A Decision-Making Model with Cloud Model, Z-Numbers, and Interval-Valued Linguistic Neutrosophic Sets
Abstract
:1. Introduction
2. Preliminaries
2.1. Linguistic Term Sets
- (1)
- if and only if ;
- (2)
- The negation operation if ;
- (3)
- If , then ;
- (4)
- If , then .
2.2. Cloud Model
2.3. Neutrosophic Sets
2.4. Z-Numbers
3. Uncertain Z-Numbers and Relevant Concepts
3.1. Uncertain Z-Numbers
3.2. Conversion Method from Uncertain Z-Numbers to Trapezium Clouds
- (1)
- Calculate , , , and .
- (2)
- Calculate and .
- (3)
- Calculate .
- (4)
- Calculate .
4. Fundamentals of Z-IVLNS-TTCs
4.1. Arithmetic Operators of Z-IVLNS-TTCs
- (1)
- ;
- (2)
- ;where and .
- (3)
- (4)
- .
- (1)
- ;
- (2)
- ;
- (3)
- ;
- (4)
- ;
- (5)
- ;
- (6)
- ;
- (7)
- ;
- (8)
- .
4.2. Power Weighted Average Operator with Z-IVLNS-TTCs
- (1)
- ;
- (2)
- ;
- (3)
- , if , where indicates the distance between and ; let .
- (1)
- Construct the objective function .
- (2)
- Add the slack variable vector to transform the inequality constraints into equality constraints.
- (3)
- Transform the problem into unconstrained minimization problem with Lagrange multiplier method.
- (4)
- To address the problem, simplex evolutionary, an available optimization method, is employed. The calculation process is shown in [35].
4.3. Distance Calculation Method Between Z-IVLNS-TTCs
- (1)
- ;
- (2)
- If , then ;
- (3)
- ;
- (4)
- If , then and .
4.4. Algorithm Process
- Step 1:
- Convert the evaluation information into Z-IVLNS-TTCs.
- Step 2:
- Calculate the weights of criteria.
- Step 3:
- Obtain the collective evaluation information.
- Step 4:
- Calculate the distances between Z-IVLNS-TTCs.
- Step 5:
- Rank all of the alternatives.
5. Illustrative Example
- Step 1:
- Convert the evaluation information into Z-IVLNS-TTCs.
- Step 2:
- Calculate the weights of criteria.
- Step 3:
- Obtain the collective evaluation information.
- Step 4:
- Calculate the distances between Z-IVLNS-TTCs.
- Step 5:
- Rank all of the alternatives.
6. Comparative Analysis and Discussion
6.1. Comparison of Ranking Results
6.2. Further Comparison with Different Methods
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadeh, L. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Song, Y.; Fu, Q.; Wang, Y.F.; Wang, X. Divergence-based cross entropy and uncertainty measures of Atanassov’s intuitionistic fuzzy sets with their application in decision making—ScienceDirect. Appl. Soft Comput. 2019, 84, 105703. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Wan, S.P.; Xu, G.L.; Dong, J.Y. An Atanassov intuitionistic fuzzy programming method for group decision making with interval-valued Atanassov intuitionistic fuzzy preference relations. Appl. Soft Comput. 2020, 95, 106556. [Google Scholar] [CrossRef]
- Mhs, A.; Chc, B.; Jrcb, C. Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly. Microelectron. Reliab. 2006, 46, 2139–2148. [Google Scholar]
- Wang, J.Q.; Li, H.B. Multi-criteria decision-making method based on aggregation operators for intuitionistic linguistic fuzzy numbers. Control Decis. 2010, 25, 1571–1574. [Google Scholar]
- Xu, J.; Shen, F. A new outranking choice method for group decision making under Atanassov’s interval-valued intuitionistic fuzzy environment. Knowl.-Based Syst. 2014, 70, 177–188. [Google Scholar] [CrossRef]
- Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. In Neutrosophy, Neutrosophic Set, Neutrosophic Probability, 5th ed.; American Research Press: Washington, DC, USA, 2005. [Google Scholar]
- Smarandache, F.; Wang, H.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Frontignan, France, 2014. [Google Scholar]
- Yang, L.; Li, B. A Multi-Criteria Decision-Making Method Using Power Aggregation Operators for Single-Valued Neutrosophic Sets; Infinite Study: Austin, TX, USA, 2016. [Google Scholar]
- Wang, J.Q.; Li, X.E. TODIM method with multi-valued neutrosophic sets. Control Decis. 2015, 30, 1139–1142. [Google Scholar]
- Sodenkamp, M.A.; Madjid, T.; Di, C.D. An aggregation method for solving group multi-criteria decision-making problems with single-valued neutrosophic sets. Appl. Soft Comput. 2018, 71, 715–727. [Google Scholar] [CrossRef]
- Liu, P. The Aggregation Operators Based on Archimedean t-Conorm and t-Norm for Single-Valued Neutrosophic Numbers and their Application to Decision Making. Int. J. Fuzzy Syst. 2016, 18, 1–15. [Google Scholar]
- Liu, C.; Luo, Y. Power Aggregation Operators of Simplified Neutrosophic Sets and Their Use in Multi-attribute Group Decision Making. IEEE/Caa J. Autom. Sin. 2017, 6, 575–583. [Google Scholar] [CrossRef]
- Chen, X.H.; Wang, J.Q.; Zhang, H.Y.; Chen, X.H. An outranking approach for multi-criteria decision-making problemswith simplified neutrosophic sets. Appl. Soft Comput. 2014, 25, 336–346. [Google Scholar]
- Yang, W.; Shi, J.; Pang, Y.; Zheng, X. Linear assignment method for interval neutrosophic sets. Neural Comput. Appl. 2016, 29, 553–564. [Google Scholar] [CrossRef]
- Zadeh, L.A. A Note on Z-numbers. Inf. Sci. 2011, 181, 2923–2932. [Google Scholar] [CrossRef]
- Jia, Q.; Herrera-Viedma, E. Pythagorean Fuzzy Sets to Solve Z-Numbers in Decision-Making Model. IEEE Trans. Fuzzy Syst. 2023, 31, 890–904. [Google Scholar] [CrossRef]
- Jia, Q.; Hu, J.; Herrera-Viedma, E. A Novel Solution for Z-Numbers Based on Complex Fuzzy Sets and Its Application in Decision-Making System. IEEE Trans. Fuzzy Syst. 2022, 30, 4102–4114. [Google Scholar] [CrossRef]
- Jia, Q.; Xiao, J.; Feroskhan, M. Multitarget Assignment Under Uncertain Information Through Decision Support Systems. IEEE Trans. Ind. Inform. 2024, 20, 10636–10646. [Google Scholar] [CrossRef]
- Jia, Q.; Hu, J. A novel method to research linguistic uncertain Z-numbers. Inf. Sci. 2022, 586, 41–58. [Google Scholar] [CrossRef]
- Jia, Q.; Hu, J.; Safwat, E.; Kamel, A. Polar coordinate system to solve an uncertain linguistic Z-number and its application in multicriteria group decision-making. Eng. Appl. Artif. Intell. 2021, 105, 104437. [Google Scholar] [CrossRef]
- Aliev, R.; Pedrycz, W.; Kreinovich, V.; Huseynov, O. The general theory of decisions. Inf. Sci. 2016, 327, 125–148. [Google Scholar] [CrossRef]
- Aliev, R.A.; Pedrycz, W.; Huseynov, O.H.; Eyupoglu, S.Z. Approximate Reasoning on a Basis of Z-Number-Valued If–Then Rules. IEEE Trans. Fuzzy Syst. 2017, 25, 1589–1600. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Ezadi, S. Z-Advanced numbers processes. Inf. Sci. 2019, 480, 130–143. [Google Scholar] [CrossRef]
- Yaakob, A.M.; Serguieva, A.; Gegov, A. FN-TOPSIS: Fuzzy Networks for Ranking Traded Equities. IEEE Trans. Fuzzy Syst. 2017, 25, 315–332. [Google Scholar] [CrossRef]
- Sabahi, F.; Akbarzadeh-T, M.R. Extended fuzzy logic: Sets and systems. IEEE Trans. Fuzzy Syst. 2016, 24, 530–543. [Google Scholar] [CrossRef]
- Peng, H.G.; Zhang, H.Y.; Wang, J.Q.; Li, L. An uncertain Z-number multicriteria group decision-making method with cloud models. Inf. Sci. 2019, 501, 136–154. [Google Scholar] [CrossRef]
- Atanassov’s Interval-Valued Intuitionistic Linguistic Multicriteria Group Decision-Making Method Based on the Trapezium Cloud Model. IEEE Trans. Fuzzy Syst. Publ. IEEE Neural Netw. Counc. 2015, 23, 542–554.
- Jia, Q.; Hu, J.; He, Q.; Zhang, W.; Safwat, E. A Multicriteria Group Decision-making Method Based on AIVIFSs, Z-numbers, and Trapezium Clouds. Inf. Sci. 2021, 566, 38–56. [Google Scholar] [CrossRef]
- Bao, G.Y.; Lian, X.L.; He, M.; Wang, L.L. Improved two-tuple linguistic representation model based on new linguistic evaluation scale. Control. Decis. 2010, 25, 780–784. [Google Scholar]
- Li, D.; Liu, C.; Gan, W. A New Cognitive Model: Cloud Model; Wiley Subscription Services, Inc.: Hoboken, NJ, USA, 2009; Volume 24, pp. 357–375. [Google Scholar]
- Jia, Q.; Hu, J.; Zhang, W.; Zhai, S.; Li, Z. A new situation assessment method for aerial targets based on linguistic fuzzy sets and trapezium clouds. Eng. Appl. Artif. Intell. 2023, 117, 105610. [Google Scholar]
- Abdelrahman, E.M.; Abdelazeem, M.; Gobashy, M. A minimization approach to depth and shape determination of mineralized zones from potential field data using the Nelder-Mead simplex algorithm. Ore Geol. Rev. 2019, 114, 103123. [Google Scholar] [CrossRef]
- Wang, J.Q.; Peng, J.J.; Zhang, H.Y.; Tao, L.; Chen, X.H. An Uncertain Linguistic Multi-criteria Group Decision-Making Method Based on a Cloud Model. Group Decis. Negot. 2015, 24, 171–192. [Google Scholar] [CrossRef]
- Peng, H.G.; Wang, J.Q. Hesitant Uncertain Linguistic Z-Numbers and Their Application in Multi-criteria Group Decision-Making Problems. Int. J. Fuzzy Syst. 2017, 19, 1300–1316. [Google Scholar] [CrossRef]
((1.2274, 3.8355, [56.656, 73.094], 3.8355, 1.2274), (0, 6.7065, [25.9069, 40.2779], 3.4217, 3.3525)) | |
((1.5681, 2.6974, [63.8750, 83.2965], 5.2870, 0.7049), (1.4071, 4.3972, [64.9525, 83.7975], 4.3972, 1.4071)) | |
((1.4423, 2.4810, [58.7500, 91.2014], 6.8079,0), (1.6448, 2.8294, [67, 87.3716], 5.5456, 0.7394)) | |
((1.5589, 2.6816, [63.5000, 82.8074], 5.2559, 0.7008), (1.2699, 3.9685, [58.6210, 67.1250], 2.8347, 1.6479)) | |
((0.7629, 5.7215, [48.1073, 69.1250], 2.9191, 1.6970), (1.2983, 4.0572, [59.9310, 68.6250], 2.8980, 1.6847)) | |
((0,8.5895, [33.1810, 74.1250], 3.1303, 1.8197), (1.7584, 3.0247, [71.6250, 93.4029], 5.9284, 0.7905)) | |
((0.8001, 6.0008, [50.4561, 81.6850], 4.2863, 1.3716), (1.7062, 2.9350, [78.3049, 90.6318], 5.7525, 0.7670)) | |
((1.7246, 2.9666, [70.2500, 79.1499], 4.1533, 1.3291), (1.6694, 2.8716, [68, 88.6757], 5.6284, 0.7505)) | |
((1.4047, 4.3898, [64.8433, 83.6567], 4.3898, 1.4047), (1.6540, 2.8452, [67.3750, 87.8606], 5.5766, 0.7436)) | |
((1.3314, 4.1607, [61.4592, 79.2908], 4.1607, 1.3314), (1.4024, 4.3824, [64.7342, 74.1250], 3.1303, 1.8197)) | |
((0.8153, 6.1147, [51.4130, 83.2342], 4.3676, 1.3976), (0.8305, 6.2285, [52.3699, 65.7166], 3.1778, 1.8474)) | |
((0.7104, 5.3283, [44.8015, 56.2194], 2.7185, 1.5804), (1.3740, 4.2937, [63.4242, 81.8258], 4.2937, 1.3740)) | |
((1.2274, 3.8355, [56.6560, 73.0940], 3.8355, 1.2274), (0,6.7065, [25.9069, 40.2779], 3.4217, 1.0949)) | |
((0, 7.7639, [29.9916, 75.4882], 3.9611, 1.2676), (1.6786, 2.8875, [77.0374, 89.1647], 5.6594, 0.7546)) | |
((1.3385, 4.1829, [61.7867, 92.2618], 5.8560, 0.7808), (1.5558, 2.6763, [71.4039, 82.6444], 5.2456, 0.6994)) | |
((0.8305, 6.2285, [52.3699, 84.7834], 4.4489, 1.4236), (1.6049, 2.7608, [73.6573, 85.2525], 5.4111, 0.7215)) |
((0, 8.1115, [31.3345, 78.8682], 4.1385, 1.3243), (0.7132, 5.3490, [44.9755, 72.8123], 3.8207, 1.2226)) | |
((0.8153, 6.1147, [51.4130, 83.2342], 4.3676, 1.3976), (1.1895, 3.7173, [54.9094, 70.8406], 3.7173, 1.1895)) | |
((1.2983, 4.0572, [59.9310, 89.4907], 5.6801, 0.7573), (1.6325, 2.8083, [66.5000, 86.7196], 5.5042, 0.7339)) | |
((1.5988, 2.7502, [65.1250, 73.3756], 3.8503, 1.2321), (0,6.7065, [25.9069, 40.2779], 3.4217, 1.0949)) | |
((1.2274, 3.8355, [56.6560, 64.8750], 2.7397, 1.5927), (0, 7.9666, [30.7749, 68.7500], 2.9033, 1.6878)) | |
((0, 7.8652, [30.3832, 67.8750], 2.8663, 1.6663), (1.4686, 4.5893, [67.7908, 77.6250], 3.2781, 1.9057)) | |
((0, 8.2998, [32.0619, 80.6991], 4.2346, 1.3551), (1.3905, 4.3454, [64.1883, 82.8117], 4.3454, 1.3905)) | |
((0.7656, 5.7422, [48.2812, 69.3750], 2.9297, 1.7031), (1.3125, 4.1016, [60.5859, 90.4688], 5.7422, 0.7656)) | |
((1.2841, 4.0129, [59.2760, 88.5127], 5.6180, 0.7491), (0.8167, 6.1250, [51.5000, 83.3750], 4.3750, 1.4000)) | |
((1.1351, 3.5473, [52.3986, 93.1419], 6.9527, 0), (0, 7.8797, [30.4392, 76.6149], 4.0203, 1.2865)) | |
((0.8043, 6.0319, [50.7171, 72.8750], 3.0775, 1.7890), (0.8291, 6.2181, [52.2829, 84.6425], 4.4415, 1.4213)) | |
((0.8070, 6.0526, [50.8910, 63.8609], 3.0880, 1.7952), (0.7505, 5.6284, [47.3243, 76.6149], 4.0203, 1.2865)) | |
((0.6318, 4.7386, [39.8429, 74.6571], 4.7386, 0.6318), (0.6180, 4.6351, [38.9730, 56.0000], 2.3649, 1.3748)) | |
((0.7601, 5.7008, [47.9333, 68.8750], 2.9086, 1.6909), (0.6235, 4.6765, [39.3209, 56.5000], 2.3860, 1.3870)) | |
((0.7849, 5.8870, [49.4992, 92.7508], 5.8870, 0.7849), (1.3645, 4.2641, [62.9875, 72.1250], 3.0458, 1.7706)) | |
((1.2818, 4.0055, [59.1668, 88.3497], 5.6077, 0.7477), (0, 6.6630, [25.7390, 64.7846], 3.3995, 1.0878)) |
((0.7863, 5.8974, [49.5861, 80.2766], 4.2124, 1.3480), (0.7298, 5.4732, [46.0194, 86.2306], 5.4732, 0.7298)) | |
((1.4520, 4.5376, [67.0266, 86.4734], 4.5376, 1.4520), (0.7063, 5.2973, [44.5405, 72.1081], 3.7838, 1.2108)) | |
((1.2983, 4.0572, [59.9310, 77.3190], 4.0572, 1.2983), (1.6325, 2.8083, [66.5000, 86.7196], 5.5042, 0.7339)) | |
((1.5589, 2.6816, [63.5000, 82.8074], 5.2559, 0.7008), (1.2699, 3.9685, [58.6210, 67.1250], 2.8347, 1.6479)) | |
((0, 8.3288, [32.1738, 71.8750], 3.0353, 1.7645), (0,8.2708, [31.9500, 62.3326], 3.0141, 1.7522)) | |
((0, 7.9087, [30.5511, 68.2500], 2.8822, 1.6755), (0, 8.4591, [32.6774, 73], 3.0828, 1.7921)) | |
((0, 8.2998, [32.0619, 80.6991], 4.2346, 1.3551), (1.3905, 4.3454, [64.1883, 73.5000], 3.1039, 1.8044)) | |
((1.7246, 2.9666, [70.2500, 91.6098], 5.8146, 0.7753), (1.6694, 2.8716, [68, 88.6757], 5.6284, 0.7505)) | |
((0.7946, 5.9595, [50.1081, 93.8919], 5.9595, 0.7946), (0, 8.2129, [31.7261, 79.8541], 4.1902, 1.3409)) | |
((0.7518, 5.6387, [47.4113, 76.7557], 4.0277, 1.2889), (0.6277, 4.7076, [39.5819, 64.0804], 3.3625, 1.0760)) | |
((0.8043, 6.0319, [50.7171, 72.8750], 3.0775, 1.7890), (0.8291, 6.2181, [52.2829, 84.6425], 4.4415, 1.4213)) | |
((0.9946, 7.4597, [28.8165, 44.8015], 3.8060, 1.2179), (1.3740, 4.2937, [63.4242, 81.8258], 4.2937, 1.3740)) | |
((1.1635, 3.6360, [53.7086, 61.5000], 2.5971, 1.5098), (0.6249, 4.6869, [39.4079, 63.7988], 3.3478, 1.0713)) | |
((0.7656, 5.7422, [48.2812, 90.4688], 5.7422, 0.7656), (0, 6.3588, [24.5640, 54.8750], 2.3174, 1.3472)) | |
((0.7849, 5.8870, [49.4992, 80.1358], 4.2050, 1.3456), (1.3645, 4.2641, [62.9875, 72.1250], 3.0458, 1.7706)) | |
((0.8305, 6.2285, [52.3699, 75.2500], 3.1778, 1.8474), (1.6049, 2.7608, [73.6573, 85.2525], 5.4111, 0.7215)) |
Z-IVLNS-TTCs | ||
---|---|---|
((1.2168, 4.4066, [56.7071, 74.7552], 3.8348, 1.3940), (1.4297, 3.9600, [49.2397, 63.8645], 4.6853, 1.4714)) | ||
((1.3026, 4.8369, [49.6191, 78.1303], 4.2744, 1.3101), (1.5430, 3.8544, [68.3594, 83.7795], 4.8032, 1.3115)) | ||
((1.1775, 4.7521, [55.7408, 87.1546], 5.5172, 1.0210), (1.5480, 3.4834, [67.9018, 82.2284], 5.2321, 0.9813)) | ||
((1.4156, 4.1298, [58.6191, 76.6013], 4.4469, 1.2505), (1.5265, 3.3340, [66.2411, 80.8950], 4.9229, 1.0883)) | ||
((1.0984, 4.7192, [48.0085, 77.1875], 4.6131, 1.0967), (0.7099, 6.0000, [43.3684, 72.7607], 3.7763, 1.4298)) | ||
((0.8782, 5.5446, [46.5243, 79.1058], 5.0301, 1.2620), (1.1361, 4.9037, [47.1973, 71.1463], 3.6170, 1.4045)) | ||
((0.9717, 5.6767, [48.9797, 84.3806], 5.0517, 1.1669), (1.4064, 4.2224, [62.2025, 81.4292], 4.5583, 1.3238)) | ||
((1.2501, 4.5117, [56.3359, 74.3489], 4.2847, 1.3376), (0.9869, 5.2816, [39.7434, 67.7439], 4.5323, 1.0384)) | ||
((0.8875, 5.6601, [47.1502, 77.7865], 4.5418, 1.3180), (0.5562, 6.4520, [37.8892, 75.7814], 4.4795, 1.1804)) | ||
((1.1146, 5.4384, [50.3974, 80.9841], 4.6011, 1.2942), (0.6001, 5.7185, [37.2731, 66.1940], 3.3471, 1.3279)) | ||
((0.9772, 5.6606, [49.0970, 77.7551], 3.9468, 1.4504), (1.3933, 4.2987, [61.8390, 80.0883], 4.4165, 1.3958)) | ||
((1.4660, 4.2470, [55.7819, 75.4462], 4.9199, 1.1604), (1.5351, 3.2772, [66.1570, 80.7896], 4.9606, 1.0713)) |
(, ) | (, ) | (, ) | (, ) | |
---|---|---|---|---|
0.3324, 0.5224 | 0.2801, 0.6136 | 0.2581, 0.6440 | 0.2545, 0.6035 | |
0.3838, 0.5517 | 0.3751, 0.5541 | 0.3063, 0.6216 | 0.3672, 0.5279 | |
0.4079, 0.5632 | 0.3988, 0.5404 | 0.3077, 0.5927 | 0.2658, 0.5965 |
Ranking | |||||
---|---|---|---|---|---|
0.4274 | 0.4469 | 0.4511 | 0.4290 | ||
0.4677 | 0.4646 | 0.4640 | 0.4476 | ||
0.4856 | 0.4696 | 0.4502 | 0.4312 | ||
Average distances | 0.4602 | 0.4604 | 0.4551 | 0.4359 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Shi, J.; Lyu, Y.; Jia, Q. A Decision-Making Model with Cloud Model, Z-Numbers, and Interval-Valued Linguistic Neutrosophic Sets. Entropy 2024, 26, 892. https://doi.org/10.3390/e26110892
Chen H, Shi J, Lyu Y, Jia Q. A Decision-Making Model with Cloud Model, Z-Numbers, and Interval-Valued Linguistic Neutrosophic Sets. Entropy. 2024; 26(11):892. https://doi.org/10.3390/e26110892
Chicago/Turabian StyleChen, Huakun, Jingping Shi, Yongxi Lyu, and Qianlei Jia. 2024. "A Decision-Making Model with Cloud Model, Z-Numbers, and Interval-Valued Linguistic Neutrosophic Sets" Entropy 26, no. 11: 892. https://doi.org/10.3390/e26110892
APA StyleChen, H., Shi, J., Lyu, Y., & Jia, Q. (2024). A Decision-Making Model with Cloud Model, Z-Numbers, and Interval-Valued Linguistic Neutrosophic Sets. Entropy, 26(11), 892. https://doi.org/10.3390/e26110892