Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,208)

Search Parameters:
Keywords = YOLO model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3045 KB  
Article
Exploring Runtime Sparsification of YOLO Model Weights During Inference
by Tanzeel-ur-Rehman Khan, Sanghamitra Roy and Koushik Chakraborty
J. Low Power Electron. Appl. 2026, 16(1), 3; https://doi.org/10.3390/jlpea16010003 - 13 Jan 2026
Abstract
In the pursuit of real-time object detection with constrained computational resources, the optimization of neural network architectures is paramount. We introduce novel sparsity induction methods within the YOLOv4-Tiny framework to significantly improve computational efficiency while maintaining high accuracy in pedestrian detection. We present [...] Read more.
In the pursuit of real-time object detection with constrained computational resources, the optimization of neural network architectures is paramount. We introduce novel sparsity induction methods within the YOLOv4-Tiny framework to significantly improve computational efficiency while maintaining high accuracy in pedestrian detection. We present three sparsification approaches: Homogeneous, Progressive, and Layer-Adaptive, each methodically reducing the model’s complexity without compromising its detection capability. Additionally, we refine the model’s output with a memory-efficient sliding window approach and a Bounding Box Sorting Algorithm, ensuring precise Intersection over Union (IoU) calculations. Our results demonstrate a substantial reduction in computational load by zeroing out over 50% of the weights with only a minimal 6% loss in IoU and 0.6% loss in F1-Score. Full article
Show Figures

Figure 1

20 pages, 3283 KB  
Article
Small-Target Pest Detection Model Based on Dynamic Multi-Scale Feature Extraction and Dimensionally Selected Feature Fusion
by Junjie Li, Wu Le, Zhenhong Jia, Gang Zhou, Jiajia Wang, Guohong Chen, Yang Wang and Yani Guo
Appl. Sci. 2026, 16(2), 793; https://doi.org/10.3390/app16020793 - 13 Jan 2026
Abstract
Pest detection in the field is crucial for realizing smart agriculture. Deep learning-based target detection algorithms have become an important pest identification method due to their high detection accuracy, but the existing methods still suffer from misdetection and omission when detecting small-targeted pests [...] Read more.
Pest detection in the field is crucial for realizing smart agriculture. Deep learning-based target detection algorithms have become an important pest identification method due to their high detection accuracy, but the existing methods still suffer from misdetection and omission when detecting small-targeted pests and small-targeted pests in more complex backgrounds. For this reason, this study improves on YOLO11 and proposes a new model called MSDS-YOLO for enhanced detection of small-target pests. First, a new dynamic multi-scale feature extraction module (C3k2_DMSFE) is introduced, which can be adaptively adjusted according to different input features and thus effectively capture multi-scale and diverse feature information. Next, a novel Dimensional Selective Feature Pyramid Network (DSFPN) is proposed, which employs adaptive feature selection and multi-dimensional fusion mechanisms to enhance small-target saliency. Finally, the ability to fit small targets was enhanced by adding 160 × 160 detection heads removing 20 × 20 detection heads and using Normalized Gaussian Wasserstein Distance (NWD) combined with CIoU as a position loss function to measure the prediction error. In addition, a real small-target pest dataset, Cottonpest2, is constructed for validating the proposed model. The experimental results showed that a mAP50 of 86.7% was achieved on the self-constructed dataset Cottonpest2, which was improved by 3.0% compared to the baseline. At the same time, MSDS-YOLO has achieved better detection accuracy than other YOLO models on public datasets. Model evaluation on these three datasets shows that the MSDS-YOLO model has excellent robustness and model generalization ability. Full article
Show Figures

Figure 1

34 pages, 3338 KB  
Article
Intelligent Energy Optimization in Buildings Using Deep Learning and Real-Time Monitoring
by Hiba Darwish, Krupa V. Khapper, Corey Graves, Balakrishna Gokaraju and Raymond Tesiero
Energies 2026, 19(2), 379; https://doi.org/10.3390/en19020379 - 13 Jan 2026
Abstract
Thermal comfort and energy efficiency are two main goals of heating, ventilation, and air conditioning (HVAC) systems, which use about 40% of the total energy in buildings. This paper aims to predict optimal room temperature, enhance comfort, and reduce energy consumption while avoiding [...] Read more.
Thermal comfort and energy efficiency are two main goals of heating, ventilation, and air conditioning (HVAC) systems, which use about 40% of the total energy in buildings. This paper aims to predict optimal room temperature, enhance comfort, and reduce energy consumption while avoiding extra energy use from overheating or overcooling. Six Machine Learning (ML) models were tested to predict the optimal temperature in the classroom based on the occupancy characteristic detected by a Deep Learning (DL) model, You Only Look Once (YOLO). The decision tree achieved the highest accuracy at 97.36%, demonstrating its effectiveness in predicting the preferred temperature. To measure energy savings, the study used RETScreen software version 9.4 to compare intelligent temperature control with traditional operation of HVAC. Genetic algorithm (GA) was further employed to optimize HVAC energy consumption while keeping the thermal comfort level by adjusting set-points based on real-time occupancy. The GA showed how to balance comfort and efficiency, leading to better system performance. The results show that adjusting from default HVAC settings to preferred thermal comfort levels as well controlling the HVAC to work only if the room is occupied can reduce energy consumption and costs by approximately 76%, highlighting the substantial impact of even simple operational adjustments. Further improvements achieved through GA-optimized temperature settings provide additional savings of around 7% relative to preferred comfort levels, demonstrating the value of computational optimization techniques in fine-tuning building performance. These results show that intelligent, data-driven HVAC control can improve comfort, save energy, lower costs, and support sustainability in buildings. Full article
Show Figures

Figure 1

23 pages, 91075 KB  
Article
Improved Lightweight Marine Oil Spill Detection Using the YOLOv8 Algorithm
by Jianting Shi, Tianyu Jiao, Daniel P. Ames, Yinan Chen and Zhonghua Xie
Appl. Sci. 2026, 16(2), 780; https://doi.org/10.3390/app16020780 - 12 Jan 2026
Abstract
Marine oil spill detection using Synthetic Aperture Radar (SAR) is crucial but challenged by dynamic marine conditions, diverse spill scales, and limitations in existing algorithms regarding model size and real-time performance. To address these challenges, we propose LSFE-YOLO, a YOLOv8s-optimized (You Only Look [...] Read more.
Marine oil spill detection using Synthetic Aperture Radar (SAR) is crucial but challenged by dynamic marine conditions, diverse spill scales, and limitations in existing algorithms regarding model size and real-time performance. To address these challenges, we propose LSFE-YOLO, a YOLOv8s-optimized (You Only Look Once version 8) lightweight model with an original, domain-tailored synergistic integration of FasterNet, GN-LSC Head (GroupNorm Lightweight Shared Convolution Head), and C2f_MBE (C2f Mobile Bottleneck Enhanced). FasterNet serves as the backbone (25% neck width reduction), leveraging partial convolution (PConv) to minimize memory access and redundant computations—overcoming traditional lightweight backbones’ high memory overhead—laying the foundation for real-time deployment while preserving feature extraction. The proposed GN-LSC Head replaces YOLOv8’s decoupled head: its shared convolutions reduce parameter redundancy by approximately 40%, and GroupNorm (Group Normalization) ensures stable accuracy under edge computing’s small-batch constraints, outperforming BatchNorm (Batch Normalization) in resource-limited scenarios. The C2f_MBE module integrates EffectiveSE (Effective Squeeze and Excitation)-optimized MBConv (Mobile Inverted Bottleneck Convolution) into C2f: MBConv’s inverted-residual design enhances multi-scale feature capture, while lightweight EffectiveSE strengthens discriminative oil spill features without extra computation, addressing the original C2f’s scale variability insufficiency. Additionally, an SE (Squeeze and Excitation) attention mechanism embedded upstream of SPPF (Spatial Pyramid Pooling Fast) suppresses background interference (e.g., waves, biological oil films), synergizing with FasterNet and C2f_MBE to form a cascaded feature optimization pipeline that refines representations throughout the model. Experimental results show that LSFE-YOLO improves mAP (mean Average Precision) by 1.3% and F1 score by 1.7% over YOLOv8s, while achieving substantial reductions in model size (81.9%), parameter count (82.9%), and computational cost (84.2%), alongside a 20 FPS (Frames Per Second) increase in detection speed. LSFE-YOLO offers an efficient and effective solution for real-time marine oil spill detection. Full article
Show Figures

Figure 1

19 pages, 7451 KB  
Article
PPE-EYE: A Deep Learning Approach to Personal Protective Equipment Compliance Detection
by Atta Rahman, Mohammed Salih Ahmed, Khaled Naif AlBugami, Abdullah Yousef Alabbad, Abdullah Abdulaziz AlFantoukh, Yousef Hassan Alshaikhahmed, Ziyad Saleh Alzahrani, Mohammad Aftab Alam Khan, Mustafa Youldash and Saeed Matar Alshahrani
Computers 2026, 15(1), 45; https://doi.org/10.3390/computers15010045 - 11 Jan 2026
Viewed by 48
Abstract
Safety on construction sites is an essential yet challenging issue due to the inherently hazardous nature of these sites. Workers are expected to wear Personal Protective Equipment (PPE), such as helmets, vests, and safety glasses, to prevent or minimize their exposure to injuries. [...] Read more.
Safety on construction sites is an essential yet challenging issue due to the inherently hazardous nature of these sites. Workers are expected to wear Personal Protective Equipment (PPE), such as helmets, vests, and safety glasses, to prevent or minimize their exposure to injuries. However, ensuring compliance remains difficult, particularly in large or complex sites, which require a time-consuming and usually error-prone manual inspection process. The research proposes an automated PPE detection system utilizing the deep learning model YOLO11, which is trained on the CHVG dataset, to identify in real-time whether workers are adequately equipped with the necessary gear. The proposed PPE-EYE method, using YOLO11x, achieved a mAP50 of 96.9% and an inference time of 7.3 ms, which is sufficient for real-time PPE detection systems, in contrast to previous approaches involving the same dataset, which required 170 ms. The model achieved these results by employing data augmentation and fine-tuning. The proposed solution provides continuous monitoring with reduced human oversight and ensures timely alerts if non-compliance is detected, allowing the site manager to act promptly. It further enhances the effectiveness and reliability of safety inspections, overall site safety, and reduces accidents, ensuring consistency in follow-through of safety procedures to create a safer and more productive working environment for all involved in construction activities. Full article
(This article belongs to the Section AI-Driven Innovations)
Show Figures

Figure 1

23 pages, 19362 KB  
Article
MTW-BYTE: Research on Embedded Algorithms for Cow Behavior Recognition and Multi-Object Tracking in Free-Style Cow Barn Environments
by Changfeng Wu, Xiuling Wang, Jiandong Fang and Yudong Zhao
Agriculture 2026, 16(2), 181; https://doi.org/10.3390/agriculture16020181 - 11 Jan 2026
Viewed by 115
Abstract
Behavior recognition and multi-object tracking of dairy cows in free-style cow barn environments play a crucial role in monitoring their health status and serve as an essential means for intelligent scientific farming. This study proposes an efficient embedded algorithm, MTW-BYTE, for dairy cow [...] Read more.
Behavior recognition and multi-object tracking of dairy cows in free-style cow barn environments play a crucial role in monitoring their health status and serve as an essential means for intelligent scientific farming. This study proposes an efficient embedded algorithm, MTW-BYTE, for dairy cow behavior recognition and multi-object tracking. It addresses challenges in free-style cow barn environments, including the impact of lighting variations and common occlusions on behavior recognition, as well as trajectory interruptions and identity ID switching during multi-object tracking. First, the MTW-YOLO cow behavior recognition model is constructed based on the YOLOv11n object detection algorithm. Replacing parts of the backbone network and neck network with MANet and introducing the Task Dynamic Align Detection Head (TDADH). The CIoU loss function of YOLOv11n is replaced with the WIoU loss. The improved model not only effectively handles variations in lighting conditions but also addresses common occlusion issues in cows, enhancing multi-scale behavior recognition capabilities and improving overall detection performance. The improved MTW-YOLO algorithm improves Precision, Recall, mAP50 and F1 score by 4.5%, 0.1%, 1.6% and 2.2%, respectively, compared to the original YOLOv11n model. Second, the ByteTrack multi-object tracking algorithm is enhanced by designing a dynamic buffer and re-detection mechanism to address cow trajectory interruptions and identity ID switching. The MTW-YOLO algorithm is cascaded with the improved ByteTrack to form the multi-target tracking algorithm MTW-BYTE. Compared with the original multi-target tracking algorithm YOLOv11n-ByteTrack (a combination of YOLOv11n and the original ByteTrack), this algorithm improves HOTA by 1.1%, MOTA by 3.6%, MOTP by 0.2%, and IDF1 by 1.9%, reduces the number of ID changes by 11, and achieves a frame rate of 43.11 FPS, which can meet the requirements of multi-target tracking of dairy cows in free-style cow barn environments. Finally, to verify the model’s applicability in real-world scenarios, the MTW-BYTE algorithm is deployed on an NVIDIA Jetson AGX Orin edge device. Based on real-time monitoring of cow behavior on the edge device, the pure inference time for a single frame is 16.62 ms, achieving an FPS of 29.95, demonstrating efficient and stable real-time behavior detection and tracking. The ability of MTW-BYTE to be deployed on edge devices to identify and continuously track cow behavior in various scenarios provides hardware feasibility verification and algorithmic support for the subsequent deployment of intelligent monitoring systems in free-style cow barn environments. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

23 pages, 19213 KB  
Article
From Wide-Area Screening to Precise Diagnosis: A Two-Step Air-Ground Collaborative Approach for the Detection of Citrus Huanglongbing
by Shiqing Dou, Shixin Yuan, Xiaoyu Zhang, Yichang Hou, Guichuan Wu, Zhengmin Mei, Yaqin Song and Genhong Qi
Agriculture 2026, 16(2), 180; https://doi.org/10.3390/agriculture16020180 - 11 Jan 2026
Viewed by 160
Abstract
In response to the urgent need for efficient, precise and low-cost monitoring of Huanglongbing in large-scale citrus orchards, this study explored a two-step technical framework of “wide-area screening to precise diagnosis” for the aerial-ground collaboration. In the wide-area screening stage of the drone, [...] Read more.
In response to the urgent need for efficient, precise and low-cost monitoring of Huanglongbing in large-scale citrus orchards, this study explored a two-step technical framework of “wide-area screening to precise diagnosis” for the aerial-ground collaboration. In the wide-area screening stage of the drone, a lightweight YOLOv8-SNNL new model was constructed, which significantly reduced the number of parameters while enhancing the ability to capture subtle symptoms of the canopy. This model achieved an accuracy rate of 90.6%, a recall rate of 93.3%, and an mAP50 of 96.6% on the independent test set, enabling efficient and reliable positioning of suspected diseased plants. Then, the ground operators reached the corresponding locations based on the geographic coordinate position information output by the drone. Using the constructed SRSA-YOLO-World model for ground precise diagnosis, the constructed model achieved an identification accuracy of 99.5% for diseased leaves in complex field environments. Based on the positioning and diagnosis results output by both models, managers were provided with a decision-making basis. The aerial-ground collaboration strategy integrates the efficiency of drone “wide-area screening” and the precision of ground equipment “precise diagnosis”, providing a new solution for replacing the traditional manual inspection mode and achieving precise prevention and control in large-scale orchards. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

23 pages, 6446 KB  
Article
Lightweight GAFNet Model for Robust Rice Pest Detection in Complex Agricultural Environments
by Yang Zhou, Wanqiang Huang, Benjing Liu, Tianhua Chen, Jing Wang, Qiqi Zhang and Tianfu Yang
AgriEngineering 2026, 8(1), 26; https://doi.org/10.3390/agriengineering8010026 - 10 Jan 2026
Viewed by 90
Abstract
To address challenges such as small target size, high density, severe occlusion, complex background interference, and edge device computational constraints, a lightweight model, GAFNet, is proposed based on YOLO11n, optimized for rice pest detection in field environments. To improve feature perception, we propose [...] Read more.
To address challenges such as small target size, high density, severe occlusion, complex background interference, and edge device computational constraints, a lightweight model, GAFNet, is proposed based on YOLO11n, optimized for rice pest detection in field environments. To improve feature perception, we propose the Global Attention Fusion and Spatial Pyramid Pooling (GAM-SPP) module, which captures global context and aggregates multi-scale features. Building on this, we introduce the C3-Efficient Feature Selection Attention (C3-EFSA) module, which refines feature representation by combining depthwise separable convolutions (DWConv) with lightweight channel attention to enhance background discrimination. The model’s detection head, Enhanced Ghost Detect (EGDetect), integrates Enhanced Ghost Convolution (EGConv), Squeeze-and-Excitation (SE), and Sigmoid-Weighted Linear Unit (SiLU) activation, which reduces redundancy. Additionally, we propose the Focal-Enhanced Complete-IoU (FECIoU) loss function, incorporating stability and hard-sample weighting for improved localization. Compared to YOLO11n, GAFNet improves Precision, Recall, and mean Average Precision (mAP) by 3.5%, 4.2%, and 1.6%, respectively, while reducing parameters and computation by 5% and 21%. GAFNet can deploy on edge devices, providing farmers with instant pest alerts. Further, GAFNet is evaluated on the AgroPest-12 dataset, demonstrating enhanced generalization and robustness across diverse pest detection scenarios. Overall, GAFNet provides an efficient, reliable, and sustainable solution for early pest detection, precision pesticide application, and eco-friendly pest control, advancing the future of smart agriculture. Full article
Show Figures

Figure 1

26 pages, 92329 KB  
Article
A Lightweight Dynamic Counting Algorithm for the Maize Seedling Population in Agricultural Fields for Embedded Applications
by Dongbin Liu, Jiandong Fang and Yudong Zhao
Agronomy 2026, 16(2), 176; https://doi.org/10.3390/agronomy16020176 - 10 Jan 2026
Viewed by 56
Abstract
In the field management of maize, phenomena such as missed sowing and empty seedlings directly affect the final yield. By implementing seedling replenishment activities and promptly evaluating seedling growth, maize output can be increased by improving seedling survival rates. To address the challenges [...] Read more.
In the field management of maize, phenomena such as missed sowing and empty seedlings directly affect the final yield. By implementing seedling replenishment activities and promptly evaluating seedling growth, maize output can be increased by improving seedling survival rates. To address the challenges posed by complex field environments (including varying light conditions, weeds, and foreign objects), as well as the performance limitations of model deployment on resource-constrained devices, this study proposes a Lightweight Real-Time You Only Look Once (LRT-YOLO) model. This model builds upon the You Only Look Once version 11n (YOLOv11n) framework by designing a lightweight, optimized feature architecture (OF) that enables the model to focus on the characteristics of small to medium-sized maize seedlings. The feature fusion network incorporates two key modules: the Feature Complementary Mapping Module (FCM) and the Multi-Kernel Perception Module (MKP). The FCM captures global features of maize seedlings through multi-scale interactive learning, while the MKP enhances the network’s ability to learn multi-scale features by combining different convolution kernels with pointwise convolution. In the detection head component, the introduction of an NMS-free design philosophy has significantly enhanced the model’s detection performance while simultaneously reducing its inference time. The experiments show that the mAP50 and mAP50:95 of the LRT-YOLO model reached 95.9% and 63.6%, respectively. The model has only 0.86M parameters and a size of just 2.35 M, representing reductions of 66.67% and 54.89% in the number of parameters and model size compared to YOLOv11n. To enable mobile deployment in field environments, this study integrates the LRT-YOLO model with the ByteTrack multi-object tracking algorithm and deploys it on the NVIDIA Jetson AGX Orin platform, utilizing OpenCV tools to achieve real-time visualization of maize seedling tracking and counting. Experiments demonstrate that the frame rate (FPS) achieved with TensorRT acceleration reached 23.49, while the inference time decreased by 38.93%. Regarding counting performance, when tested using static image data, the coefficient of determination (R2) and root mean square error (RMSE) were 0.988 and 5.874, respectively. The cross-line counting method was applied to test the video data, resulting in an R2 of 0.971 and an RMSE of 16.912, respectively. Experimental results show that the proposed method demonstrates efficient performance on edge devices, providing robust technical support for the rapid, non-destructive counting of maize seedlings in field environments. Full article
(This article belongs to the Section Precision and Digital Agriculture)
34 pages, 4692 KB  
Article
YOLO-SMD: A Symmetrical Multi-Scale Feature Modulation Framework for Pediatric Pneumonia Detection
by Linping Du, Xiaoli Zhu, Zhongbin Luo and Yanping Xu
Symmetry 2026, 18(1), 139; https://doi.org/10.3390/sym18010139 - 10 Jan 2026
Viewed by 84
Abstract
Pediatric pneumonia detection faces the challenge of pathological asymmetry, where immature lung tissues present blurred boundaries and lesions exhibit extreme scale variations (e.g., small viral nodules vs. large bacterial consolidations). Conventional detectors often fail to address these imbalances. In this study, we propose [...] Read more.
Pediatric pneumonia detection faces the challenge of pathological asymmetry, where immature lung tissues present blurred boundaries and lesions exhibit extreme scale variations (e.g., small viral nodules vs. large bacterial consolidations). Conventional detectors often fail to address these imbalances. In this study, we propose YOLO-SMD, a detection framework built upon a symmetrical design philosophy to enforce balanced feature representation. We introduce three architectural innovations: (1) DySample (Content-Aware Upsampling): To address the blurred boundaries of pediatric lesions, this module replaces static interpolation with dynamic point sampling, effectively sharpening edge details that are typically smoothed out by standard upsamplers; (2) SAC2f (Cross-Dimensional Attention): To counteract background interference, this module enforces a symmetrical interaction between spatial and channel dimensions, allowing the model to suppress structural noise (e.g., rib overlaps) in low-contrast X-rays; (3) SDFM (Adaptive Gated Fusion): To resolve the extreme scale disparity, this unit employs a gated mechanism that symmetrically balances deep semantic features (crucial for large bacterial shapes) and shallow textural features (crucial for viral textures). Extensive experiments on a curated subset of 2611 images derived from the Chest X-ray Pneumonia Dataset demonstrate that YOLO-SMD achieves competitive performance with a focus on high sensitivity, attaining a Recall of 86.1% and an mAP@0.5 of 84.3%, thereby outperforming the state-of-the-art YOLOv12n by 2.4% in Recall under identical experimental conditions. The results validate that incorporating symmetry principles into feature modulation significantly enhances detection robustness in primary healthcare settings. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Image Processing and Computer Vision)
19 pages, 2336 KB  
Article
A Lightweight Upsampling and Cross-Modal Feature Fusion-Based Algorithm for Small-Object Detection in UAV Imagery
by Jianglei Gong, Zhe Yuan, Wenxing Li, Weiwei Li, Yanjie Guo and Baolong Guo
Electronics 2026, 15(2), 298; https://doi.org/10.3390/electronics15020298 - 9 Jan 2026
Viewed by 100
Abstract
Small-object detection in UAV remote sensing faces common challenges such as tiny target size, blurred features, and severe background interference. Furthermore, single imaging modalities exhibit limited representation capability in complex environments. To address these issues, this paper proposes CTU-YOLO, a UAV-based small-object detection [...] Read more.
Small-object detection in UAV remote sensing faces common challenges such as tiny target size, blurred features, and severe background interference. Furthermore, single imaging modalities exhibit limited representation capability in complex environments. To address these issues, this paper proposes CTU-YOLO, a UAV-based small-object detection algorithm built upon cross-modal feature fusion and lightweight upsampling. The algorithm incorporates a dynamic and adaptive cross-modal feature fusion (DCFF) module, which achieves efficient feature alignment and fusion by combining frequency-domain analysis with convolutional operations. Additionally, a lightweight upsampling module (LUS) is introduced, integrating dynamic sampling and depthwise separable convolution to enhance the recovery of fine details for small objects. Experiments on the DroneVehicle and LLVIP datasets demonstrate that CTU-YOLO achieves 73.9% mAP on DroneVehicle and 96.9% AP on LLVIP, outperforming existing mainstream methods. Meanwhile, the model possesses only 4.2 MB parameters and 13.8 GFLOPs computational cost, with inference speeds reaching 129.9 FPS on DroneVehicle and 135.1 FPS on LLVIP. This exhibits an excellent lightweight design and real-time performance while maintaining high accuracy. Ablation studies confirm that both the DCFF and LUS modules contribute significantly to performance gains. Visualization analysis further indicates that the proposed method can accurately preserve the structure of small objects even under nighttime, low-light, and multi-scale background conditions, demonstrating strong robustness. Full article
(This article belongs to the Special Issue AI-Driven Image Processing: Theory, Methods, and Applications)
Show Figures

Figure 1

29 pages, 2471 KB  
Article
UAV Flight Orientation and Height Influence on Tree Crown Segmentation in Agroforestry Systems
by Juan Rodrigo Baselly-Villanueva, Andrés Fernández-Sandoval, Sergio Fernando Pinedo Freyre, Evelin Judith Salazar-Hinostroza, Gloria Patricia Cárdenas-Rengifo, Ronald Puerta, José Ricardo Huanca Diaz, Gino Anthony Tuesta Cometivos, Geomar Vallejos-Torres, Gianmarco Goycochea Casas, Pedro Álvarez-Álvarez and Zool Hilmi Ismail
Forests 2026, 17(1), 87; https://doi.org/10.3390/f17010087 - 9 Jan 2026
Viewed by 104
Abstract
Precise crown segmentation is essential for assessing structure, competition, and productivity in agroforestry systems, but delineation is challenging due to canopy heterogeneity and variability in aerial imagery. This study analyzes how flight height and orientation affect segmentation accuracy in an agroforestry system of [...] Read more.
Precise crown segmentation is essential for assessing structure, competition, and productivity in agroforestry systems, but delineation is challenging due to canopy heterogeneity and variability in aerial imagery. This study analyzes how flight height and orientation affect segmentation accuracy in an agroforestry system of the Peruvian Amazon, using RGB images acquired with a DJI Mavic Mini 3 Pro UAV and the instance-segmentation models YOLOv8 and YOLOv11. Four flight heights (40, 50, 60, and 70 m) and two orientations (parallel and transversal) were analyzed in an agroforestry system composed of Cedrelinga cateniformis (Ducke) Ducke, Calycophyllum spruceanum (Benth.) Hook.f. ex K.Schum., and Virola pavonis (A.DC.) A.C. Sm. Results showed that a flight height of 60 m provided the highest delineation accuracy (F1 ≈ 0.88 for YOLOv8 and 0.84 for YOLOv11), indicating an optimal balance between resolution and canopy coverage. Although YOLOv8 achieved the highest precision under optimal conditions, it exhibited greater variability with changes in flight geometry. In contrast, YOLOv11 showed a more stable and robust performance, with generalization gaps below 0.02, reflecting a stronger adaptability to different acquisition conditions. At the species level, vertical position and crown morphological differences (Such as symmetry, branching angle, and bifurcation level) directly influenced detection accuracy. Cedrelinga cateniformis displayed dominant and asymmetric crowns; Calycophyllum spruceanum had narrow, co-dominant crowns; and Virola pavonis exhibited symmetrical and intermediate crowns. These traits were associated with the detection and confusion patterns observed across the models, highlighting the importance of crown architecture in automated segmentation and the potential of UAVs combined with YOLO algorithms for the efficient monitoring of tropical agroforestry systems. Full article
29 pages, 1852 KB  
Article
A Prediction Framework of Apple Orchard Yield with Multispectral Remote Sensing and Ground Features
by Shuyan Pan and Liqun Liu
Plants 2026, 15(2), 213; https://doi.org/10.3390/plants15020213 - 9 Jan 2026
Viewed by 90
Abstract
Aiming at the problem that the current traditional apple yield estimation methods rely on manual investigation and do not make full use of multi-source information, this paper proposes an apple orchard yield prediction framework combining multispectral remote sensing features and ground features. The [...] Read more.
Aiming at the problem that the current traditional apple yield estimation methods rely on manual investigation and do not make full use of multi-source information, this paper proposes an apple orchard yield prediction framework combining multispectral remote sensing features and ground features. The framework is oriented to the demand of yield prediction at different scales. It can not only realize the prediction of apple yield at the district and county scales, but also modify the prediction results of small-scale orchards based on the acquisition of orchard features. The framework consists of three parts, namely, apple orchard planting area extraction, district and county large-scale yield prediction and small-scale orchard yield prediction correction. (1) During apple orchard planting area extraction, the samples of some apple planting areas in the study area were obtained through field investigation, and the orchard and non-orchard areas were classified and discriminated, providing a spatial basis for the collection of subsequent yield prediction-related data. (2) In the large-scale yield prediction of districts and counties, based on the obtained orchard-planting areas, the corresponding multispectral remote sensing features and environmental features were obtained using Google Earth engine platform. In order to avoid the noise interference caused by local pixel differences, the obtained data were median synthesized, and the feature set was constructed by combining the yield and other information. On this basis, the feature set was divided and sent to Apple Orchard Yield Prediction Network (APYieldNet) for training and testing, and the district and county large-scale yield prediction model was obtained. (3) During the part of small-scale orchard yield prediction correction, the optimal model for large-scale yield prediction at the district and county levels is utilized to forecast the yield of the entire planting area and the internal local sampling areas of the small-scale orchard. Within the local sampling areas, the number of fruits is identified through the YOLO-A model, and the actual yield is estimated based on the empirical single fruit weight as a ground feature, which is used to calculate the correction factor. Finally, the proportional correction method is employed to correct the error in the prediction results of the entire small-scale orchard area, thus obtaining a more accurate yield prediction for the small-scale orchard. The experiment showed that (1) the yield prediction model APYieldNet (MAE = 152.68 kg/mu, RMSE = 203.92 kg/mu) proposed in this paper achieved better results than other methods; (2) the proposed YOLO-A model achieves superior detection performance for apple fruits and flowers in complex orchard environments compared to existing methods; (3) in this paper, through the method of proportional correction, the prediction results of APYieldNet for small-scale orchard are closer to the real yield. Full article
(This article belongs to the Section Plant Modeling)
25 pages, 7611 KB  
Article
BFRI-YOLO: Harmonizing Multi-Scale Features for Precise Small Object Detection in Aerial Imagery
by Xue Zeng, Shenghong Fang and Qi Sun
Electronics 2026, 15(2), 297; https://doi.org/10.3390/electronics15020297 - 9 Jan 2026
Viewed by 100
Abstract
Identifying minute targets within UAV-acquired imagery continues to pose substantial technical hurdles, primarily due to blurred boundaries, scarce textural details, and drastic scale variations amidst complex backgrounds. In response to these limitations, this paper proposes BFRI-YOLO, an enhanced architecture based on the YOLOv11n [...] Read more.
Identifying minute targets within UAV-acquired imagery continues to pose substantial technical hurdles, primarily due to blurred boundaries, scarce textural details, and drastic scale variations amidst complex backgrounds. In response to these limitations, this paper proposes BFRI-YOLO, an enhanced architecture based on the YOLOv11n baseline. The framework is built upon four synergistic components designed to achieve high-precision localization and robust feature representation. First, we construct a Balanced Adaptive Feature Pyramid Network (BAFPN) that utilizes a resolution-aware attention mechanism to promote bidirectional interaction between deep and shallow features. This is complemented by incorporating the Receptive Field Convolutional Block Attention Module (RFCBAM) to refine the backbone network. By constructing the C3K2_RFCBAM block, we effectively enhance the feature representation of small objects across diverse receptive fields. To further refine the prediction phase, we develop a Four-Shared Detail Enhancement Detection Head (FSDED) to improve both efficiency and stability. Finally, regarding the loss function, we formulate the Inner-WIoU strategy by integrating auxiliary bounding boxes with dynamic focusing mechanisms to ensure precise target localization. The experimental results on the VisDrone2019 benchmark demonstrate that our method secures mAP@0.5 and mAP@0.5:0.95 scores of 42.1% and 25.6%, respectively, outperforming the baseline by 8.8% and 6.2%. Extensive tests on the TinyPerson and DOTA1.0 datasets further validate the robust generalization capability of our model, confirming that BFRI-Yolo strikes a superior balance between detection accuracy and computational overhead in aerial scenes. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

31 pages, 17740 KB  
Article
HR-UMamba++: A High-Resolution Multi-Directional Mamba Framework for Coronary Artery Segmentation in X-Ray Coronary Angiography
by Xiuhan Zhang, Peng Lu, Zongsheng Zheng and Wenhui Li
Fractal Fract. 2026, 10(1), 43; https://doi.org/10.3390/fractalfract10010043 - 9 Jan 2026
Viewed by 196
Abstract
Coronary artery disease (CAD) remains a leading cause of mortality worldwide, and accurate coronary artery segmentation in X-ray coronary angiography (XCA) is challenged by low contrast, structural ambiguity, and anisotropic vessel trajectories, which hinder quantitative coronary angiography. We propose HR-UMamba++, a U-Mamba-based framework [...] Read more.
Coronary artery disease (CAD) remains a leading cause of mortality worldwide, and accurate coronary artery segmentation in X-ray coronary angiography (XCA) is challenged by low contrast, structural ambiguity, and anisotropic vessel trajectories, which hinder quantitative coronary angiography. We propose HR-UMamba++, a U-Mamba-based framework centered on a rotation-aligned multi-directional state-space scan for modeling long-range vessel continuity across multiple orientations. To preserve thin distal branches, the framework is equipped with (i) a persistent high-resolution bypass that injects undownsampled structural details and (ii) a UNet++-style dense decoder topology for cross-scale topological fusion. On an in-house dataset of 739 XCA images from 374 patients, HR-UMamba++ is evaluated using eight segmentation metrics, fractal-geometry descriptors, and multi-view expert scoring. Compared with U-Net, Attention U-Net, HRNet, U-Mamba, DeepLabv3+, and YOLO11-seg, HR-UMamba++ achieves the best performance (Dice 0.8706, IoU 0.7794, HD95 16.99), yielding a relative Dice improvement of 6.0% over U-Mamba and reducing the deviation in fractal dimension by up to 57% relative to U-Net. Expert evaluation across eight angiographic views yields a mean score of 4.24 ± 0.49/5 with high inter-rater agreement. These results indicate that HR-UMamba++ produces anatomically faithful coronary trees and clinically useful segmentations that can serve as robust structural priors for downstream quantitative coronary analysis. Full article
Show Figures

Figure 1

Back to TopTop