Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = Wolbachia supergroups

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4181 KiB  
Article
“Hostbusters”: The Bacterial Endosymbiont Wolbachia of the Parasitoid Wasp Habrobracon hebetor Improves Its Ability to Parasitize Lepidopteran Hosts
by Alsu M. Utkuzova, Ekaterina A. Chertkova, Natalia A. Kryukova, Julia M. Malysh and Yuri S. Tokarev
Insects 2025, 16(5), 464; https://doi.org/10.3390/insects16050464 - 28 Apr 2025
Viewed by 652
Abstract
Habrobracon hebetor is a globally acknowledged larval ectoparasitoid that is widely used to control lepidopteran pests. Wolbachia is a natural endosymbiont that regulates various aspects of the insect host biology. The ability of H. hebetor to paralyze and develop on lepidopteran larvae from [...] Read more.
Habrobracon hebetor is a globally acknowledged larval ectoparasitoid that is widely used to control lepidopteran pests. Wolbachia is a natural endosymbiont that regulates various aspects of the insect host biology. The ability of H. hebetor to paralyze and develop on lepidopteran larvae from five families was tested under laboratory conditions. Two lines of the wasp were used, “W+” containing a naturally occurring Wolbachia from the supergroup B, and “W−”, with the endosymbiont eradicated by antibiotic treatment, followed by propagation of 20 subsequent generations. The proportions of larvae in which host paralysis, as well as parasitoid oviposition, larval, pupal, and adult development were observed, were usually higher in W+ compared to W−. In Loxostege sticticalis, differences in these indices were not statistically significant. In Galleria mellonella, Mamestra brassicae, and Ostrinia nubilalis, some of the parasitism indices were significantly higher in W+ than in W−. In Bombyx mori and Plutella xylostella, H. hebetor could not complete its life cycle, but parasitism levels at the initial steps (from paralysis symptoms to the presence of larvae/pupae of the parasitoid) were 2–5 times lower in W− compared to W+ (p < 0.01). It can be suggested that the presence of Wolbachia is advantageous for H. hebetor, as it increases the success of parasitism in a broad range of lepidopteran hosts. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

12 pages, 1061 KiB  
Article
Wolbachia Screening in Aedes aegypti and Culex pipiens Mosquitoes from Madeira Island, Portugal
by Rita Fernandes, Tiago Melo, Líbia Zé-Zé, Inês C. Freitas, Manuel Silva, Eva Dias, Nuno C. Santos, Bruna R. Gouveia, Gonçalo Seixas and Hugo Costa Osório
Insects 2025, 16(4), 418; https://doi.org/10.3390/insects16040418 - 15 Apr 2025
Viewed by 1478
Abstract
Mosquito-borne diseases such as dengue and West Nile virus pose serious public health risks. On Madeira Island, the presence of the mosquito species Aedes aegypti (Linnaeus, 1762) and Culex pipiens (Linnaeus, 1758) raises concerns about local transmission. In this study, we tested 100 [...] Read more.
Mosquito-borne diseases such as dengue and West Nile virus pose serious public health risks. On Madeira Island, the presence of the mosquito species Aedes aegypti (Linnaeus, 1762) and Culex pipiens (Linnaeus, 1758) raises concerns about local transmission. In this study, we tested 100 Ae. aegypti and 40 Cx. pipiens mosquitoes collected exclusively in the municipality of Funchal, Madeira Island, to assess the presence and diversity of Wolbachia, a naturally occurring bacterium known to reduce mosquitos’ ability to transmit viruses. Molecular identification confirmed that all Cx. pipiens specimens belonged to the molestus biotype, with three individuals identified as hybrids between molestus and pipiens biotypes. This is the first evidence of such hybrids in Madeira. Wolbachia was not detected in any of the Ae. aegypti samples. In contrast, all Cx. pipiens mosquitoes were positive, showing a 100% prevalence. Genetic characterization placed these infections within the wPip clade, supergroup B, sequence type 9. These findings provide key baseline data to inform future mosquito control strategies on the island. As Ae. aegypti showed no natural Wolbachia infection, introducing Wolbachia-infected mosquitoes may be necessary to implement such biocontrol approaches in Madeira. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

12 pages, 3090 KiB  
Article
Resistance of Wolbachia to Trimethoprim: Insights into Genes Encoding Dihydrofolate Reductase, Thymidylate Synthase and Serine Hydroxymethyltransferase in the Rickettsiales
by Ann M. Fallon
Insects 2025, 16(1), 18; https://doi.org/10.3390/insects16010018 - 28 Dec 2024
Viewed by 827
Abstract
Bacterial and eukaryotic dihydrofolate reductase (DHFR) enzymes are essential for DNA synthesis and are differentially sensitive to the competitive inhibitors trimethoprim and methotrexate. Unexpectedly, trimethoprim did not reduce Wolbachia abundance, and the wStri DHFR homolog contained amino acid substitutions associated with trimethoprim [...] Read more.
Bacterial and eukaryotic dihydrofolate reductase (DHFR) enzymes are essential for DNA synthesis and are differentially sensitive to the competitive inhibitors trimethoprim and methotrexate. Unexpectedly, trimethoprim did not reduce Wolbachia abundance, and the wStri DHFR homolog contained amino acid substitutions associated with trimethoprim resistance in E. coli. A phylogenetic tree showed good association of DHFR protein sequences with supergroup A and B assignments. In contrast, DHFR is not encoded by wFol (supergroup E) and wBm (supergroup D) or by genomes of the closely related genera Anaplasma, Ehrlichia, Neorickettsia, and possibly Orientia. In E. coli and humans, DHFR participates in a coupled reactions with the conventional thymidylate synthase (TS) encoded by thyA to produce the dTMP required for DNA synthesis. In contrast, Wolbachia and other Rickettsiales express the unconventional FAD-TS enzyme encoded by thyX, even when folA is present. The exclusive use of FAD-TS suggests that Wolbachia DHFR provides a supplementary rather than an essential function for de novo synthesis of dTMP, possibly reflecting the relative availability of, and competing demands for, FAD and NAD coenzymes in the diverse intracellular environments of its hosts. Whether encoded by thyA or thyX, TS produces dTMP by transferring a methyl group from methylene tetrahydrofolate to dUMP. In the Rickettsiales, serine hydroxymethyltransferase (SMHT), encoded by a conserved glyA gene, regenerates methylene tetrahydrofolate. Unlike thyA, thyX lacks a human counterpart and thus provides a potential target for the treatment of infections caused by pathogenic members of the Rickettsiales. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Graphical abstract

18 pages, 4273 KiB  
Article
Sequencing and Analysis of Wolbachia Strains from A and B Supergroups Detected in Sylvatic Mosquitoes from Brazil
by Luísa Maria Inácio da Silva, José Irnaldo da Silva, Alexandre Freitas da Silva, Filipe Zimmer Dezordi, Lais Ceschini Machado, Si Qin, Hang Fan, Yigang Tong, Túlio de Lima Campos, Marcelo Henrique Santos Paiva and Gabriel Luz Wallau
Microorganisms 2024, 12(11), 2206; https://doi.org/10.3390/microorganisms12112206 - 31 Oct 2024
Viewed by 2088
Abstract
Wolbachia are endosymbiotic bacteria that infect a wide range of arthropods and filarial nematodes, often manipulating host reproduction. The efficacy of Wolbachia-based interventions for dengue and chikungunya control has been validated through numerous field studies in recent years. This study aimed to [...] Read more.
Wolbachia are endosymbiotic bacteria that infect a wide range of arthropods and filarial nematodes, often manipulating host reproduction. The efficacy of Wolbachia-based interventions for dengue and chikungunya control has been validated through numerous field studies in recent years. This study aimed to investigate the diversity and prevalence of Wolbachia infections in sylvatic mosquitoes from two locations in Recife, Brazil. Multiple mosquito species were screened for Wolbachia using both target marker gene amplification coupled with Sanger sequencing and whole-genome sequencing (WGS) approaches. Phylogenetic analyses were conducted to classify Wolbachia strains into supergroups and assess their evolutionary relationships. Results revealed the presence of Wolbachia in eleven mosquito species examined, with different infection rates. Both supergroups A and B of Wolbachia strains were identified, with Aedes albopictus showing co-infection by both supergroups through the WGS approach. We also detected indirect evidence of Wolbachia horizontal transmission among mosquitoes and other distant host orders. This study provides valuable insights into the distribution and diversity of Wolbachia in sylvatic mosquitoes from Brazil and adds new important data about Wolbachia detection through target marker gene amplicon coupled with Sanger sequencing and WGS methods, highlighting its complementarity to ascertain the presence of Wolbachia in mosquito samples. Full article
Show Figures

Figure 1

16 pages, 3717 KiB  
Article
The Diversity of Wolbachia and Other Bacterial Symbionts in Spodoptera frugiperda
by Yuan Liu, Lina Zhang, Xiangyun Cai, Alexandre Rutikanga, Baoli Qiu and Youming Hou
Insects 2024, 15(4), 217; https://doi.org/10.3390/insects15040217 - 22 Mar 2024
Cited by 1 | Viewed by 2021
Abstract
Bacterial symbionts associated with insects can be crucial in insect nutrition, metabolism, immune responses, development, and reproduction. However, the bacterial symbionts of the fall armyworm Spodoptera frugiperda remain unclear. S. frugiperda is an invasive polyphagous pest that severely damages many crops, particularly maize [...] Read more.
Bacterial symbionts associated with insects can be crucial in insect nutrition, metabolism, immune responses, development, and reproduction. However, the bacterial symbionts of the fall armyworm Spodoptera frugiperda remain unclear. S. frugiperda is an invasive polyphagous pest that severely damages many crops, particularly maize and wheat. Here, we investigated the infection, composition, abundance, and diversity of bacterial symbionts, especially Wolbachia, in different tissues of S. frugiperda female adults. The infection prevalence frequencies of Wolbachia in five provinces of China, namely Pu’er, Yunnan; Nanning, Guangxi; Sanya, Hainan; Yunfu, Guangdong; and Nanping, Fujian, were assessed. The results indicated that Proteobacteria, Firmicutes, and Bacteroidetes were the three most dominant bacterial phyla in S. frugiperda adults. At the genus level, the abundant microbiota, which included Enterobacter and Enterococcus, varied in abundance between tissues of S. frugiperda. Wolbachia was found in the ovaries and salivary glands of S. frugiperda adults, and was present in 33.33% of the Pu’er, Yunnan, 23.33% of the Nanning, Guangxi, and 13.33% of the Sanya, Hainan populations, but Wolbachia was absent in the Yunfu, Guangdong and Nanping, Fujian populations. Further phylogenetic analyses revealed that all of the Wolbachia strains from the different S. frugiperda populations belonged to the supergroup B and were named the wFru strain. Since there were Wolbachia strains inducing cytoplasmic incompatibility in supergroup B, these findings may provide a foundation for developing potential biocontrol techniques against S. frugiperda. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

13 pages, 2384 KiB  
Article
The Molecular Detection, Characterization, and Temperature Dependence of Wolbachia Infections in Field Populations of Aedes albopictus (Diptera: Culicidae) Mosquitoes in Greece
by Michail Misailidis, Nikolaos Kotsiou, Aristotelis Moulistanos, Sandra Gewehr, Antonios A. Augustinos, Spiros Mourelatos, Spiros Papakostas and Elena Drosopoulou
Diversity 2024, 16(1), 43; https://doi.org/10.3390/d16010043 - 9 Jan 2024
Cited by 3 | Viewed by 2405
Abstract
We investigated the prevalence and genetic diversity of Wolbachia pipientis strains in Aedes albopictus populations in Greece. Using a combination of PCR and Sanger sequencing techniques, we genotyped Wolbachia strains in 105 mosquitoes collected across eight different administrative regions in 2021. We found [...] Read more.
We investigated the prevalence and genetic diversity of Wolbachia pipientis strains in Aedes albopictus populations in Greece. Using a combination of PCR and Sanger sequencing techniques, we genotyped Wolbachia strains in 105 mosquitoes collected across eight different administrative regions in 2021. We found a high prevalence of Wolbachia in both male (90%) and female (97%) mosquitoes. Among the infected samples, 84% had double infections with both wAlbA and wAlbB strains, while 16% had infections with only wAlbB. Our comparison of the Multi-Locus Sequence Typing (MLST) profile, employing gatB–coxA–hcpA–ftsZ–fbpA genotyping, revealed a single MLST profile for each wAlbA and wAlbB strain in Greek populations. The same MLST profiles were also reported in populations from China, Russia, and Argentina, suggesting low levels of global diversity in wAlbA and wAlbB strains. Furthermore, our results indicated a significant association between temperature and the prevalence of single infections (p = 6.498 × 10−7), with higher temperatures correlating with an increased likelihood of single infections. Although male bias showed a tendency towards single infections, the effect was marginally non-significant (p = 0.053). These results were confirmed using a bootstrap-with-replacement analysis approach. Overall, our findings offer novel insights into the distribution and species diversity of Wolbachia strains in Greek Ae. albopictus populations, emphasizing the importance of understanding the short-term plastic and adaptive responses of these organisms to environmental stressors and rapid climate change. Full article
Show Figures

Figure 1

22 pages, 24218 KiB  
Article
Phylogeography of Two Enigmatic Sulphur Butterflies, Colias mongola Alphéraky, 1897 and Colias tamerlana Staudinger, 1897 (Lepidoptera, Pieridae), with Relations to Wolbachia Infection
by Nazar A. Shapoval, Alexander V. Kir’yanov, Anatoly V. Krupitsky, Roman V. Yakovlev, Anna E. Romanovich, Jing Zhang, Qian Cong, Nick V. Grishin, Margarita G. Kovalenko and Galina N. Shapoval
Insects 2023, 14(12), 943; https://doi.org/10.3390/insects14120943 - 13 Dec 2023
Cited by 2 | Viewed by 2319
Abstract
The genus Colias Fabricius, 1807 includes numerous taxa and forms with uncertain status and taxonomic position. Among such taxa are Colias mongola Alphéraky, 1897 and Colias tamerlana Staudinger, 1897, interpreted in the literature either as conspecific forms, as subspecies of different but morphologically [...] Read more.
The genus Colias Fabricius, 1807 includes numerous taxa and forms with uncertain status and taxonomic position. Among such taxa are Colias mongola Alphéraky, 1897 and Colias tamerlana Staudinger, 1897, interpreted in the literature either as conspecific forms, as subspecies of different but morphologically somewhat similar Colias species or as distinct species-level taxa. Based on mitochondrial and nuclear DNA markers, we reconstructed a phylogeographic pattern of the taxa in question. We recover and include in our analysis DNA barcodes of the century-old type specimens, the lectotype of C. tamerlana deposited in the Natural History Museum (Museum für Naturkunde), Berlin, Germany (ZMHU) and the paralectotype of C. tamerlana and the lectotype of C. mongola deposited in the Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia (ZISP). Our analysis grouped all specimens within four (HP_I–HP_IV) deeply divergent but geographically poorly structured clades which did not support nonconspecifity of C. mongolaC. tamerlana. We also show that all studied females of the widely distributed haplogroup HP_II were infected with a single Wolbachia strain belonging to the supergroup B, while the males of this haplogroup, as well as all other investigated specimens of both sexes, were not infected. Our data highlight the relevance of large-scale sampling dataset analysis and the need for testing for Wolbachia infection to avoid erroneous phylogenetic reconstructions and species misidentification. Full article
(This article belongs to the Special Issue Comparative Cytogenetics and Molecular Systematics of Insects)
Show Figures

Figure 1

23 pages, 1230 KiB  
Article
The Transmission Patterns of the Endosymbiont Wolbachia within the Hawaiian Drosophilidae Adaptive Radiation
by Renée L. Corpuz, M. Renee Bellinger, Anne Veillet, Karl N. Magnacca and Donald K. Price
Genes 2023, 14(8), 1545; https://doi.org/10.3390/genes14081545 - 27 Jul 2023
Cited by 3 | Viewed by 2056
Abstract
The evolution of endosymbionts and their hosts can lead to highly dynamic interactions with varying fitness effects for both the endosymbiont and host species. Wolbachia, a ubiquitous endosymbiont of arthropods and nematodes, can have both beneficial and detrimental effects on host fitness. [...] Read more.
The evolution of endosymbionts and their hosts can lead to highly dynamic interactions with varying fitness effects for both the endosymbiont and host species. Wolbachia, a ubiquitous endosymbiont of arthropods and nematodes, can have both beneficial and detrimental effects on host fitness. We documented the occurrence and patterns of transmission of Wolbachia within the Hawaiian Drosophilidae and examined the potential contributions of Wolbachia to the rapid diversification of their hosts. Screens for Wolbachia infections across a minimum of 140 species of Hawaiian Drosophila and Scaptomyza revealed species-level infections of 20.0%, and across all 399 samples, a general infection rate of 10.3%. Among the 44 Wolbachia strains we identified using a modified Wolbachia multi-locus strain typing scheme, 30 (68.18%) belonged to supergroup B, five (11.36%) belonged to supergroup A, and nine (20.45%) had alleles with conflicting supergroup assignments. Co-phylogenetic reconciliation analysis indicated that Wolbachia strain diversity within their endemic Hawaiian Drosophilidae hosts can be explained by vertical (e.g., co-speciation) and horizontal (e.g., host switch) modes of transmission. Results from stochastic character trait mapping suggest that horizontal transmission is associated with the preferred oviposition substrate of the host, but not the host’s plant family or island of occurrence. For Hawaiian Drosophilid species of conservation concern, with 13 species listed as endangered and 1 listed as threatened, knowledge of Wolbachia strain types, infection status, and potential for superinfection could assist with conservation breeding programs designed to bolster population sizes, especially when wild populations are supplemented with laboratory-reared, translocated individuals. Future research aimed at improving the understanding of the mechanisms of Wolbachia transmission in nature, their impact on the host, and their role in host species formation may shed light on the influence of Wolbachia as an evolutionary driver, especially in Hawaiian ecosystems. Full article
(This article belongs to the Special Issue Genetics, Phylogeny, and Evolution of Insects)
Show Figures

Figure 1

16 pages, 2492 KiB  
Article
First Detection and Genetic Identification of Wolbachia Endosymbiont in Field-Caught Aedes aegypti (Diptera: Culicidae) Mosquitoes Collected from Southern Taiwan
by Li-Lian Chao and Chien-Ming Shih
Microorganisms 2023, 11(8), 1911; https://doi.org/10.3390/microorganisms11081911 - 27 Jul 2023
Cited by 5 | Viewed by 2360
Abstract
The prevalence and genetic character of Wolbachia endosymbionts in field-collected Aedes aegypti mosquitoes were examined for the first time in Taiwan. A total of 665 Ae. aegypti were screened for Wolbachia infection using a PCR assay targeting the Wolbachia surface protein (wsp [...] Read more.
The prevalence and genetic character of Wolbachia endosymbionts in field-collected Aedes aegypti mosquitoes were examined for the first time in Taiwan. A total of 665 Ae. aegypti were screened for Wolbachia infection using a PCR assay targeting the Wolbachia surface protein (wsp) gene. In general, the prevalence of Wolbachia infection was detected in 3.3% Ae. aegypti specimens (2.0% female and 5.2% male). Group-specific Wolbachia infection was detected with an infection rate of 1.8%, 0.8% and 0.8% in groups A, B and A&B, respectively. Genetic analysis demonstrated that all Wolbachia strains from Taiwan were phylogenetically affiliated with Wolbachia belonging to the supergroups A and B, with high sequence similarities of 99.4–100% and 99.2–100%, respectively. Phylogenetic relationships can be easily distinguished by maximum likelihood (ML) analysis and were congruent with the unweighted pair group with the arithmetic mean (UPGMA) method. The intra- and inter-group analysis of genetic distance (GD) values revealed a lower level within the Taiwan strains (GD < 0.006 for group A and GD < 0.008 for group B) and a higher level (GD > 0.498 for group A and GD > 0.286 for group B) as compared with other Wolbachia strains. Our results describe the first detection and molecular identification of Wolbachia endosymbiont in field-caught Ae. aegypti mosquitoes collected from Taiwan, and showed a low Wolbachia infection rate belonging to supergroups A and B in Ae. aegypti mosquitoes. Full article
(This article belongs to the Special Issue Microbiome and One Health)
Show Figures

Figure 1

15 pages, 2476 KiB  
Article
Virus-like Particles from Wolbachia-Infected Cells May Include a Gene Transfer Agent
by Ann M. Fallon and Elissa M. Carroll
Insects 2023, 14(6), 516; https://doi.org/10.3390/insects14060516 - 2 Jun 2023
Cited by 4 | Viewed by 2369
Abstract
Wolbachia are obligate intracellular bacteria that occur in insects and filarial worms. Strains that infect insects have genomes that encode mobile genetic elements, including diverse lambda-like prophages called Phage WO. Phage WO packages an approximately 65 kb viral genome that includes a unique [...] Read more.
Wolbachia are obligate intracellular bacteria that occur in insects and filarial worms. Strains that infect insects have genomes that encode mobile genetic elements, including diverse lambda-like prophages called Phage WO. Phage WO packages an approximately 65 kb viral genome that includes a unique eukaryotic association module, or EAM, that encodes unusually large proteins thought to mediate interactions between the bacterium, its virus, and the eukaryotic host cell. The Wolbachia supergroup B strain, wStri from the planthopper Laodelphax striatellus, produces phage-like particles that can be recovered from persistently infected mosquito cells by ultracentrifugation. Illumina sequencing, assembly, and manual curation of DNA from two independent preparations converged on an identical 15,638 bp sequence that encoded packaging, assembly, and structural proteins. The absence of an EAM and regulatory genes defined for Phage WO from the wasp, Nasonia vitripennis, was consistent with the possibility that the 15,638 bp sequence represents an element related to a gene transfer agent (GTA), characterized by a signature head–tail region encoding structural proteins that package host chromosomal DNA. Future investigation of GTA function will be supported by the improved recovery of physical particles, electron microscopic examination of potential diversity among particles, and rigorous examination of DNA content by methods independent of sequence assembly. Full article
(This article belongs to the Topic Host–Parasite Interactions)
Show Figures

Graphical abstract

25 pages, 2992 KiB  
Article
Playing Peekaboo with a Master Manipulator: Metagenetic Detection and Phylogenetic Analysis of Wolbachia Supergroups in Freshwater Invertebrates
by Monika Mioduchowska, Edyta Konecka, Bartłomiej Gołdyn, Tom Pinceel, Luc Brendonck, Dunja Lukić, Łukasz Kaczmarek, Tadeusz Namiotko, Katarzyna Zając, Tadeusz Zając, Jan P. Jastrzębski and Krzysztof Bartoszek
Int. J. Mol. Sci. 2023, 24(11), 9400; https://doi.org/10.3390/ijms24119400 - 28 May 2023
Cited by 9 | Viewed by 2896
Abstract
The infamous “master manipulators”—intracellular bacteria of the genus Wolbachia—infect a broad range of phylogenetically diverse invertebrate hosts in terrestrial ecosystems. Wolbachia has an important impact on the ecology and evolution of their host with documented effects including induced parthenogenesis, male killing, feminization, [...] Read more.
The infamous “master manipulators”—intracellular bacteria of the genus Wolbachia—infect a broad range of phylogenetically diverse invertebrate hosts in terrestrial ecosystems. Wolbachia has an important impact on the ecology and evolution of their host with documented effects including induced parthenogenesis, male killing, feminization, and cytoplasmic incompatibility. Nonetheless, data on Wolbachia infections in non-terrestrial invertebrates are scarce. Sampling bias and methodological limitations are some of the reasons limiting the detection of these bacteria in aquatic organisms. In this study, we present a new metagenetic method for detecting the co-occurrence of different Wolbachia strains in freshwater invertebrates host species, i.e., freshwater Arthropoda (Crustacea), Mollusca (Bivalvia), and water bears (Tardigrada) by applying NGS primers designed by us and a Python script that allows the identification of Wolbachia target sequences from the microbiome communities. We also compare the results obtained using the commonly applied NGS primers and the Sanger sequencing approach. Finally, we describe three supergroups of Wolbachia: (i) a new supergroup V identified in Crustacea and Bivalvia hosts; (ii) supergroup A identified in Crustacea, Bivalvia, and Eutardigrada hosts, and (iii) supergroup E infection in the Crustacea host microbiome community. Full article
(This article belongs to the Special Issue Host-Microbe Interaction 2022)
Show Figures

Figure 1

17 pages, 2273 KiB  
Article
Narrow Genetic Diversity of Wolbachia Symbionts in Acrididae Grasshopper Hosts (Insecta, Orthoptera)
by Yury Ilinsky, Mary Demenkova, Roman Bykov and Alexander Bugrov
Int. J. Mol. Sci. 2022, 23(2), 853; https://doi.org/10.3390/ijms23020853 - 13 Jan 2022
Cited by 6 | Viewed by 2665
Abstract
Bacteria of the Wolbachia genus are maternally inherited symbionts of Nematoda and numerous Arthropoda hosts. There are approximately 20 lineages of Wolbachia, which are called supergroups, and they are designated alphabetically. Wolbachia strains of the supergroups A and B are predominant in [...] Read more.
Bacteria of the Wolbachia genus are maternally inherited symbionts of Nematoda and numerous Arthropoda hosts. There are approximately 20 lineages of Wolbachia, which are called supergroups, and they are designated alphabetically. Wolbachia strains of the supergroups A and B are predominant in arthropods, especially in insects, and supergroup F seems to rank third. Host taxa have been studied very unevenly for Wolbachia symbionts, and here, we turn to one of largely unexplored insect families: Acrididae. On the basis of five genes subject to multilocus sequence typing, we investigated the incidence and genetic diversity of Wolbachia in 41 species belonging three subfamilies (Gomphocerinae, Oedipodinae, and Podisminae) collected in Turkey, Kazakhstan, Tajikistan, Russia, and Japan, making 501 specimens in total. Our results revealed a high incidence and very narrow genetic diversity of Wolbachia. Although only the strains belonging to supergroups A and B are commonly present in present, the Acrididae hosts here proved to be infected with supergroups B and F without A-supergroup variants. The only trace of an A-supergroup lineage was noted in one case of an inter-supergroup recombinant haplotype, where the ftsZ gene came from supergroup A, and the others from supergroup B. Variation in the Wolbachia haplotypes in Acrididae hosts within supergroups B and F was extremely low. A comprehensive genetic analysis of Wolbachia diversity confirmed specific features of the Wolbachia allelic set in Acrididae hosts. This result can help to elucidate the crucial issue of Wolbachia biology: the route(s) and mechanism(s) of Wolbachia horizontal transmission. Full article
(This article belongs to the Special Issue Molecular Bacteria-Invertebrate Interactions)
Show Figures

Figure 1

18 pages, 8844 KiB  
Article
The Incidence of Wolbachia Bacterial Endosymbiont in Bisexual and Parthenogenetic Populations of the Psyllid Genus Cacopsylla (Hemiptera, Psylloidea)
by Nazar A. Shapoval, Seppo Nokkala, Christina Nokkala, Galina N. Kuftina and Valentina G. Kuznetsova
Insects 2021, 12(10), 853; https://doi.org/10.3390/insects12100853 - 22 Sep 2021
Cited by 13 | Viewed by 3298
Abstract
Wolbachia is one of the most common intracellular bacteria; it infects a wide variety of insects, other arthropods, and some nematodes. Wolbachia is ordinarily transmitted vertically from mother to offspring and can manipulate physiology and reproduction of their hosts in different ways, e.g., [...] Read more.
Wolbachia is one of the most common intracellular bacteria; it infects a wide variety of insects, other arthropods, and some nematodes. Wolbachia is ordinarily transmitted vertically from mother to offspring and can manipulate physiology and reproduction of their hosts in different ways, e.g., induce feminization, male killing, and parthenogenesis. Despite the great interest in Wolbachia, many aspects of its biology remain unclear and its incidence across many insect orders, including Hemiptera, is still poorly understood. In this report, we present data on Wolbachia infection in five jumping plant-lice species (Hemiptera, Psylloidea) of the genus Cacopsylla Ossiannilsson, 1970 with different reproductive strategies and test the hypothesis that Wolbachia mediates parthenogenetic and bisexual patterns observed in some Cacopsylla species. We show that the five species studied are infected with a single Wolbachia strain, belonging to the supergroup B. This strain has also been found in different insect orders (Lepidoptera, Hemiptera, Plecoptera, Orthoptera, Hymenoptera, Diptera) and even in acariform mites (Trombidiformes), suggesting extensive horizontal transmission of Wolbachia between representatives of these taxa. Our survey did not reveal significant differences in infection frequency between parthenogenetic and bisexual populations or between males and females within bisexual populations. However, infection rate varied notably in different Cacopsylla species or within distinct populations of the same species. Overall, we demonstrate that Wolbachia infects a high proportion of Cacopsylla individuals and populations, suggesting the essential role of this bacterium in their biology. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

18 pages, 926 KiB  
Review
Growth and Maintenance of Wolbachia in Insect Cell Lines
by Ann M. Fallon
Insects 2021, 12(8), 706; https://doi.org/10.3390/insects12080706 - 6 Aug 2021
Cited by 17 | Viewed by 5303
Abstract
The obligate intracellular microbe, Wolbachia pipientis (Rickettsiales; Anaplasmataceae), is a Gram-negative member of the alpha proteobacteria that infects arthropods and filarial worms. Although closely related to the genera Anaplasma and Ehrlichia, which include pathogens of humans, Wolbachia is uniquely associated with invertebrate [...] Read more.
The obligate intracellular microbe, Wolbachia pipientis (Rickettsiales; Anaplasmataceae), is a Gram-negative member of the alpha proteobacteria that infects arthropods and filarial worms. Although closely related to the genera Anaplasma and Ehrlichia, which include pathogens of humans, Wolbachia is uniquely associated with invertebrate hosts in the clade Ecdysozoa. Originally described in Culex pipiens mosquitoes, Wolbachia is currently represented by 17 supergroups and is believed to occur in half of all insect species. In mosquitoes, Wolbachia acts as a gene drive agent, with the potential to modify vector populations; in filarial worms, Wolbachia functions as a symbiont, and is a target for drug therapy. A small number of Wolbachia strains from supergroups A, B, and F have been maintained in insect cell lines, which are thought to provide a more permissive environment than the natural host. When transferred back to an insect host, Wolbachia produced in cultured cells are infectious and retain reproductive phenotypes. Here, I review applications of insect cell lines in Wolbachia research and describe conditions that facilitate Wolbachia infection and replication in naive host cells. Progress in manipulation of Wolbachia in vitro will enable genetic and biochemical advances that will facilitate eventual genetic engineering of this important biological control agent. Full article
(This article belongs to the Special Issue Advances in the Use of Insect Cell Culture and Biotechnology)
Show Figures

Figure 1

12 pages, 1289 KiB  
Article
The Evolution and Biogeography of Wolbachia in Ants (Hymenoptera: Formicidae)
by Manuela O. Ramalho and Corrie S. Moreau
Diversity 2020, 12(11), 426; https://doi.org/10.3390/d12110426 - 12 Nov 2020
Cited by 14 | Viewed by 6709
Abstract
Wolbachia bacteria are widely distributed across invertebrate taxa, including ants, but several aspects of this host-associated interaction are still poorly explored, especially with regard to the ancestral state association, origin, and dispersion patterns of this bacterium. Therefore, in this study, we explored the [...] Read more.
Wolbachia bacteria are widely distributed across invertebrate taxa, including ants, but several aspects of this host-associated interaction are still poorly explored, especially with regard to the ancestral state association, origin, and dispersion patterns of this bacterium. Therefore, in this study, we explored the association of Wolbachia with Formicidae in an evolutionary context. Our data suggest that supergroup F is the ancestral character state for Wolbachia infection in ants, and there is only one transition to supergroup A, and once ants acquired infection with supergroup A, there have been no other strains introduced. Our data also reveal that the origin of Wolbachia in ants likely originated in Asia and spread to the Americas, and then back to Asia. Understanding the processes and mechanisms of dispersion of these bacteria in Formicidae is a crucial step to advance the knowledge of this symbiosis and their implications in an evolutionary context. Full article
(This article belongs to the Special Issue Diversity, Biogeography and Community Ecology of Ants)
Show Figures

Graphical abstract

Back to TopTop