MH.
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