“Hostbusters”: The Bacterial Endosymbiont Wolbachia of the Parasitoid Wasp Habrobracon hebetor Improves Its Ability to Parasitize Lepidopteran Hosts
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Cultures
2.1.1. The Parasitoid and Its Endosymbiont
2.1.2. Laboratory Hosts of the Parasitoid
2.2. Molecular Diagnostics of the Endosymbiont Wolbachia in Insects
2.3. Parasitism Assays
2.4. Statistical Analysis
3. Results
3.1. Molecular Genetic Classification of Wolbachia
3.2. Parasitism Success of the Parasitoid in Six Host Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hajek, A.E.; Gardescu, S.; Delalibera, I. Summary of classical biological control introductions of entomopathogens and nematodes for insect control. BioControl 2021, 66, 167–180. [Google Scholar] [CrossRef]
- Cusumano, A.; Fatouros, N. Editorial overview: Parasites/parasitoids/biological control (2023)—Understanding parasitoid ecology and evolution to advance biological control programs. Curr. Opin. Insect Sci. 2023, 58, 101050. [Google Scholar] [CrossRef]
- Saabna, N.; Keasar, T. Parasitoids for biological control in dryland agroecosystems. Curr. Opin. Insect Sci. 2024, 64, 101226. [Google Scholar] [CrossRef]
- Zhu, H.; Kim, J.J. Target-oriented dissemination of Beauveria bassiana conidia by the predators, Harmonia axyridis (Coleoptera: Coccinellidae) and Chrysoperla carnea (Neuroptera: Chrysopidae) for biocontrol of Myzus persicae. Biocontrol Sci. Technol. 2012, 22, 393–406. [Google Scholar] [CrossRef]
- Dwivedi, S.A.; Sonawane, V.K.; Pandit, T.R. Review on the impact of insecticides utilization in crop ecosystem: Their prosperity and threats. In Insecticidesi; Ranz, R., Ed.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Geiger, F.; Bengtsson, J.; Berendse, F.; Weisser, W.W.; Emmerson, M.; Morales, M.B.; Ceryngier, P.; Liira, J.; Tscharntke, T.; Winqvist, C.; et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 2010, 11, 97–105. [Google Scholar] [CrossRef]
- Sparks, T.C.; Nauen, R. IRAC: Mode of action classification and insecticide resistance management. Pestic. Biochem. Physiol. 2015, 121, 122–128. [Google Scholar] [CrossRef]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Cross, P. Pesticide hazard trends in orchard fruit production in Great Britain from 1992 to 2008: A time-series analysis. Pest Manag. Sci. 2013, 69, 768–774. [Google Scholar] [CrossRef]
- Fatouros, N.E.; Cusumano, A.; Bin, F.; Polaszek, A.; van Lenteren, J.C. How to escape from insect egg parasitoids: A review of potential factors explaining parasitoid absence across the Insecta. Proc. R. Soc. B 2020, 287, 20200344. [Google Scholar] [CrossRef]
- Litwin, A.; Nowak, M.; Różalska, S. Entomopathogenic fungi: Unconventional applications. Rev. Environ. Sci. Biotechnol. 2020, 19, 23–42. [Google Scholar] [CrossRef]
- Hatcher, M.J.; Dick, J.T.A.; Dunn, A.M. Parasites that change predator or prey behavior can have keystone effects on community composition. Biol. Lett. 2014, 10, 20130879. [Google Scholar] [CrossRef]
- Thilagam, P.; Sharanappa, C.H.; Roy, S.; Deb, L.; Padhan, S.; Srividhya, S.; Awadhiya, P. A review on advances in biocontrol techniques for managing insect pests in sustainable agriculture. Int. J. Environ. 2023, 13, 2114–2125. [Google Scholar] [CrossRef]
- Vinson, S.B.; Iwantsch, G.F. Host regulation by insect parasitoids. Q. Rev. Biol. 1980, 55, 143–165. [Google Scholar] [CrossRef]
- Polaszek, A.; Vilhelmsen, L. Biodiversity of hymenopteran parasitoids. Curr. Opin. Insect Sci. 2023, 56, 101026. [Google Scholar] [CrossRef] [PubMed]
- Dicke, M.; Cusumano, A.; Poelman, E.H. Microbial symbionts of parasitoids. Annu. Rev. Entomol. 2020, 65, 171–190. [Google Scholar] [CrossRef]
- Verhulst, E.C.; Pannebakker, B.A.; Geuverink, E. Variation in sex determination mechanisms may constrain parthenogenesis-induction by endosymbionts in haplodiploid systems. Curr. Opin. Insect Sci. 2023, 56, 101023. [Google Scholar] [CrossRef]
- Gibson, C.M.; Hunter, M.S. Inherited fungal and bacterial endosymbionts of a parasitic wasp and its cockroach host. Microb. Ecol. 2009, 57, 542–549. [Google Scholar] [CrossRef]
- Pekas, A.; Tena, A.; Peri, E.; Colazza, S.; Cusumano, A. Competitive interactions in insect parasitoids: Effects of microbial symbionts across tritrophic levels. Curr. Opin. Insect Sci. 2023, 55, 101001. [Google Scholar] [CrossRef]
- Deepak, C.; Patel, H.C.; Patel, H.K. Microbial symbionts of hymenopteran parasitoids: An effective tool for next-generation crop protection. Symbiosis 2024, 93, 153–162. [Google Scholar] [CrossRef]
- Huigens, M.E.; Hohmann, C.L.; Luck, R.F.; Gort, G.; Stouthamer, R. Reduced competitive ability due to Wolbachia infection in the parasitoid wasp Trichogramma kaykai. Entomol. Exp. Appl. 2004, 112, 115–123. [Google Scholar] [CrossRef]
- Ramírez-Puebla, S.T.; Servín-Garcidueñas, L.E.; Ormeño-Orrillo, E.; de León, A.V.P.; Rosenblueth, M.; Delaye, L.; Martínez-Romero, E. Species in Wolbachia? Proposal for the designation of ‘Candidatus Wolbachia bourtzisii’, ‘Candidatus Wolbachia onchocercicola’, ‘Candidatus Wolbachia blaxteri’, ‘Candidatus Wolbachia brugii’, ‘Candidatus Wolbachia taylori’, ‘Candidatus Wolbachia collembolicola’, and ‘Candidatus Wolbachia multihospitum’ for the different species within Wolbachia supergroups. Syst. Appl. Microbiol. 2015, 38, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, A.R.; Bordenstein, S.R.; Newton, I.L.; Rasgon, J.L. Wolbachia pipientis should not be split into multiple species: A response to Ramírez-Puebla et al., “Species in Wolbachia? Proposal for the designation of ‘Candidatus Wolbachia bourtzisii’, ‘Candidatus Wolbachia onchocercicola’, ‘Candidatus Wolbachia blaxteri’, ‘Candidatus Wolbachia brugii’, ‘Candidatus Wolbachia taylori’, ‘Candidatus Wolbachia collembolicola’ and ‘Candidatus Wolbachia multihospitum’ for the different species within Wolbachia supergroups”. Syst. Appl. Microbiol. 2016, 39, 220–222. [Google Scholar] [CrossRef] [PubMed]
- Beliavskaia, A.; Tan, K.K.; Sinha, A.; Husin, N.A.; Lim, F.S.; Loong, S.K.; Bell-Sakyi, L.; Carlow, C.K.; Abubakar, S.; Darby, A.C.; et al. Metagenomics of culture isolates and insect tissue illuminate the evolution of Wolbachia, Rickettsia and Bartonella symbionts in Ctenocephalides spp. fleas. Microb. Genom. 2023, 9, 001045. [Google Scholar] [CrossRef] [PubMed]
- Sinkins, S.P.; Braig, H.R.; O’Neill, S.L. Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proc. R. Soc. Lond. B Biol. Sci. 1995, 261, 325–330. [Google Scholar] [CrossRef]
- Sinkins, S.P. Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochem. Mol. Biol. 2004, 34, 723–729. [Google Scholar] [CrossRef]
- Ilinsky, Y.Y.; Zakharov, I.K. Cytoplasmic incompatibility in Drosophila melanogaster is caused by different Wolbachia genotypes. Russ. J. Genet. Appl. Res. 2011, 1, 458–462. [Google Scholar] [CrossRef]
- Sicard, M.; Bonneau, M.; Weill, M. Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes. Curr. Opin. Insect Sci. 2019, 34, 12–20. [Google Scholar] [CrossRef]
- Tulgetske, G.M.; Stouthamer, R. Characterization of intersex production in Trichogramma kaykai infected with parthenogenesis-inducing Wolbachia. Naturwissenschaften 2012, 99, 143–152. [Google Scholar] [CrossRef]
- Champion de Crespigny, F.E.; Wedell, N. Wolbachia infection reduces sperm competitive ability in an insect. Proc. R. Soc. B. 2006, 273, 1455–1458. [Google Scholar] [CrossRef]
- Richard, F.J. Symbiotic bacteria influence the odor and mating preference of their hosts. Front. Ecol. Evol. 2017, 5, 143. [Google Scholar] [CrossRef]
- Chen, M.Y.; Li, D.; Wang, Z.N.; Xu, F.Z.; Feng, Y.W.; Yu, Q.L.; Wang, Y.Y.; Zhang, S.; Wang, Y.F. Infection by virulent wMelPop Wolbachia improves learning and memory capacity in Drosophila melanogaster. Anim. Behav. 2024, 212, 101–112. [Google Scholar] [CrossRef]
- Wangkeeree, J.; Suwanchaisri, K.; Roddee, J.; Hanboonsong, Y. Effect of Wolbachia infection states on the life history and reproductive traits of the leafhopper Yamatotettix flavovittatus Matsumura. J. Invertebr. Pathol. 2020, 177, 107490. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ji, R.; Zi, H.; Sun, W.; Zhang, Y.; Wu, X.; Yang, Y. Life history parameters of Ectropis grisescens (Lepidoptera: Geometridae) in different Wolbachia infection states. J. Econ. Entomol. 2024, 117, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Panteleev, D.Y.; Goryacheva, I.I.; Andrianov, B.V.; Reznik, N.L.; Lazebny, O.E.; Kulikov, A.M. The endosymbiotic bacterium Wolbachia enhances the nonspecific resistance to insect pathogens and alters behavior of Drosophila melanogaster. Russ. J. Genet. 2007, 43, 1066–1069. [Google Scholar] [CrossRef]
- Glaser, R.L.; Meola, M.A. The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS ONE 2010, 5, e11977. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Zhang, Y.Y.; Wang, X.Y.; Yin, Y.; Du, Y.Z. Wolbachia modify host cell metabolite profiles in response to short-term temperature stress. Environ. Microbiol. Rep. 2024, 16, e70013. [Google Scholar] [CrossRef]
- Hertig, M.; Wolbach, S.B. Studies on Rickettsia-like microorganisms in insects. J. Med. Res. 1924, 44, 329–374. [Google Scholar]
- Zug, R.; Hammerstein, P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol. Rev. 2015, 90, 89–111. [Google Scholar] [CrossRef]
- Ramalho, M.D.O.; Kim, Z.; Wang, S.; Moreau, C.S. Wolbachia across social insects: Patterns and Implications. Ann. Entomol. Soc. Am. 2021, 114, 206–218. [Google Scholar] [CrossRef]
- Sanaei, E.; Charlat, S.; Engelstädter, J. Wolbachia host shifts: Routes, mechanisms, constraints and evolutionary consequences. Biol. Rev. 2021, 96, 433–453. [Google Scholar] [CrossRef]
- Henry, L.P.; Fernandez, M.; Wolf, S.; Abhyankar, V.; Ayroles, J.F. Wolbachia impacts microbiome diversity and fitness-associated traits for Drosophila melanogaster in a seasonally fluctuating environment. Ecol. Evol. 2024, 14, e70004. [Google Scholar] [CrossRef] [PubMed]
- Negri, I.; Pellecchia, M.; Dubey, R. Sex steroids in insects and the role of the endosymbiont Wolbachia: A new perspective. In Sex Hormones; Dubey, R., Ed.; InTech: London, UK, 2012; pp. 353–374. [Google Scholar]
- Kaur, R.; Meier, C.J.; McGraw, E.A.; Hillyer, J.F.; Bordenstein, S.R. The mechanism of cytoplasmic incompatibility is conserved in Wolbachia-infected Aedes aegypti mosquitoes deployed for arbovirus control. PLoS Biol. 2024, 22, e3002573. [Google Scholar] [CrossRef]
- Lambrechts, L.; Ferguson, N.M.; Harris, E.; Holmes, E.C.; McGraw, E.A.; O’Neill, S.L.; Ooi, E.E.; Ritchie, S.A.; Ryan, P.A.; Scott, T.W.; et al. Assessing the epidemiological effect of Wolbachia for dengue control. Lancet Infect. Dis. 2015, 15, 862–866. [Google Scholar] [CrossRef]
- Utarini, A.; Indriani, C.; Ahmad, R.A.; Tantowijoyo, W.; Arguni, E.; Ansari, M.R.; Supriyati, E.; Wardana, D.S.; Meitika, Y.; Ernesia, I.; et al. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N. Engl. J. Med. 2021, 384, 2177–2186. [Google Scholar] [CrossRef]
- Turner, J.D.; Marriott, A.E.; Hong, D.; O’Neill, P.; Ward, S.A.; Taylor, M.J. Novel anti-Wolbachia drugs, a new approach in the treatment and prevention of veterinary filariasis? Vet. Parasitol. 2020, 279, 109057. [Google Scholar] [CrossRef] [PubMed]
- Johnston, K.L.; Hong, W.D.; Turner, J.D.; O’Neill, P.M.; Ward, S.A.; Taylor, M.J. Anti-Wolbachia drugs for filariasis. Trends Parasitol. 2021, 37, 1068–1081. [Google Scholar] [CrossRef]
- Gong, J.T.; Li, T.P.; Wang, M.K.; Hong, X.Y. Wolbachia-based strategies for control of agricultural pests. Curr. Opin. Insect Sci. 2023, 57, 101039. [Google Scholar] [CrossRef]
- Hyder, M.; Lodhi, A.M.; Wang, Z.; Bukero, A.; Gao, J.; Mao, R. Wolbachia interactions with diverse insect hosts: From reproductive modulations to sustainable pest management strategies. Biology 2024, 13, 151. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Borges, R.M. Oviposition decisions under environment-induced physiological stress in parasitoids. Curr. Opin. Insect Sci. 2024, 65, 101240. [Google Scholar] [CrossRef]
- Bagheri, Z.; Talebi, A.A.; Asgari, S.; Mehrabadi, M. Wolbachia induce cytoplasmic incompatibility and affect mate preference in Habrobracon hebetor to increase the chance of its transmission to the next generation. J. Invertebr. Pathol. 2019, 163, 1–7. [Google Scholar] [CrossRef]
- Nasehi, S.F.; Fathipour, Y.; Mehrabadi, M. Wolbachia and cytoplasmic incompatibility in Habrobracon hebetor (Hym.: Braconidae). Plant Pest Res. 2021, 11, 53–66. [Google Scholar] [CrossRef]
- Bagheri, Z.; Talebi, A.A.; Asgari, S.; Mehrabadi, M. Wolbachia promotes successful sex with siblings in the parasitoid Habrobracon hebetor. Pest Manag. Sci. 2022, 78, 362–368. [Google Scholar] [CrossRef]
- Kryukova, N.A.; Kryukov, V.Y.; Polenogova, O.V.; Chertkova, E.A.; Tyurin, M.V.; Rotskaya, U.N.; Alikina, T.; Kabilov, M.R.; Glupov, V.V. The endosymbiotic bacterium Wolbachia (Rickettsiales) alters larval metabolism of the parasitoid Habrobracon hebetor (Hymenoptera: Braconidae). Arch. Insect Biochem. Physiol. 2023, 114, e22053. [Google Scholar] [CrossRef]
- Jiménez, N.E.; Gerdtzen, Z.P.; Olivera-Nappa, Á.; Salgado, J.C.; Conca, C. A systems biology approach for studying Wolbachia metabolism reveals points of interaction with its host in the context of arboviral infection. PLoS Negl. Trop. Dis. 2019, 13, e0007678. [Google Scholar] [CrossRef]
- Zhang, H.B.; Cao, Z.; Qiao, J.X.; Zhong, Z.Q.; Pan, C.C.; Liu, C.; Zhang, L.M.; Wang, Y.F. Metabolomics provide new insights into mechanisms of Wolbachia-induced paternal defects in Drosophila melanogaster. PLoS Pathog. 2021, 17, e1009859. [Google Scholar] [CrossRef] [PubMed]
- Frolov, A.N.; Berim, M.N.; Grushevaya, I.V. Rearing of trilobed male uncus Ostrinia species in laboratory for experimental purposes. Plant Prot. News 2019, 3, 58–62. [Google Scholar] [CrossRef]
- Zagorinskii, A.A.; Gorbunov, O.G.; Sidorov, A.V. An experience of rearing some hawk moths (Lepidoptera, Sphingidae) on artificial diets. Entomol. Rev. 2013, 93, 1107–1115. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989; Volume 3, pp. 154–196. [Google Scholar]
- Baldo, L.; Dunning Hotopp, J.C.; Jolley, K.A.; Bordenstein, S.R.; Biber, S.A.; Choudhury, R.R.; Hayashi, C.; Maiden, M.C.; Tettelin, H.; Werren, J.H. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 2006, 72, 7098–7110. [Google Scholar] [CrossRef]
- Vogelstein, B.; Gillespie, D. Preparative and analytical purification of DNA from agarose. Proc. Natl. Acad. Sci. USA 1979, 76, 615–619. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- Hall, T.A. BIOEDIT: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Pearson, K.X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Phil. Mag. Ser 5 1900, 50, 157–175. [Google Scholar] [CrossRef]
- Yates, F. Contingency table involving small numbers and the χ2 test. Suppl. J. Roy. Stat. Soc. 1934, 1, 217–235. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical Methods for Research Workers; Oliver Boyd: Edinburgh, UK, 1954. [Google Scholar]
- Saadat, D.; Bandani, A.R.; Dastranj, M. Comparison of the developmental time of Bracon hebetor (Hymenoptera: Braconidae) reared on five different lepidopteran host species and its relationship with digestive enzymes. Eur. J. Entomol. 2014, 111, 495. [Google Scholar] [CrossRef]
- Ghimire, M.N.; Phillips, T.W. Suitability of different Lepidopteran host species for development of Bracon hebetor (Hymenoptera: Braconidae). Environ. Entomol. 2010, 39, 449–458. [Google Scholar] [CrossRef]
- Heimpel, G.E.; Antolin, M.F.; Franqui, R.A.; Strand, M.R. Reproductive isolation and genetic variation between two “strains” of Bracon hebetor (Hymenoptera: Braconidae). Biol. Control 1997, 9, 149–156. [Google Scholar] [CrossRef]
- Dyson, E.; Kamath, M.; Hurst, G. Wolbachia infection associated with all-female broods in Hypolimnas bolina (Lepidoptera: Nymphalidae): Evidence for horizontal transmission of a butterfly male killer. Heredity 2002, 88, 166–171. [Google Scholar] [CrossRef]
- Solà, M.; Castañé, C.; Lucas, E.; Riudavets, J. Optimization of a banker box system to rear and release the parasitoid Habrobracon hebetor (Hymenoptera: Braconidae) for the control of stored-product moths. J. Econ. Entomol. 2018, 111, 2461–2466. [Google Scholar] [CrossRef]
- Hasan, M.M.; Yeasmin, L.; Athanassiou, C.G.; Bari, M.A.; Islam, M.S. Using gamma irradiated Galleria mellonella L. and Plodia interpunctella (Hübner) larvae to optimize mass rearing of parasitoid Habrobracon hebetor (Say) (Hymenoptera: Braconidae). Insects 2019, 10, 223. [Google Scholar] [CrossRef]
- Morales-Ramos, J.A.; Rojas, M.G.; Shapiro-Ilan, D.I. (Eds.) Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Adly, D.; Marzouk, W.M. Efficacy of the larval parasitoid, Bracon hebetor Say. (Hymenoptera: Braconidae) on the greater wax moth larvae, Galleria mellonella (L.) (Lepidoptera: Pyralidae) under laboratory and field conditions. Egypt J. Biol. Pest Control 2019, 29, 87. [Google Scholar] [CrossRef]
- Alam, M.S.; Alam, M.Z.; Alam, S.N.; Miah, M.R.U.; Mian, M.I.H.; Hossain, M.M. Biology of Bracon hebetor reared on wax moth (Galleria mellonella) larvae. Persian Gulf Crop Prot. 2014, 3, 54–62. [Google Scholar]
- Chen, X.; Zhai, B.; Gong, R.; Yin, M.; Zhang, Y.; Zhao, K. Source area of spring population of meadow moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae), in Northeast China. Acta Ecol. Sin. 2008, 28, 1521–1535. [Google Scholar] [CrossRef]
- Beyarslan, A. Checklist of Braconinae species of Turkey (Hymenoptera: Braconidae). Zootaxa 2014, 3790, 201–242. [Google Scholar] [CrossRef]
- Loni, A.; Samartsev, K.G.; Scaramozzino, P.L.; Belokobylskij, S.A.; Lucchi, A. Braconinae parasitoids (Hymenoptera, Braconidae) emerged from larvae of Lobesia botrana (Denis & Schiffermüller) (Lepidoptera, Tortricidae) feeding on Daphne gnidium L. ZooKeys 2016, 587, 125. [Google Scholar] [CrossRef]
- Camerini, G.; Maini, S.; Riedel, M. Ostrinia nubilalis parasitoids in Northern Italy: Past and present. Biol. Control 2018, 122, 76–83. [Google Scholar] [CrossRef]
- Mahdavi, V.; Saber, M.; Rafiee-Dastjerdi, H.; Mehrvar, A. Comparative study of the population level effects of carbaryl and abamectin on larval ectoparasitoid Habrobracon hebetor Say (Hymenoptera: Braconidae). BioControl 2011, 56, 823–830. [Google Scholar] [CrossRef]
- Wu, Q.; Yan, S.; Lyu, B.; Wu, X.; Lu, H.; Tang, J.; Su, H. Influence of temperature on the development and reproduction of Habrobracon hebetor (Say), as parasitoid of Opisina arenosella Walker. Int. J. Pest Manag. 2022, 70, 1445–1452. [Google Scholar] [CrossRef]
- Lettmann, J.; Mody, K.; Kursch-Metz, T.; Blüthgen, N.; Wehner, K. Bracon wasps for ecological pest control–a laboratory experiment. PeerJ 2021, 9, e11540. [Google Scholar] [CrossRef]
- Frolov, A.N. Biotic factors suppressing the European corn borer, Ostrinia nubilalis. Plant Prot. News 2004, 2, 37–47. [Google Scholar]
- Jankowska, B. The occurrence of some Lepidoptera pests on different cabbage vegetables. J. Plant Prot. Res. 2006, 46, 181–190. [Google Scholar]
- Cartea, M.E.; Padilla, G.; Vilar, M.; Velasco, P. Incidence of the major Brassica pests in Northwestern Spain. J. Econ. Entomol. 2009, 102, 767–773. [Google Scholar] [CrossRef]
- Cartea, M.E.; Soengas, P.; Sotelo, T.; Abilleira, R.; Velasco, P. Determining the host-plant resistance mechanisms for Mamestra brassicae (Lepidoptera: Noctuidae) pest in cabbage. Ann. Appl. Biol. 2014, 164, 270–285. [Google Scholar] [CrossRef]
- Nikam, P.K.; Pawar, C.V. Life tables and intrinsic rate of increase of Bracon hebetor Say (Hym., Braconidae) population on Corcyra cephalonica Staint. (Lep., Pyralidae), a key parasitoid of Helicoverpa armigera Hbn. (Lep., Noctuidae). J. Appl. Entomol. 1993, 115, 210–213. [Google Scholar] [CrossRef]
- Borzoui, E.; Naseri, B.; Mohammadzadeh-Bidarani, M. Adaptation of Habrobracon hebetor (Hymenoptera: Braconidae) to rearing on Ephestia kuehniella (Lepidoptera: Pyralidae) and Helicoverpa armigera (Lepidoptera: Noctuidae). J. Insect Sci. 2016, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Kfir, R. Parasitoids of Plutella xylostella (Lep.: Plutellidae) in South Africa: An annotated list. BioControl 1997, 42, 517–523. [Google Scholar] [CrossRef]
- Madyarov, S.R.; Mirzaeva, G.S.; Otarbaev, D.O.; Khamidi, K.S.; Kamilova, S.I.; Akhmerov, R.N.; Khamraev, A.S. Mulberry silkworm, Bombyx mori L., as a host for neurotoxic Braconidae I. Insect-toxic properties of Bracon venom gland extract and its fractions. Int. J. Ind. Entomol. Biomater. 2003, 7, 235–239. [Google Scholar]
- Meng, X.; Zhu, F.; Chen, K. Silkworm: A promising model organism in life science. J. Insect Sci. 2017, 17, 97. [Google Scholar] [CrossRef]
- Abdelli, N.; Peng, L.; Keping, C. Silkworm, Bombyx mori, as an alternative model organism in toxicological research. Environ. Sci. Pollut. Res. 2018, 25, 35048–35054. [Google Scholar] [CrossRef]
- Allonsius, C.N.; Van Beeck, W.; De Boeck, I.; Wittouck, S.; Lebeer, S. The microbiome of the invertebrate model host Galleria mellonella is dominated by Enterococcus. Anim. Microbiome 2019, 1, 7. [Google Scholar] [CrossRef]
- Kryukov, V.Y.; Chernyak, E.I.; Kryukova, N.; Tyurin, M.; Krivopalov, A.; Yaroslavtseva, O.; Senderskiy, I.; Polenogova, O.; Zhirakovskaia, E.; Glupov, V.V.; et al. Parasitoid venom alters the lipid composition and development of microorganisms on the wax moth cuticle. Ent. Exp. Appl. 2022, 170, 852–868. [Google Scholar] [CrossRef]
- Duan, R.; Xu, H.; Gao, S.; Gao, Z.; Wang, N. Effects of different hosts on bacterial communities of parasitic wasp Nasonia vitripennis. Front. Microbiol. 2020, 11, 1435. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.X.; Zhuang, Y.H.; Wu, Y.X.; Huang, T.W.; Song, Z.R.; Du, Y.Z.; Zhu, Y.X. Wolbachia infection alters the microbiota of the invasive leaf-miner Liriomyza huidobrensis (Diptera: Agromyzidae). Microorganisms 2025, 13, 302. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.V.; de Roode, J.C.; Gerardo, N.M. Diet–microbiome–disease: Investigating diet’s influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathog. 2019, 15, e1007891. [Google Scholar] [CrossRef] [PubMed]
- Cusumano, A.; Lievens, B. Microbe-mediated alterations in floral nectar: Consequences for insect parasitoids. Curr. Opin. Insect Sci. 2023, 60, 101116. [Google Scholar] [CrossRef]
- Gruntenko, N.Е.; Ilinsky, Y.Y.; Adonyeva, N.V.; Burdina, E.V.; Bykov, R.A.; Menshanov, P.N.; Rauschenbach, I.Y. Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions. BMC Evol. Biol. 2017, 17, 15–22. [Google Scholar] [CrossRef]
Insect Host | ST | MLST Profile | Hypervariable Regions of the wsp Locus | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
gatB | coxA | hcpA | ftsZ | fbpA | wsp | HVR1 | HVR2 | HVR3 | HVR4 | ||
Habrobracon hebetor | 125 | 4 | 14 | 40 | 73 ** | 4 * | 10 * | 10 | 8 | 10 | 8 |
Spodoptera exempta | 125 | 4 | 14 | 40 | 73 | 4 | ND | ND | ND | ND | ND |
Hypolimnas bolina | 125 | 4 | 14 | 40 | 73 | 4 | 10 | 10 | 8 | 10 | 8 |
Colotis amata | 147 | 4 | 14 | 40 | 7 | 4 | ND | ND | 8 | 10 | ND |
Junonia lemnonias | 146 | 4 | 14 | 40 | 36 | 4 | 10 | 10 | 8 | 10 | 8 |
Cepora nerissa | 145 | 4 | 14 | 3 | 36 | 4 | 10 | 10 | 8 | 10 | 8 |
Eretmocerus emiratus | 161 | 105 | 14 | 3 | 73 | 4 | ND | ND | ND | ND | ND |
Leptosia nina | 152 | 39 | 14 | 40 | 7 | 4 | 10 | 10 | 8 | 10 | 8 |
Hypolimnas bolina | 148 | 9 | 14 | 40 | 73 | 4 | 10 | 10 | 8 | 10 | 8 |
Fabriciana adippe | 372 | 9 | 14 | 40 | 177 | 4 | ND | ND | ND | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utkuzova, A.M.; Chertkova, E.A.; Kryukova, N.A.; Malysh, J.M.; Tokarev, Y.S. “Hostbusters”: The Bacterial Endosymbiont Wolbachia of the Parasitoid Wasp Habrobracon hebetor Improves Its Ability to Parasitize Lepidopteran Hosts. Insects 2025, 16, 464. https://doi.org/10.3390/insects16050464
Utkuzova AM, Chertkova EA, Kryukova NA, Malysh JM, Tokarev YS. “Hostbusters”: The Bacterial Endosymbiont Wolbachia of the Parasitoid Wasp Habrobracon hebetor Improves Its Ability to Parasitize Lepidopteran Hosts. Insects. 2025; 16(5):464. https://doi.org/10.3390/insects16050464
Chicago/Turabian StyleUtkuzova, Alsu M., Ekaterina A. Chertkova, Natalia A. Kryukova, Julia M. Malysh, and Yuri S. Tokarev. 2025. "“Hostbusters”: The Bacterial Endosymbiont Wolbachia of the Parasitoid Wasp Habrobracon hebetor Improves Its Ability to Parasitize Lepidopteran Hosts" Insects 16, no. 5: 464. https://doi.org/10.3390/insects16050464
APA StyleUtkuzova, A. M., Chertkova, E. A., Kryukova, N. A., Malysh, J. M., & Tokarev, Y. S. (2025). “Hostbusters”: The Bacterial Endosymbiont Wolbachia of the Parasitoid Wasp Habrobracon hebetor Improves Its Ability to Parasitize Lepidopteran Hosts. Insects, 16(5), 464. https://doi.org/10.3390/insects16050464