Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (145)

Search Parameters:
Keywords = Z-distortion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2975 KiB  
Article
Crystallographic Combinations: Understanding Polymorphism and Approximate Symmetry in N-(1,3-Thiazol-2-yl)benzamide
by Johannes C. Voigt, Michael J. Hall and Paul G. Waddell
Crystals 2025, 15(7), 657; https://doi.org/10.3390/cryst15070657 - 18 Jul 2025
Viewed by 391
Abstract
A new polymorph of N-(1,3-thiazol-2-yl)benzamide crystallises in the monoclinic space group Pc with four crystallographically independent molecules (Z′ = 4) in the asymmetric unit. Where the previously reported polymorphs exhibit two distinct hydrogen-bonded dimer geometries exclusively, the asymmetric unit of the new [...] Read more.
A new polymorph of N-(1,3-thiazol-2-yl)benzamide crystallises in the monoclinic space group Pc with four crystallographically independent molecules (Z′ = 4) in the asymmetric unit. Where the previously reported polymorphs exhibit two distinct hydrogen-bonded dimer geometries exclusively, the asymmetric unit of the new polymorph comprises both. Approximate symmetry was observed to relate the molecules of these dimers. These approximate symmetry elements combine to form a structure with distorted P21/c space group symmetry, rationalising the unexpectedly high number of crystallographically independent molecules. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Graphical abstract

16 pages, 2159 KiB  
Article
A General Model Construction and Operating State Determination Method for Harmonic Source Loads
by Zonghua Zheng, Yanyi Kang and Yi Zhang
Symmetry 2025, 17(7), 1123; https://doi.org/10.3390/sym17071123 - 14 Jul 2025
Viewed by 278
Abstract
The widespread integration of power electronic devices and renewable energy sources into power systems has significantly exacerbated voltage and current waveform distortion issues, where asymmetric loads—including single-phase nonlinear equipment and unbalanced three-phase power electronic installations—serve as critical harmonic sources whose inherent nonlinear and [...] Read more.
The widespread integration of power electronic devices and renewable energy sources into power systems has significantly exacerbated voltage and current waveform distortion issues, where asymmetric loads—including single-phase nonlinear equipment and unbalanced three-phase power electronic installations—serve as critical harmonic sources whose inherent nonlinear and asymmetric characteristics increasingly compromise power quality. To enhance power quality management, this paper proposes a universal harmonic source modeling and operational state identification methodology integrating physical mechanisms with data-driven algorithms. The approach establishes an RL-series equivalent impedance model as its physical foundation, employing singular value decomposition and Z-score criteria to accurately characterize asymmetric load dynamics; subsequently applies Variational Mode Decomposition (VMD) to extract time-frequency features from equivalent impedance parameters while utilizing Density-Based Spatial Clustering (DBSCAN) for the high-precision identification of operational states in asymmetric loads; and ultimately constructs state-specific harmonic source models by partitioning historical datasets into subsets, substantially improving model generalizability. Simulation and experimental validations demonstrate that the synergistic integration of physical impedance modeling and machine learning methods precisely captures dynamic harmonic characteristics of asymmetric loads, significantly enhancing modeling accuracy, dynamic robustness, and engineering practicality to provide an effective assessment framework for power quality issues caused by harmonic source integration in distribution networks. Full article
Show Figures

Figure 1

14 pages, 1214 KiB  
Communication
Variable Unidentate Ligands in Cu(I)(XXY) and Cu(I)(XYZ) Complexes—Structural Aspects
by Milan Melník, Veronika Mikušová and Peter Mikuš
Inorganics 2025, 13(6), 182; https://doi.org/10.3390/inorganics13060182 - 1 Jun 2025
Viewed by 623
Abstract
This manuscript provides a structural analysis of over eighty copper(I) compounds mostly reported in the Cambridge Structural Database (CSD) version 5.45 in which unidentate ligands build up various inner coordinate spheres. These complexes crystallized in four crystal classes: trigonal (1 example), triclinic (10 [...] Read more.
This manuscript provides a structural analysis of over eighty copper(I) compounds mostly reported in the Cambridge Structural Database (CSD) version 5.45 in which unidentate ligands build up various inner coordinate spheres. These complexes crystallized in four crystal classes: trigonal (1 example), triclinic (10 examples), orthorhombic (13 examples), and monoclinic (58 examples). The analyzed complexes can be divided into two groups according to the type of coordinating ligands (L = X, Y, Z) incorporated into their structure: Cu(XXY) (more common) and Cu(XYZ). The structural data of L-Cu-L bond angles show that the angular distortion from the regular trigonal geometry grows with total mean values of deviation from 120.0°, in the order within the first group: 3.2°(Cu(IIP)) < 6.1°(Cu(ClClY)) < 6.5°(Cu(SSY)) < 8.2°(Cu(PPY)) < 8.9°(Cu(BrBrY)) < 16.9°(Cu(NNY)) < 19.8°(Cu(CCY)) < 25.5°(Cu(SeSeY)) and within the second group: 3.1°(Cu(SIP)) < 14.3°(Cu(SClP) < 15.5°(Cu(SBrP). The donor atoms are responsible for the distortion as follows: the soft donor atoms diminish the distortion while the borderline and the hard growing amplify the distortion. Given the importance of Cu(I) compounds in (bio)inorganic functional materials and catalysis, the correct interpretation of the geometry of Cu(I) complexes in terms of the coordination polyhedra is crucial for understanding the properties of the respective compounds. Full article
(This article belongs to the Special Issue Applications and Future Trends for Novel Copper Complexes)
Show Figures

Graphical abstract

18 pages, 10471 KiB  
Article
Robust Current Sensing in Rectangular Conductors: Elliptical Hall-Effect Sensor Array Optimized via Bio-Inspired GWO-BP Neural Network
by Yue Tang, Jiajia Lu and Yue Shen
Sensors 2025, 25(10), 3116; https://doi.org/10.3390/s25103116 - 15 May 2025
Viewed by 415
Abstract
Accurate current sensing in rectangular conductors is challenged by mechanical deformations, including eccentricity (X/Y-axis shifts) and inclination (Z-axis tilt), which distort magnetic field distributions and induce measurement errors. To address this, we propose a bio-inspired error compensation strategy integrating an elliptically configured Hall [...] Read more.
Accurate current sensing in rectangular conductors is challenged by mechanical deformations, including eccentricity (X/Y-axis shifts) and inclination (Z-axis tilt), which distort magnetic field distributions and induce measurement errors. To address this, we propose a bio-inspired error compensation strategy integrating an elliptically configured Hall sensor array with a hybrid Grey Wolf Optimizer (GWO)-enhanced backpropagation neural network. The eccentric displacement and tilt angle of the conductor are quantified via a three-dimensional magnetic field reconstruction and current inversion modeling. A dual-stage optimization framework is implemented: first, establishing a BP neural network for real-time conductor state estimations, and second, leveraging the GWO’s swarm intelligence to refine network weights and thresholds, thereby avoiding local optima and enhancing the robustness against asymmetric field patterns. The experimental validation under extreme mechanical deformations (X/Y-eccentricity: ±8 mm; Z-tilt: ±15°) demonstrates the strategy’s efficacy, achieving a 65.07%, 45.74%, and 76.15% error suppression for X-, Y-, and Z-axis deviations. The elliptical configuration reduces the installation footprint by 72.4% compared with conventional circular sensor arrays while maintaining a robust suppression of eccentricity- and tilt-induced errors, proving critical for space-constrained applications, such as electric vehicle powertrains and miniaturized industrial inverters. This work bridges bio-inspired algorithms and adaptive sensing hardware, offering a systematic solution to mechanical deformation-induced errors in high-density power systems. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 7734 KiB  
Article
Investigation of Hybrid Tooth Profiles for Robotic Drives Based on IH Tooth Profiles and Cycloidal Curves
by Wonhyeong Jeong, Myungsung Lee, Sehoon Oh, Hansu Jeon and Kwangouck Youm
Appl. Sci. 2025, 15(10), 5389; https://doi.org/10.3390/app15105389 - 12 May 2025
Viewed by 364
Abstract
Recently, with policies aimed at strengthening domestic manufacturing and technological innovation, the robotics industry has been growing rapidly, and its applications are expanding across various industrial fields. Accordingly, the importance of high-performance speed reducers with flexibility and precision is gradually increasing. The tooth [...] Read more.
Recently, with policies aimed at strengthening domestic manufacturing and technological innovation, the robotics industry has been growing rapidly, and its applications are expanding across various industrial fields. Accordingly, the importance of high-performance speed reducers with flexibility and precision is gradually increasing. The tooth profiles used in conventional harmonic reducers have structural limitations, such as meshing discontinuity, restrictions on the radius of curvature of the tooth base, and distortion of the contact trajectory, especially when the number of teeth is small. These problems limit the design freedom of the reducer and make it difficult to secure contact stability and durability under precision driving conditions. To solve these problems, this paper proposes a new tooth profile design equation, the IH (Involute Harmonic) tooth profiles and the HTPs (Hybrid Tooth Profiles), using the cycloid curve to overcome the structural limitations of the conventional harmonic tooth profile, which is difficult to design under small-tooth-number conditions, and to enable tooth design without restrictions on the number of teeth. HTP tooth profile is a new gear tooth profile design method that utilizes IH tooth profile and cycloid curve to optimize the meshing characteristics of gears. A tooth profile design tool based on the HTP equation was developed using Python 3.13.3. The tool’s effectiveness was validated through simulations assessing tooth meshing and interference. Using the tool, an R21_z3 reducer with a single-stage high reduction ratio was designed to evaluate practical applicability. A prototype was fabricated using 3D printing with PLA material, and experimental testing confirmed the absence of meshing or interference issues, consistent with simulation results. Through this study, we verified the usefulness of the HTP tooth profile design formula and design tool using the IH tooth profile and cycloid curve, and it is expected that the proposed HTP tooth profile can be utilized as a tooth profile applicable to various reducer designs. Full article
Show Figures

Figure 1

14 pages, 311 KiB  
Article
New Subclass of Meromorphic Functions Defined via Mittag–Leffler Function on Hilbert Space
by Mohammad El-Ityan, Luminita-Ioana Cotîrlă, Tariq Al-Hawary, Suha Hammad, Daniel Breaz and Rafid Buti
Symmetry 2025, 17(5), 728; https://doi.org/10.3390/sym17050728 - 9 May 2025
Cited by 1 | Viewed by 347
Abstract
In this paper, a novel class of meromorphic functions associated with the Mittag–Leffler function Eμ,ϑ(z) is introduced using the Hilbert space operator. In the punctured symmetric domain , essential properties of this class are systematically [...] Read more.
In this paper, a novel class of meromorphic functions associated with the Mittag–Leffler function Eμ,ϑ(z) is introduced using the Hilbert space operator. In the punctured symmetric domain , essential properties of this class are systematically investigated. These properties include coefficient inequalities, growth and distortion bounds, as well as weighted and arithmetic mean estimates. Furthermore, the extreme points and radii of geometric properties such as close-to-convexity, starlikeness, and convexity are analyzed in detail. Additionally, the Hadamard product (or convolution) is explored to demonstrate the algebraic structure and stability of the introduced function class under this operation. Integral mean inequalities are also established to provide further insights into the behavior of these functions within the given domain. Full article
15 pages, 6315 KiB  
Article
A 328 nW, 0.45 V Current Differencing Transconductance Amplifier and Its Application in a Current-Mode Universal Filter
by Fabian Khateb, Montree Kumngern, Tomasz Kulej and Jiri Vavra
Appl. Sci. 2025, 15(7), 3471; https://doi.org/10.3390/app15073471 - 21 Mar 2025
Cited by 1 | Viewed by 457
Abstract
This paper presents a low-voltage, low-power current differencing transconductance amplifier (CDTA) utilizing the bulk-driven MOS transistor technique in the subthreshold region for reduced voltage and power consumption. The proposed CDTA includes a z-copy terminal, which enhances its functionality in current-mode circuit applications. Designed [...] Read more.
This paper presents a low-voltage, low-power current differencing transconductance amplifier (CDTA) utilizing the bulk-driven MOS transistor technique in the subthreshold region for reduced voltage and power consumption. The proposed CDTA includes a z-copy terminal, which enhances its functionality in current-mode circuit applications. Designed in the Cadence Virtuoso environment using 0.18 µm CMOS technology from Taiwan Semiconductor Manufacturing Company (TSMC), the amplifier operates with a supply voltage of 0.45 V and consumes 328 nW of power, with a bias current set to 10 nA. The current bandwidth and offset of the CDTA are 35 kHz and 0.3 nA, respectively. To demonstrate its performance, the CDTA is applied in a current-mode universal filter, which can realize low-pass, band-pass, high-pass, band-stop, and all-pass responses within a single topology. This design eliminates issues related to inverting input signals, input signal matching, or the need for multiple input signals. Additionally, the natural frequency of these filtering functions can be electronically controlled. The low-pass filter achieves a dynamic range of 61 dB, with a total harmonic distortion of 0.8%. Full article
Show Figures

Figure 1

17 pages, 4437 KiB  
Article
A Positioning System Design Based on Tunnel Magnetoresistance Sensors for Rapid Zoom Optical Lens
by Junqiang Gong, Dameng Liu and Jianbin Luo
Sensors 2025, 25(6), 1820; https://doi.org/10.3390/s25061820 - 14 Mar 2025
Cited by 1 | Viewed by 732
Abstract
In response to the accurate positioning issue for high-speed moving lens groups in rapid zoom optical lenses with voice coil motors (VCMs), we demonstrate a positioning system design based on tunnel magnetoresistance sensors. The equivalent magnetic charge method and finite element method (FEM) [...] Read more.
In response to the accurate positioning issue for high-speed moving lens groups in rapid zoom optical lenses with voice coil motors (VCMs), we demonstrate a positioning system design based on tunnel magnetoresistance sensors. The equivalent magnetic charge method and finite element method (FEM) simulations were utilized to compute the magnetic field distribution of the magnetic grating encoder. Based on analytical computation, the optimal air gap δS between the sensor and magnetic grating is determined to be δS = 0.15 mm, which balances magnetic flux density amplitude and total harmonic distortion. In addition, a simplified fitting model is proposed to reduce computational complexity. We quantify the magnetic interference of VCM through three-dimensional flux leakage mapping by FEM analysis, deriving an optimal sensor position OS, with a 24 mm y-offset and 20 mm z-offset relative to the VCM’s origin OV. The position error caused by interference remains below 5 μm with maximum deviations at trajectory endpoints of the moving group. The original signal output is processed and corrected, and eventually, the measured displacement exhibits a linear relationship with actual displacement. Our study provides a comprehensive framework for the design and optimization of magnetic positioning systems in optical applications with electromagnetic motors. Full article
Show Figures

Figure 1

14 pages, 4243 KiB  
Article
Shear Band-Induced Internal Surface Structures in a Vitreloy Bulk Metallic Glass Deformed by High-Pressure Torsion
by Zsolt Kovács, Talaye Arjmandabasi, Gábor Erdei, Erhard Schafler and Ádám Révész
Materials 2025, 18(5), 1096; https://doi.org/10.3390/ma18051096 - 28 Feb 2025
Viewed by 518
Abstract
In the present investigation, high stability Vitreloy Zr44Ti11Cu10Ni10Be25 bulk metallic glass has been subjected to severe shear deformation by high-pressure torsion for 0.1 revolutions under an applied pressure of 4 and 8 GPa. The [...] Read more.
In the present investigation, high stability Vitreloy Zr44Ti11Cu10Ni10Be25 bulk metallic glass has been subjected to severe shear deformation by high-pressure torsion for 0.1 revolutions under an applied pressure of 4 and 8 GPa. The fully glassy nature of the as-cast glass has been confirmed by X-ray powder diffraction and differential scanning calorimetry. Deformation-induced surface features on an internal plane of the deformed disk-shaped specimens were studied in detail at the macroscopic level by optical reconstruction method and at microscopic scales by white-light optical profilometry. Shear and compressive strain components were measured based on surface changes and it was determined that compressive strain gradient with 0.2–0.4 strain change builds up toward the disk edge, while only part of the nominal shear deformation occurs in the disk interior. The effect of strain localization in the Vitreloy bulk metallic glasses has been quantified by a surface distortion model based on simple shear. The model was then validated experimentally by the reconstructed z-profiles. Full article
Show Figures

Figure 1

16 pages, 16488 KiB  
Article
Peritoneal Endometriosis Impairs Ovarian Reserve and Increases Atresia in a Rat Model
by Analía Ricci, Tatiana Bengochea, Carla Olivares, Sofía del Valle, Julieta Simone, Kristina Gemzell-Danielsson, Rosa Inés Barañao, Gabriela Meresman and Mariela Bilotas
Biomedicines 2025, 13(2), 348; https://doi.org/10.3390/biomedicines13020348 - 3 Feb 2025
Cited by 2 | Viewed by 1165
Abstract
Background/Objectives: Endometriosis has a marked impact on fertility, although the mechanisms behind this relationship remain poorly understood, particularly in cases without significant anatomical distortions or in the context of ovarian endometriomas. This study aimed to investigate the effect of peritoneal endometriosis on ovarian [...] Read more.
Background/Objectives: Endometriosis has a marked impact on fertility, although the mechanisms behind this relationship remain poorly understood, particularly in cases without significant anatomical distortions or in the context of ovarian endometriomas. This study aimed to investigate the effect of peritoneal endometriosis on ovarian function by assessing ovarian reserve and apoptosis. Methods: Peritoneal endometriosis was surgically induced in Sprague Dawley rats through the autotransplantation of uterine fragments onto the bowel mesothelium. One month post-surgery, ovarian structures were counted, follicle and corpora lutea apoptosis was evaluated by TUNEL, and apoptotic-related protein expression in ovaries was assessed by Western blot. Additionally, a co-culture system using 12Z endometriotic and KGN granulosa cell lines was utilized to evaluate gene expression by RT-qPCR. Results: Rats with peritoneal endometriosis exhibited a significant reduction in ovarian structures characterized by a low number of total follicles, particularly primordial, primary, preantral, and late-antral follicles. Consistently, AMH protein expression was decreased in ovaries in the presence of endometriosis. In addition, this disease led to a significant increase in late-antral follicles that were TUNEL-positive and in the number of apoptotic cells in corpora lutea, indicating higher apoptosis in endometriosis ovaries. Concomitantly, the altered expression of apoptosis-related proteins was observed, with increased procaspase 3 and decreased BCL-2 expression. In addition, KGN granulosa cells co-cultured with 12Z endometriotic cells displayed reduced KITLG mRNA expression and increased AMHR2 mRNA expression. Conclusions: Peritoneal endometriosis significantly impairs ovarian health by disrupting folliculogenesis, reducing ovarian reserve, and increasing apoptosis, potentially accelerating ovarian aging and contributing to infertility. These results underscore the need for further research to identify the molecular pathways involved and to develop targeted therapeutic strategies. Full article
(This article belongs to the Special Issue Molecular and Clinical Aspects of Endometriosis Pathophysiology)
Show Figures

Figure 1

15 pages, 4411 KiB  
Article
Spectroscopic and Quantum Chemical Evidence of Amine–CO2 and Alcohol–CO2 Interactions: Confirming an Intriguing Affinity of CO2 to Monoethanolamine (MEA)
by Sahar Hafizi Yazdabadi, Dmytro Mihrin, Karen Louise Feilberg and René Wugt Larsen
Molecules 2024, 29(23), 5521; https://doi.org/10.3390/molecules29235521 - 22 Nov 2024
Viewed by 1265
Abstract
A recent broadband rotational spectroscopic investigation of the cross-association mechanisms of CO2 with monoethanolamine (MEA) in molecular beams [F. Xie et al., Angew. Chem. Int. Ed., 2023, 62, e202218539] revealed an intriguing affinity of CO2 to the hydroxy [...] Read more.
A recent broadband rotational spectroscopic investigation of the cross-association mechanisms of CO2 with monoethanolamine (MEA) in molecular beams [F. Xie et al., Angew. Chem. Int. Ed., 2023, 62, e202218539] revealed an intriguing affinity of CO2 to the hydroxy group. These findings have triggered the present systematic vibrational spectroscopic exploration of weakly bound amine··CO2 and alcohol··CO2 van der Waals cluster molecules embedded in inert “quantum” matrices of neon at 4.2 K complemented by high-level quantum chemical conformational analyses. The non-covalent interactions formed between the amino and hydroxy groups and the electron-deficient carbon atom of CO2 are demonstrated to lift the degeneracy of the doubly degenerate intramolecular CO2-bending fundamental significantly with characteristic observed spectral splittings for the amine··CO2 (≈35–45 cm−1) and alcohol··CO2 (≈20–25 cm−1) interactions, respectively, despite the almost identically predicted total association energies (≈12–14 kJ·mol−1) for these van der Waals contacts, as revealed by benchmark Domain-based Local Pair Natural Orbital Coupled Cluster DLPNO-CCSD(T) theory. These high-level theoretical predictions reveal significantly higher “geometry preparation energies” for the amine··CO2 systems leading to a more severe distortion of the CO2 linearity upon complexation in agreement with the infrared spectroscopic findings. The systematic combined spectroscopic and quantum chemical evidences for cross-association between CO2 and amines/alcohols in the present work unambiguously confirm an intriguing binding preference of CO2 to the hydroxy group of the important carbon capture agent MEA, with an accurate vibrational zero-point energy corrected association energy (D0) of 13.5 kJ·mol−1 at the benchmark DLPNO-CCSD(T)/aug-cc-pV5Z level of theory. Full article
(This article belongs to the Special Issue Molecular Spectroscopy in Applied Chemistry)
Show Figures

Figure 1

27 pages, 18482 KiB  
Article
Current Compensation for Faulted Grid-Connected PV Arrays Using a Modified Voltage-Fed Quasi-Z-Source Inverter
by Abdullah Abdurrahman Al-Saloli and Faris E. Alfaris
Electronics 2024, 13(21), 4312; https://doi.org/10.3390/electronics13214312 - 2 Nov 2024
Cited by 1 | Viewed by 1214
Abstract
Large-scale photovoltaic (PV) systems are being widely deployed to meet global environmental goals and renewable energy targets. Advances in PV technology have driven investment in the electric sector. However, as the size of PV arrays grows, more obstacles and challenges emerge. The primary [...] Read more.
Large-scale photovoltaic (PV) systems are being widely deployed to meet global environmental goals and renewable energy targets. Advances in PV technology have driven investment in the electric sector. However, as the size of PV arrays grows, more obstacles and challenges emerge. The primary obstacles are the occurrence of direct current (DC) faults and shading in a large array of PV panels, where any malfunction in a single panel can have a detrimental impact on the overall output power of the entire series-connected PV string and therefore the PV array. Due to the abrupt and frequent fluctuations in power, beside the low-PV systems’ moment of inertia, various technical problems may arise at the point of common coupling (PCC) of grid-connected PV generations, such as frequency and voltage stability, power efficiency, voltage sag, harmonic distortion, and other power quality factors. The majority of the suggested solutions were deficient in several crucial transient operating features and cost feasibility; therefore, this paper introduces a novel power electronic DC–DC converter that seeks to mitigate these effects by compensating for the decrease in current on the DC side of the system. The suggested solution was derived from the dual-source voltage-fed quasi-Z-source inverter (VF-qZSI), where the PV generation power can be supported by an energy storage element. This paper also presents the system architecture and the corresponding power switching control. The feasibility of the proposed method is investigated with real field data and the PSCAD simulation platform during all possible weather conditions and array faults. The results demonstrate the feasibility and capability of the proposed scheme, which contributes in suppressing the peak of the transient power-to-time variation (dP/dt) by 72% and reducing its normalized root-mean-square error by about 38%, with an AC current total harmonic distortion (THD) of only 1.04%. Full article
Show Figures

Figure 1

19 pages, 2724 KiB  
Article
A Decision-Making Model with Cloud Model, Z-Numbers, and Interval-Valued Linguistic Neutrosophic Sets
by Huakun Chen, Jingping Shi, Yongxi Lyu and Qianlei Jia
Entropy 2024, 26(11), 892; https://doi.org/10.3390/e26110892 - 22 Oct 2024
Cited by 3 | Viewed by 896
Abstract
Interval-valued linguistic neutrosophic sets (IVLNSs), Z-numbers, and the trapezium cloud model are powerful tools for expressing uncertainty and randomness. This paper aims to combine these methodologies. First, we review relevant concepts and operators, introducing a novel combination of IVLNSs and Z-numbers, which establishes [...] Read more.
Interval-valued linguistic neutrosophic sets (IVLNSs), Z-numbers, and the trapezium cloud model are powerful tools for expressing uncertainty and randomness. This paper aims to combine these methodologies. First, we review relevant concepts and operators, introducing a novel combination of IVLNSs and Z-numbers, which establishes a new form of expression. Subsequently, we propose the Z-interval-valued linguistic neutrosophic set-trapezium–trapezium cloud (Z-IVLNS-TTC) model, designed to minimize information loss and distortion during quantification. A novel method for calculating the objective weight vector is then developed using multi-objective programming (MOP). Drawing inspiration from the TOPSIS method, we propose a new approach for calculating the distance between Z-IVLNS-TTCs based on the p-norm. Finally, a group decision-making problem is presented to demonstrate the practical application of the proposed method. To validate the effectiveness and feasibility of the method, sensitivity analysis and comparisons with existing approaches are conducted. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

17 pages, 4225 KiB  
Article
Z-OFDM: A New High-Performance Solution for Underwater Acoustic Communication
by Haitao Su, Jiaxuan Chen, Angdi Li, Hongzhi Hu and Cuifeng Xu
Electronics 2024, 13(17), 3543; https://doi.org/10.3390/electronics13173543 - 6 Sep 2024
Viewed by 1494
Abstract
This paper presents Z-OFDM, a high-performance solution for underwater acoustic communication. Traditional underwater orthogonal frequency division multiplexing (OFDM) systems suffer from spectrum leakage and distortion due to the narrowband nature of underwater acoustic signals and the picket fence effect of the fast Fourier [...] Read more.
This paper presents Z-OFDM, a high-performance solution for underwater acoustic communication. Traditional underwater orthogonal frequency division multiplexing (OFDM) systems suffer from spectrum leakage and distortion due to the narrowband nature of underwater acoustic signals and the picket fence effect of the fast Fourier transform (FFT). Z-OFDM addresses these issues by integrating zoom-fast Fourier transform (ZoomFFT) with OFDM and redesigning the modulator and demodulator to replace the conventional FFT. This integration enhances spectral resolution, resulting in higher channel capacity, improved Signal to Interference plus Noise Ratio (SINR), and reduced Bit Error Rate (BER). Computer simulations using underwater acoustic channels from Fuxian Lake and Wuyuan Bay demonstrate that the Z-OFDM system achieves a 6 dB gain compared to conventional OFDM systems at a BER of 103. These results demonstrate the effectiveness of Z-OFDM in overcoming the limitations of traditional FFT-based OFDM systems in underwater environments. Full article
(This article belongs to the Special Issue New Advances in Underwater Communication Systems)
Show Figures

Figure 1

12 pages, 1999 KiB  
Article
Investigations of Some Disordered Quaternary Compounds in the Systems Ag/Pb/Sb/Se and Ag/Pb/Sb/Te
by Maxim Grauer, Christopher Benndorf, Valentin Rohr, Carsten Paulmann and Oliver Oeckler
Crystals 2024, 14(9), 789; https://doi.org/10.3390/cryst14090789 - 5 Sep 2024
Cited by 1 | Viewed by 1260
Abstract
Electrical and thermal transport measurements on quenched NaCl-type Ag1/3Pb1/3Sb1/3Se reveal an n-type semiconductor with a Seebeck coefficient up to −140 μVK−1 and a thermal conductivity as low as 0.52 WmK−1. Short-range order is indicated [...] Read more.
Electrical and thermal transport measurements on quenched NaCl-type Ag1/3Pb1/3Sb1/3Se reveal an n-type semiconductor with a Seebeck coefficient up to −140 μVK−1 and a thermal conductivity as low as 0.52 WmK−1. Short-range order is indicated by disorder diffuse scattering in electron diffraction patterns. In contrast, 4L-Ag0.61Pb1.79Sb2.61Se6 (space group Cmcm with a = 4.2129(1) Å, b = 13.852(1) Å, and c = 20.866(1) Å, Z = 4) features the first lillianite-type structure in the system Ag/Pb/Sb/Se. It consists of slab-like NaCl-type building blocks that are interconnected via trigonal [PbSe6] prisms. As such structures typically do not form with Te as an anion, the first “sulfosalt-like” compound, Ag0.38Pb0.25Sb2.38Te4, in the system Ag/Pb/Sb/Te forms a layered tetradymite-like structure (space group R3-m with a = 4.2887(1) Å, c = 41.544(1) Å, Z = 3). Its slabs, which are separated by van der Waals gaps, are built up from three layers of distorted [MTe6] octahedra. Crystals of Ag0.38Pb0.25Sb2.38Te4 were grown by chemical transport. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Graphical abstract

Back to TopTop