Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,510)

Search Parameters:
Keywords = X52 steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7312 KiB  
Article
Influence of Strain Rate on the Strain-Induced Martensite Transformation in Austenitic Steel AISI 321 and Barkhausen Noise Emission
by Mária Čilliková, Nikolaj Ganev, Ján Moravec, Anna Mičietová, Miroslav Neslušan and Peter Minárik
Materials 2025, 18(15), 3714; https://doi.org/10.3390/ma18153714 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the evolution of strain-induced martensite (SIM) and its effect on magnetic Barkhausen noise (MBN) in AISI 321 austenitic stainless steel subjected to uniaxial tensile testing. Using X-ray diffraction and the Barkhausen noise technique, the formation and distribution of SIM were [...] Read more.
This study investigates the evolution of strain-induced martensite (SIM) and its effect on magnetic Barkhausen noise (MBN) in AISI 321 austenitic stainless steel subjected to uniaxial tensile testing. Using X-ray diffraction and the Barkhausen noise technique, the formation and distribution of SIM were analysed as functions of plastic strain and strain rate. The results show that MBN is primarily governed by plastic deformation and strain rate rather than residual stress. The martensite fraction increases from 10% at low strains to 42.5% at high strains; however, accelerated strain rates significantly reduce martensite formation to approximately 25%. The increase in martensite density enhances the magnetic exchange interactions among neighbouring islands, resulting in stronger and more numerous MBN pulses. The anisotropy of MBN is also influenced by the initial crystallographic texture of the austenite. These findings highlight the strong correlation between MBN and SIM evolution, establishing MBN as a sensitive, non-destructive tool for assessing martensitic transformation and optimising deformation parameters in austenitic steels. Full article
Show Figures

Figure 1

26 pages, 11995 KiB  
Article
Research on Hydrogen/Deuterium Permeation Behavior and Influencing Factors of X52MS Pipeline Steel
by Ning Liu, Ke Jin, Junqiang Ren, Jie Sheng, Xuefeng Lu and Xingchang Tang
Metals 2025, 15(8), 881; https://doi.org/10.3390/met15080881 - 7 Aug 2025
Abstract
The hydrogen/deuterium permeation behavior of X52MS pipeline steel with three thicknesses was investigated using the gas/liquid phase permeation method by changing the current density and regulating the surface roughness. The permeation curves under different conditions were obtained, the hydrogen/deuterium diffusion coefficients and related [...] Read more.
The hydrogen/deuterium permeation behavior of X52MS pipeline steel with three thicknesses was investigated using the gas/liquid phase permeation method by changing the current density and regulating the surface roughness. The permeation curves under different conditions were obtained, the hydrogen/deuterium diffusion coefficients and related important parameters were calculated, and the surface morphology of the hydrogen-filled side was observed using scanning electron microscopy. It is found that the hydrogen diffusion coefficient and diffusion flux increase gradually with an increase in the hydrogen charging current density, while the hydrogen infiltration lag time gradually decreases. With the increase in surface roughness of the specimen, the corrosion degree of the surface after hydrogen penetration decreases, the hydrogen diffusion coefficient gradually decreases, and the penetration time, lag time, and hydrogen concentration on the cathode side gradually increase. Full article
Show Figures

Figure 1

11 pages, 2177 KiB  
Article
Early Signs of Tool Damage in Dry and Wet Turning of Chromium–Nickel Alloy Steel
by Tanuj Namboodri, Csaba Felhő and István Sztankovics
J 2025, 8(3), 28; https://doi.org/10.3390/j8030028 - 6 Aug 2025
Abstract
Machining chromium–nickel alloy steel is challenging due to its material properties, such as high strength and toughness. These properties often lead to tool damage and degradation of tool life, which overall impacts the production time, cost, and quality of the product. Therefore, it [...] Read more.
Machining chromium–nickel alloy steel is challenging due to its material properties, such as high strength and toughness. These properties often lead to tool damage and degradation of tool life, which overall impacts the production time, cost, and quality of the product. Therefore, it is essential to investigate early signs of tool damage to determine the effective machining conditions for chromium–nickel alloy steel, thereby increasing tool life and improving product quality. In this study, the early signs of tool wear were observed in a physical vapor deposition (PVD) carbide-coated tool (Seco Tools, Björnbacksvägen, Sweden) during the machining of X5CrNi18-10 steel under both dry and wet conditions. A finish turning operation was performed on the outer diameter (OD) of the workpiece with a 0.4 mm nose radius tool. At the early stage, the tool was examined from the functional side (f–side) and the passive side (p–side). The results indicate that dry machining leads to increased coating removal, more heat generation, and visible damage, such as pits and surface scratches. By comparison, wet machining helps reduce heat and wear, thereby improving tool life and machining quality. These findings suggest that a coolant must be used when machining chromium–nickel alloy steel with a PVD carbide-coated tool. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

20 pages, 15301 KiB  
Article
Application of CH241 Stainless Steel with High Concentration of Mn and Mo: Microstructure, Mechanical Properties, and Tensile Fatigue Life
by Ping-Yu Hsieh, Bo-Ding Wu and Fei-Yi Hung
Metals 2025, 15(8), 863; https://doi.org/10.3390/met15080863 - 1 Aug 2025
Viewed by 203
Abstract
A novel stainless steel with high Mn and Mo content (much higher than traditional stainless steel), designated CH241SS, was developed as a potential replacement for Cr-Mo-V alloy steel in the cold forging applications of precision industry. Through carbon reduction in an environmentally friendly [...] Read more.
A novel stainless steel with high Mn and Mo content (much higher than traditional stainless steel), designated CH241SS, was developed as a potential replacement for Cr-Mo-V alloy steel in the cold forging applications of precision industry. Through carbon reduction in an environmentally friendly manner and a two-stage heat treatment process, the hardness of as-cast CH241 was tailored from HRC 37 to HRC 29, thereby meeting the industrial specifications of cold-forged steel (≤HRC 30). X-ray diffraction analysis of the as-cast microstructure revealed the presence of a small amount of ferrite, martensite, austenite, and alloy carbides. After heat treatment, CH241 exhibited a dual-phase microstructure consisting of ferrite and martensite with dispersed Cr(Ni-Mo) alloy carbides. The CH241 alloy demonstrated excellent high-temperature stability. No noticeable softening occurred after 72 h for the second-stage heat treatment. Based on the mechanical and room-temperature tensile fatigue properties of CH241-F (forging material) and CH241-ST (soft-tough heat treatment), it was demonstrated that the CH241 stainless steel was superior to the traditional stainless steel 4xx in terms of strength and fatigue life. Therefore, CH241 stainless steel can be introduced into cold forging and can be used in precision fatigue application. The relevant data include composition design and heat treatment properties. This study is an important milestone in assisting the upgrading of the vehicle and aerospace industries. Full article
(This article belongs to the Special Issue Advanced High Strength Steels: Properties and Applications)
Show Figures

Graphical abstract

21 pages, 13539 KiB  
Article
Impact of Fiber Type on Chloride Ingress in Concrete: A MacroXRF Imaging Analysis
by Suânia Fabiele Moitinho da Silva, Wanderson Santos de Jesus, Thalles Murilo Santos de Almeida, Renato Quinto de Oliveira Novais, Laio Andrade Sacramento, Joaquim Teixeira de Assis, Marcelino José dos Anjos and José Renato de Castro Pessôa
Appl. Sci. 2025, 15(15), 8495; https://doi.org/10.3390/app15158495 - 31 Jul 2025
Viewed by 106
Abstract
Chloride ion penetration is one of the most aggressive threats to reinforced concrete, as it triggers the electrochemical corrosion of steel reinforcement, compromising structural integrity and durability. Chloride ingress occurs through the porous structure of concrete, making permeability control crucial for enhancing structural [...] Read more.
Chloride ion penetration is one of the most aggressive threats to reinforced concrete, as it triggers the electrochemical corrosion of steel reinforcement, compromising structural integrity and durability. Chloride ingress occurs through the porous structure of concrete, making permeability control crucial for enhancing structural longevity. Fiber-reinforced concrete (FRC) is widely used to improve durability; however, the effects of different fiber types on chloride resistance remain unclear. This study examines the influence of glass and polypropylene fibers on concrete’s microstructure and chloride penetration resistance. Cylindrical specimens were prepared, including a reference mix without fibers and mixes with 0.25% and 0.50% fiber content by volume. Both fiber types were tested for chloride resistance. The accelerated non-steady-state migration method was employed to determine the resistance coefficients to chloride ion penetration, while X-ray macrofluorescence (MacroXRF) mapped the chlorine infiltration depth in the samples. Compressive strength decreased in all fiber-reinforced samples, with 0.50% glass fiber leading to a 56% reduction in strength. Nevertheless, the XRF results showed that a 0.25% fiber content significantly reduced chloride penetration, with polypropylene fibers outperforming glass fibers. These findings highlight the critical role of fiber type and volume in improving concrete durability, offering insights for designing long-lasting FRC structures in chloride-rich environments. Full article
Show Figures

Figure 1

19 pages, 2616 KiB  
Article
Structural Analysis of Joints Made of Titanium Alloy TI-6AL-4V and Stainless Steel AISI 321 with Developed Conical Contact Surfaces Obtained by Diffusion Welding
by Olena Karpovych, Ivan Karpovych, Oleksii Fedosov, Denys Zhumar, Yevhen Karakash, Miroslav Rimar, Jan Kizek and Marcel Fedak
Materials 2025, 18(15), 3596; https://doi.org/10.3390/ma18153596 - 31 Jul 2025
Viewed by 208
Abstract
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate [...] Read more.
The object of this study is welded joints of AISI 321 and Ti-6Al-4V, obtained by diffusion welding on developed conical surfaces. The problem of creating bimetallic joints of AISI 321 and Ti-6Al-4V with developed conical contact surfaces, using diffusion welding through an intermediate Electrolytic Tough Pitch Copper (Cu-ETP) copper layer, was solved. The joints were studied using micro-X-ray spectral analysis, microstructural analysis, and mechanical tests. High mutual diffusion of copper and titanium, along with increased concentrations of Cr and V in copper, was detected. The shear strength of the obtained welded joints is 250 MPa and 235 MPa at 30 min and 15 min, respectively, which is higher than the copper layer’s strength (180 MPa). The obtained results are explained by the dislocation diffusion mechanism in the volume of grains and beyond, due to thermal deformations during welding. Under operating conditions of internal pressure and cryogenic temperatures, the strength of the connection is ensured by the entire two-layer structure, and tightness is ensured by a vacuum-tight diffusion connection. The obtained strength of the connection (250 MPa) is sufficient under the specified operating conditions. Analysis of existing solutions in the literature review indicates that industrial application of technology for manufacturing bimetallic adapters from AISI 321 stainless steel and Ti-6Al-4V titanium alloy is limited to butt joints with small geometric dimensions. Studies of the transition zone structure and diffusion processes in bimetallic joints with developed conical contact surfaces enabled determination of factors affecting joint structure and diffusion coefficients. The obtained bimetallic adapters, made of Ti-6Al-4V titanium alloy and AISI 321 stainless steel, can be used to connect titanium high-pressure vessels with stainless steel pipelines. Full article
Show Figures

Figure 1

29 pages, 14647 KiB  
Article
Precipitation Processes in Sanicro 25 Steel at 700–900 °C: Experimental Study and Digital Twin Simulation
by Grzegorz Cempura and Adam Kruk
Materials 2025, 18(15), 3594; https://doi.org/10.3390/ma18153594 - 31 Jul 2025
Viewed by 278
Abstract
Sanicro 25 (X7NiCrWCuCoNb25-23-3-3-2) steel is specifically designed for use in superheater components within the latest generation of conventional power plants. These power plants operate under conditions often referred to as super-ultra-supercritical, with steam parameters that can reach up to 30 MPa and temperatures [...] Read more.
Sanicro 25 (X7NiCrWCuCoNb25-23-3-3-2) steel is specifically designed for use in superheater components within the latest generation of conventional power plants. These power plants operate under conditions often referred to as super-ultra-supercritical, with steam parameters that can reach up to 30 MPa and temperatures of 653 °C for fresh steam and 672 °C for reheated steam. While last-generation supercritical power plants still rely on fossil fuels, they represent a significant step forward in more sustainable energy production. The most sophisticated facilities of this kind can achieve thermodynamic efficiencies exceeding 47%. This study aimed to conduct a detailed analysis of the initial precipitation processes occurring in Sanicro 25 steel within the temperature range of 700–900 °C. The temperature of 700 °C corresponds to the operational conditions of this material, particularly in secondary steam superheaters in thermal power plants that operate under ultra-supercritical parameters. Understanding precipitation processes is crucial for optimizing mechanical performance, particularly in terms of long-term strength and creep resistance. To accurately assess the microstructural changes that occur during the early stages of service, a digital twin approach was employed, which included CALPHAD simulations and experimental heat treatments. Experimental annealing tests were conducted in air within the temperature range of 700–900 °C. Precipitation behavior was simulated using the Thermo-Calc 2025a with Dictra software package. The results from Prisma simulations correlated well with the experimental data related to the kinetics of phase transformations; however, it was noted that the predicted sizes of the precipitates were generally smaller than those observed in experiments. Additionally, computational limitations were encountered during some simulations due to the complexity arising from the numerous alloying elements present in Sanicro 25 steel. The microstructural evolution was investigated using various methods, including light microscopy (LM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Full article
Show Figures

Figure 1

17 pages, 4598 KiB  
Article
Efficient Tetracycline Hydrochloride Degradation by Urchin-Like Structured MoS2@CoFe2O4 Derived from Steel Pickling Sludge via Peroxymonosulfate Activation
by Jin Qi, Kai Zhu, Ming Li, Yucan Liu, Pingzhou Duan and Lihua Huang
Molecules 2025, 30(15), 3194; https://doi.org/10.3390/molecules30153194 - 30 Jul 2025
Viewed by 179
Abstract
Steel pickling sludge serves as a valuable iron source for synthesizing Fe-based catalysts in heterogeneous advanced oxidation processes (AOPs). Here, MoS2@CoFe2O4 catalyst derived from steel pickling sludge was prepared via a facile solvothermal approach and utilized to activate [...] Read more.
Steel pickling sludge serves as a valuable iron source for synthesizing Fe-based catalysts in heterogeneous advanced oxidation processes (AOPs). Here, MoS2@CoFe2O4 catalyst derived from steel pickling sludge was prepared via a facile solvothermal approach and utilized to activate peroxymonosulfate (PMS) for tetracycline hydrochloride (TCH) degradation. Comprehensive characterization using scanning electron microscopy (SEM)-energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) confirmed the supported microstructure, composition, and crystalline structure of the catalyst. Key operational parameters—including catalyst dosage, PMS concentration, and initial solution pH—were systematically optimized, achieving 81% degradation efficiency within 30 min. Quenching experiments and electron paramagnetic resonance (EPR) analysis revealed SO4∙− as the primary oxidative species, while the catalyst maintained high stability and reusability across cycles. TCH degradation primarily occurs through hydroxylation, decarbonylation, ring-opening, and oxidation reactions. This study presents a cost-effective strategy for transforming steel pickling sludge into a high-performance Fe-based catalyst, demonstrating its potential for practical AOP applications. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Graphical abstract

23 pages, 2300 KiB  
Article
Electrodegradation of Selected Water Contaminants: Efficacy and Transformation Products
by Borislav N. Malinović, Tatjana Botić, Tijana Đuričić, Aleksandra Borković, Katarina Čubej, Ivan Mitevski, Jasmin Račić and Helena Prosen
Appl. Sci. 2025, 15(15), 8434; https://doi.org/10.3390/app15158434 - 29 Jul 2025
Viewed by 250
Abstract
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important [...] Read more.
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important emission source. EO was performed in a batch reactor with a boron-doped diamond (BDD) anode and a stainless steel cathode. Different supporting electrolytes were tested: NaCl, H2SO4, and Na2SO4. Results were analysed from the point of their efficacy in terms of degradation rate, kinetics, energy consumption, and transformation products. The highest degradation rate, shortest half-life, and lowest energy consumption was observed in the electrolyte H2SO4, followed by Na2SO4 with only slightly less favourable characteristics. In both cases, degradation was probably due to the formation of persulphate or sulphate radicals. Transformation products (TPs) were studied mainly in the sulphate media and several oxidation products were identified with all three contaminants, while some evidence of progressive degradation, e.g., ring-opening products, was observed only with t-OPPE. The possible reasons for the lack of further degradation in BTA and DBP are too short of an EO treatment time and perhaps a lack of detection due to unsuitable analytical methods for more polar TPs. Results demonstrate that BDD-based EO is a robust method for the efficient removal of structurally diverse organic contaminants, making it a promising candidate for advanced water treatment technologies. Full article
Show Figures

Figure 1

21 pages, 8317 KiB  
Article
Mechanical Properties and Ballistic Performance for Different Coatings on HARDOX 450 Steel for Defense Applications
by Cosmin Nicolescu, Tudor Viorel Tiganescu, Aurora Antoniac, Ovidiu Iorga, Brandusa Ghiban, Alexandru Pascu, Alexandru Streza and Iulian Antoniac
Crystals 2025, 15(8), 687; https://doi.org/10.3390/cryst15080687 - 29 Jul 2025
Viewed by 312
Abstract
The aim of the current study is to investigate the mechanical properties and ballistic performance of HARDOX 450 steel for defense applications in different conditions: uncoated, alumina-coated, and LINE X polyurea-coated. Tensile tests and Vickers microhardness measurements were conducted, along with fracture surface [...] Read more.
The aim of the current study is to investigate the mechanical properties and ballistic performance of HARDOX 450 steel for defense applications in different conditions: uncoated, alumina-coated, and LINE X polyurea-coated. Tensile tests and Vickers microhardness measurements were conducted, along with fracture surface analysis using stereomicroscopy, scanning electron microscopy, and computed tomography. Experimental results showed that uncoated HARDOX 450 steel exhibited the highest strength and hardness, with ductile fracture features. Polyurea-coated HARDOX 450 steel samples retained good mechanical properties and demonstrated effective ballistic protection, including the containment of fragments. In contrast, alumina-coated HARDOX 450 steel samples exhibited reduced strength and ballistic resistance, attributed to the microstructural changes in HARDOX 450 steel caused by the high-temperature deposition process of alumina. Numerical simulations performed with the 5.56 × 45 mm bullet used in the simulation, along with its ballistic impact interaction with the Hardox 450 target model, aligned well with experimental ballistic impact results for all the samples. Overall, LINE X polyurea coating on HARDOX 450 steel proved to be the more suitable coating for applications requiring a balance of mechanical strength and ballistic impact resistance. Full article
Show Figures

Figure 1

15 pages, 921 KiB  
Article
Structural, Thermophysical, and Magnetic Properties of the γ-Fe4N System: Density Functional Theory and Experimental Study
by Guillermo A. Muñoz Medina, Azucena M. Mudarra Navarro, Crispulo E. Deluque Toro and Arles V. Gil Rebaza
Processes 2025, 13(8), 2402; https://doi.org/10.3390/pr13082402 - 28 Jul 2025
Viewed by 285
Abstract
The γ-Fe4N system has a high technological relevance due to its multiple applications in the field of surface treatment against wear and corrosion of iron in steel parts, as well as in the manufacturing of high-density magnetic recording devices, [...] Read more.
The γ-Fe4N system has a high technological relevance due to its multiple applications in the field of surface treatment against wear and corrosion of iron in steel parts, as well as in the manufacturing of high-density magnetic recording devices, and so on. In the present work, we present a wide research of the structural, elastic, magnetic, vibrational, and thermophysical properties by means of the phonon analysis. For these purposes, we have compared theoretical and experimental results. The theoretical data were obtained by employing ab initio electronic structure calculations in the framework of density functional theory (DFT), and different experimental measurements, such as X-ray diffraction, magnetization measurements, and calorimetric techniques, were used to characterize the γ-Fe4N system. The resulting comparison showed an excellent agreement between the theoretical and experimental data reported. Full article
Show Figures

Figure 1

19 pages, 7447 KiB  
Article
Research on the Size and Distribution of TiN Inclusions in High-Titanium Steel Cast Slabs
by Min Zhang, Xiangyu Li, Zhijie Guo and Yanhui Sun
Materials 2025, 18(15), 3527; https://doi.org/10.3390/ma18153527 - 28 Jul 2025
Viewed by 248
Abstract
High-titanium steel contains an elevated titanium content, which promotes the formation of abundant non-metallic inclusions in molten steel at high temperatures, including titanium oxides, sulfides, and nitrides. These inclusions adversely affect continuous casting operations and generate substantial internal/surface defects in cast slabs, ultimately [...] Read more.
High-titanium steel contains an elevated titanium content, which promotes the formation of abundant non-metallic inclusions in molten steel at high temperatures, including titanium oxides, sulfides, and nitrides. These inclusions adversely affect continuous casting operations and generate substantial internal/surface defects in cast slabs, ultimately compromising product performance and service reliability. Therefore, stringent control over the size, distribution, and population density of inclusions is imperative during the smelting of high-titanium steel to minimize their detrimental effects. In this paper, samples of high titanium steel (0.4% Ti, 0.004% N) casting billets were analyzed by industrial test sampling and full section comparative analysis of the samples at the center and quarter position. Using the Particle X inclusions, as well as automatic scanning and analyzing equipment, the number, size, location distribution, type and morphology of inclusions in different positions were systematically and comprehensively investigated. The results revealed that the primary inclusions in the steel consisted of TiN, TiS, TiC and their composite forms. TiN inclusions exhibited a size range of 1–5 µm on the slab surface, while larger particles of 2–10 μm were predominantly observed in the interior regions. Large-sized TiN inclusions (5–10 μm) are particularly detrimental, and this problematic type of inclusion predominantly concentrates in the interior regions of the steel slab. A gradual decrease in TiN inclusion number density was identified from the surface toward the core of the slab. Thermodynamic and kinetic calculations incorporating solute segregation effects demonstrated that TiN precipitates primarily in the liquid phase. The computational results showed excellent agreement with experimental data regarding the relationship between TiN size and solidification rate under different cooling conditions, confirming that increased cooling rates lead to reduced TiN particle sizes. Both enhanced cooling rates and reduced titanium content were found to effectively delay TiN precipitation, thereby suppressing the formation of large-sized TiN inclusions in high-titanium steels. Full article
(This article belongs to the Special Issue Advanced Stainless Steel—from Making, Shaping, Treating to Products)
Show Figures

Figure 1

17 pages, 3329 KiB  
Article
Mechanistic Insights into Corrosion and Protective Coating Performance of X80 Pipeline Steel in Xinjiang’s Cyclic Freeze–Thaw Saline Soil Environments
by Gang Cheng, Yuqi Wang, Yiming Dai, Shiyi Zhang, Bin Wei, Chang Xiao and Xian Zhang
Coatings 2025, 15(8), 881; https://doi.org/10.3390/coatings15080881 - 28 Jul 2025
Viewed by 464
Abstract
This study systematically investigated the corrosion evolution and protective mechanisms of X80 pipeline steel in Xinjiang’s saline soil environments under freeze–thaw cycling conditions. Combining regional soil characterization with laboratory-constructed corrosion systems, we employed electrochemical impedance spectroscopy, potentiodynamic polarization, and surface analytical techniques to [...] Read more.
This study systematically investigated the corrosion evolution and protective mechanisms of X80 pipeline steel in Xinjiang’s saline soil environments under freeze–thaw cycling conditions. Combining regional soil characterization with laboratory-constructed corrosion systems, we employed electrochemical impedance spectroscopy, potentiodynamic polarization, and surface analytical techniques to quantify temporal–spatial corrosion behavior across 30 freeze–thaw cycles. Experimental results revealed a distinctive corrosion resistance pattern: initial improvement (cycles 1–10) attributed to protective oxide layer formation, followed by accelerated degradation (cycles 10–30) due to microcrack propagation and chloride accumulation. Synchrotron X-ray diffraction analyses identified sulfate–chloride ion synergism as the primary driver of localized corrosion disparities in heterogeneous soil matrices. A comparative evaluation of asphalt-coated specimens demonstrated a 62%–89% corrosion rate reduction, with effectiveness directly correlating with coating integrity and thickness (200–500 μm range). Molecular dynamics simulations using Materials Studio revealed atomic-scale ion transport dynamics at coating–substrate interfaces, showing preferential Cl permeation through coating defects. These multiscale findings establish quantitative relationships between environmental stressors, coating parameters, and corrosion kinetics, providing a mechanistic framework for optimizing protective coatings in cold-region pipeline applications. Full article
Show Figures

Figure 1

15 pages, 5275 KiB  
Article
Effect of Copper in Gas-Shielded Solid Wire on Microstructural Evolution and Cryogenic Toughness of X80 Pipeline Steel Welds
by Leng Peng, Rui Hong, Qi-Lin Ma, Neng-Sheng Liu, Shu-Biao Yin and Shu-Jun Jia
Materials 2025, 18(15), 3519; https://doi.org/10.3390/ma18153519 - 27 Jul 2025
Viewed by 316
Abstract
This study systematically evaluates the influence of copper (Cu) addition in gas-shielded solid wires on the microstructure and cryogenic toughness of X80 pipeline steel welds. Welds were fabricated using solid wires with varying Cu contents (0.13–0.34 wt.%) under identical gas metal arc welding [...] Read more.
This study systematically evaluates the influence of copper (Cu) addition in gas-shielded solid wires on the microstructure and cryogenic toughness of X80 pipeline steel welds. Welds were fabricated using solid wires with varying Cu contents (0.13–0.34 wt.%) under identical gas metal arc welding (GMAW) parameters. The mechanical capacities were assessed via tensile testing, Charpy V-notch impact tests at −20 °C and Vickers hardness measurements. Microstructural evolution was characterized through optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Key findings reveal that increasing the Cu content from 0.13 wt.% to 0.34 wt.% reduces the volume percentage of acicular ferrite (AF) in the weld metal by approximately 20%, accompanied by a significant decline in cryogenic toughness, with the average impact energy decreasing from 221.08 J to 151.59 J. Mechanistic analysis demonstrates that the trace increase in the Cu element. The phase transition temperature and inclusions is not significant but can refine the prior austenite grain size of the weld, so that the total surface area of the grain boundary increases, and the surface area of the inclusions within the grain is relatively small, resulting in the nucleation of acicular ferrite within the grain being weak. This microstructural transition lowers the critical crack size and diminishes the density for high-angle grain boundaries (HAGBs > 45°), which weakens crack deflection capability. Consequently, the crack propagation angle decreases from 54.73° to 45°, substantially reducing the energy required for stable crack growth and deteriorating low-temperature toughness. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

26 pages, 10667 KiB  
Article
Influence of Nitrogen and Hydrogen Addition on Composition, Morphology, Adhesion, and Wear Resistance of Amorphous Carbon Coatings Produced by RFCVD Method on Surface-Hardened Ultra-Fine Grained Bainitic 30HGSNA Steel
by Karol Wunsch, Tomasz Borowski, Emilia Skołek, Agata Roguska, Rafał Chodun, Michał Urbańczyk, Krzysztof Kulikowski, Maciej Spychalski, Andrzej Wieczorek and Jerzy Robert Sobiecki
Coatings 2025, 15(8), 877; https://doi.org/10.3390/coatings15080877 - 26 Jul 2025
Viewed by 332
Abstract
Ultra-fine-grained bainitic (UFGB) steels offer excellent mechanical properties, which can be further improved by applying diamond-like carbon (DLC) coatings. However, poor adhesion between the coating and substrate remains a key limitation. Since the steel’s microstructure degrades at high temperatures, enhancing adhesion without heating [...] Read more.
Ultra-fine-grained bainitic (UFGB) steels offer excellent mechanical properties, which can be further improved by applying diamond-like carbon (DLC) coatings. However, poor adhesion between the coating and substrate remains a key limitation. Since the steel’s microstructure degrades at high temperatures, enhancing adhesion without heating the substrate is essential. This study investigates surface hardening combined with simultaneous nitrogen and hydrogen doping during the Radio Frequency Chemical Vapor Deposition (RFCVD) process to improve coating performance. Varying gas compositions were tested to assess their effects on coating properties. Nitrogen incorporation decreased hardness from 12 GPa to 9 GPa but improved adhesion, while hydrogen limited damage after coating failure. Optimizing the gas mixture led to enhanced adhesion and wear resistance. Raman and X-ray photoelectron spectroscopy (XPS) analyses confirmed that the optimized coatings had the highest sp3 bond content and elevated nitrogen levels. While both hardness and adhesion contributed to wear resistance, no direct link to coating thickness was found. Overall, co-doping with nitrogen and hydrogen is an effective approach to improve adhesion and wear resistance without requiring high processing temperatures or complex equipment. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

Back to TopTop