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Simple Summary: The genus Colias Fabricius, 1807 is a taxonomically challenging group of butterflies.
Many Colias taxa display a high level of intraspecific variation in wing pattern and are weakly
differentiated with respect to genitalia structure; therefore, a conclusion on their status as a distinct
species, subspecies or local form can be controversial. In such cases, it is crucial to conduct a
comprehensive analysis based on various phylogenetic and biogeographical approaches and a large-
scale sampling dataset in order to resolve existing taxonomic and nomenclatural problems. In the
present study, we focused on two enigmatic Colias taxa of unclear taxonomic status, Colias mongola
Alphéraky, 1897 and Colias tamerlana Staudinger, 1897, restricted in distribution to western Mongolia,
northwestern China and the south Siberian part of Russia. Here, we conducted a DNA barcode-based
analysis that revealed complicate genetic pattern with several differentiated haplotypes clustered in
four distinct haplogroups. In addition, we found a strong correlation between a specific mitochondrial
haplogroup and Wolbachia infection, suggesting that Wolbachia endosymbionts may have played an
essential role in the biology and diversification of the taxa in question and the genus Colias as a whole.

Abstract: The genus Colias Fabricius, 1807 includes numerous taxa and forms with uncertain status
and taxonomic position. Among such taxa are Colias mongola Alphéraky, 1897 and Colias tamerlana
Staudinger, 1897, interpreted in the literature either as conspecific forms, as subspecies of different
but morphologically somewhat similar Colias species or as distinct species-level taxa. Based on
mitochondrial and nuclear DNA markers, we reconstructed a phylogeographic pattern of the taxa in
question. We recover and include in our analysis DNA barcodes of the century-old type specimens,
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the lectotype of C. tamerlana deposited in the Natural History Museum (Museum für Naturkunde),
Berlin, Germany (ZMHU) and the paralectotype of C. tamerlana and the lectotype of C. mongola
deposited in the Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia (ZISP).
Our analysis grouped all specimens within four (HP_I–HP_IV) deeply divergent but geographically
poorly structured clades which did not support nonconspecifity of C. mongola–C. tamerlana. We also
show that all studied females of the widely distributed haplogroup HP_II were infected with a single
Wolbachia strain belonging to the supergroup B, while the males of this haplogroup, as well as all
other investigated specimens of both sexes, were not infected. Our data highlight the relevance
of large-scale sampling dataset analysis and the need for testing for Wolbachia infection to avoid
erroneous phylogenetic reconstructions and species misidentification.

Keywords: Colias; DNA barcoding; Lepidoptera; molecular taxonomy; PCR screening; Wolbachia

1. Introduction

Colias Fabricius, 1807 (Lepidoptera, Pieridae) is one of the largest pierid genera, with
approximately 90 described species [1–4]. The genus has a predominantly Holarctic dis-
tribution, with a few species occurring in the Afrotropical, Oriental and Neotropical bio-
geographical regions [4–7]. Although Colias butterflies are among the most spectacular
and well-known Lepidoptera, which historically attracted much attention from researchers
and collectors, their taxonomy is still poorly elucidated. Colias butterflies may exhibit a
significant level of interspecific variation in the wing pattern. At the same time, many
allopatric taxa traditionally treated as separate species may have very similar phenotypes.
In addition, some taxonomically important characters, such as genitalia structures, com-
monly used for species delimitation in insects, are largely uniform in this group and do not
possess reliable diagnostic features [1]. Consequently, the systematics and real taxonomic
status (species, subspecies or interspecific forms) of many Colias taxa are a matter of debate.

The issues mentioned above can be applied to Colias tamerlana Staudinger, 1897 (Figure 1a)
and Colias mongola Alphéraky, 1897 (Figure 1b) distributed in western Mongolia, north-
western China and the south Siberian part of Russia [8,9]. Contradictory taxonomic status
has been suggested for this pair of taxa in the literature, from synonyms or subspecies
of several distinct species to separate species-level taxa (Figure 2). The former taxon was
described as a separate species by Otto Staudinger in 1897 from China, Xinjiang, East Tian
Shan, north of Hami, Karlik Shan Mts. [“im ostlichsten Thian-Schan-Gebirge (nordlich
von Chamyl)”] [10]. The last one was described by Alphéraky as a variety of Colias nastes
Boisduval, 1832 [Colias nastes B. var. mongola Alph. var. nova] in 1897 [11]. The type locality
of C. mongola has been the subject of considerable debates and contradictorily interpreted
in the taxonomic literature (Figure 3b). Korb [12] in his paper devoted to the taxonomy
of Colias cocandica Erschoff, 1874 and allied taxa placed the type locality of C. mongola a
few km south of Ulan-Bator (Mongolia). Grieshuber and co-authors [3] suggested that the
type series of C. mongola originates from the vicinity of Uliastai (Mongolia), at a distance of
ca. 750 km to the west of the locality indicated by Korb [12], but subsequently corrected
the area to the SE Khangai Mts. [1]. Gorbunov [13] indicated the environs of the village
Turan (Republic of Buryatia, Russia) as the type locality of C. mongola, an area located
more than 500 km away from the localities suggested by Korb [12] and Grieshuber [1,3].
Finally, Weiss [14] erroneously mentioned the South Altai (Kuray, Chuya, Kobdo) as the
type locality of C. mongola.

The nomenclatural priority of the name C. tamerlana over C. mongola [13] and the
taxonomic status of these taxa are also disputable [2,12–20]. Staudinger treated C. tamerlana
and C. mongola as synonyms [15]. Grieshuber and Lamas [2] pointed out weakly expressed
morphological differences between the two taxa and speculated that molecular analysis
could provide evidence for synonymizing C. tamerlana and C. mongola. Talbot [16] in
his “Lepidopterorum Catalogus” placed C. tamerlana as synonym of C. cocandica maja Grum-
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Grshimailo, 1891 without providing further explanations. Korb [12], based on examinations
of genitalia, concluded that mongola and tamerlana represent distinct species. Tshikolovets
and co-authors [17] regarded C. mongola as a subspecies of C. cocandica. These two taxa are
thought to be biogeographically isolated (the eastern limit of C. cocandica distribution range
lies in SE Kazakhstan (south Dzungaria) and NW China (Borohoro Mts.)) [3]; thus, the
conclusion of their conspecificity is rather doubtful. It should be noted that butterflies from
the Lake Khovsgol area (Mongolia), currently considered as the easternmost known popu-
lation of C. tamerlana/mongola, were originally referred to the much westerly distributed
C. cocandica and were described as a subspecies of the latter, C. cocandica sidonia Weiss,
1968 [14]. Some authors regarded this taxon as a subspecies of Colias nastes Boisduval,
1832, without considering the relationships between C. mongola and C. tamerlana and their
taxonomic status [18–21], while mentioning that C. mongola was formerly treated as a
separate species.
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further confirmation (in particular, by applying molecular methods), given that sidonia 

Figure 1. Type specimens of the Colias species deposited in the Zoological Institute, Russian Academy
of Sciences, St. Petersburg, Russia (ZISP), barcoded in the present study: (a) paralectotype (female) of
C. tamerlana Staudinger, 1897; (b) lectotype (male) of C. mongola Alphéraky, 1897.

To some extent, this assumption was based on the discovery of a large series of
specimens, later described as Colias nastes jacutica Kurentsov 1970, which phenotypically
somewhat resembles sidonia, the taxon that was provisionally considered a valid subspecies
of C. tamerlana/mongola. In the original description [21], Colias nastes jacutica is interpreted as
an intermediate link between nastes and mongola (sensu lato); yet, this assumption requires
further confirmation (in particular, by applying molecular methods), given that sidonia and
nastes are separated by more than 2500 km without any record for the species in the gap.
The second subspecies of C. tamerlana/mongola, C. mongola ukokana Korb and Yakovlev, 2000,
was described from the Ukok Plateau (Republic of Altai, Russia) [22], but currently ukokana
is considered a synonym of the nominotypical mongola [1–3].

The correct delineation and identification of species is not always possible based on
characters of external morphology alone, especially in such taxonomically challenging
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groups as Colias [23–26]. Over the last decades, the rapid development and implementation
of new molecular techniques and approaches validated mitochondrial (e.g., DNA barcodes)
and nuclear DNA markers as a useful and efficient tool for species identification, detect-
ing and analyzing cryptic diversity, revealing interspecific and deep-level relationships
and phylogenetic structure in taxonomically challenging groups of insects, solving long-
standing taxonomic problems [23,27–41]. Despite the broad and constantly growing usage
of DNA-based techniques in butterfly taxonomy and molecular systematics, surprisingly
few studies focused, so far, on the genus Colias [6,42–46]. Moreover, all but a few research
studies aimed at inferring Colias phylogeny or relating to molecular aspects of the genus
were based on a limited set of taxa and/or poor specimen sampling. Some recent studies
and our unpublished data suggested that morphologically well-differentiated Colias species
may have nearly identical or even shared COI (cytochrome c oxidase subunit 1 gene) hap-
lotypes. For instance, D’Ercole and co-authors [47] showed that all 22 North American
Colias species shared at least one of the revealed barcode sequences with another species.
Conversely, two or more deeply diverged mitochondrial lineages (e.g., DNA barcodes) may
be found within the same species [42]. In such cases, imbalanced taxa sampling and/or
testing only a small number of specimens per species could obscure the true phylogenetic
relationships within the genus and lead to species misidentification and incorrect taxonom-
ical conclusions. To overcome this problem, all Colias taxa should be analyzed in detail to
ascertain their actual taxonomic status and avoid erroneous interpretations.

Here, we analyzed three nuclear genes, Ca-ATPase (sarco/endoplasmic reticulum
calcium ATPase), H3 (Histone h3) and CAD (Carbamoyl-Phosphate Synthetase 2, Aspartate
Transcarbamylase and Dihydroorotase), as well as the barcoding region of the mitochon-
drial COI gene, for a large set of C. mongola and C. tamerlana samples, including, recovered
for the first time, DNA barcodes of the century-old type specimens. We also conducted PCR
screening for three Wolbachia genes of the collected C. mongola and C. tamerlana butterflies
in order to reveal patterns of Wolbachia infection.

Based on a large-scale sampling dataset, our study aimed to (i) reveal the phylo-
geographic structure of C. mongola and C. tamerlana, (ii) clarify their taxonomic status,
contradictory interpreted in the literature and (iii) shed light on the role of Wolbachia in
evolutionary history and observed biogeographic patterns of the taxa in question.
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Figure 3. Maps showing location of the study area (red rectangle) (a), sampling localities of analyzed
specimens of C. mongola/C. tamerlana (1–18) (b) and geographical distribution of COI haplogroups of
C. mongola/C. tamerlana (c–f). Colours of circles correspond to revealed COI haplogroups; squares and
question marks indicates suggested type localities of C. mongola (see text for explanation); triangle
indicates type locality of C. tamerlana; asterisk indicates type locality of C. tamerlana sidonia; Wolbachia
infected populations are indicated by “+”.

2. Materials and Methods
2.1. Taxon Sampling

Ninety-one specimens of C. mongola and C. tamerlana were collected in various localities
of western Mongolia, northwestern China and the south Siberian part of Russia (Figure 3a),
covering the known distribution ranges of these taxa. All sampling sites were partitioned
into eighteen populations (Figure 3b). Samples either were preserved in 96% alcohol or
were kept dry for subsequent molecular analysis. The lectotype of C. tamerlana deposited
in the Natural History Museum (Museum für Naturkunde), Berlin, Germany (ZMHU), the
paralectotype of C. tamerlana and the lectotype of C. mongola deposited in the Zoological
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Institute, Russian Academy of Sciences, St. Petersburg, Russia (ZISP), four specimens
of C. tamerlana sidonia from the type locality deposited in the Zoological Museum of the
Moscow State University, Moscow, Russia (ZMMU) and three samples mined from BOLD
database (http://www.boldsystems.org, accessed on 3 September 2022) were included
in the sampling dataset. Thus, the final dataset included 101 specimens. The list of the
specimens used for the molecular analysis with identification codes and collection data is
given in the electronic Supplementary Materials (Table S1).

2.2. DNA Extraction

One leg from each specimen was taken for DNA extraction. For the samples more
than 10 years old, the total genomic DNA was extracted using QIAamp DNA Investigator
Kit (Qiagen, Venlo, The Netherlands), following the manufacturer’s protocol. For the
specimens up to 10 years old, DNA extraction was performed using the CTAB-based
method [48] with some modifications [39,49]. The segments were homogenized in CTAB
buffer and digested with proteinase K (10 mg/mL) overnight at 56 ◦C. DNA was purified
through successive ethanol precipitations and stored in dd H2O at −20 ◦C.

2.3. Molecular Markers, PCR Amplification and Sequencing

One mitochondrial (COI) and three nuclear (Ca-ATPase, H3 and CAD) genes were
used as molecular markers. A 658 bp fragment of the COI gene (mitochondrial DNA bar-
code) was amplified using LCO1490/HCO2198 [50] and LepF/LepR primer pairs [51].
In case standard lepidopteran barcode primers failed to yield a sufficient product,
we amplified full-length barcode fragments using the primer pair combinations
LepF/MH-MR1 + MH-MF1/LepR and LCO1490/MH-MR1 + MH-MF1/HCO2198 [52].
Primers CAD743nF/CADmidR, CADmidF/CAD1028R [53], H3aF/H3aR [54] and Ca-
ATPase_F/Ca-ATPase_R [55] were used for nucDNA amplification and resulted in 847 bp
fragment of the CAD, 328 bp fragment of the H3 and 445 bp fragment of the Ca-ATPase
genes, respectively.

The PCR amplifications were performed in a 15 µL reaction volume per sample.
Each reaction contained 1 µL template DNA (ca. 10–50 ng genomic DNA), 0.9 µL of
both forward and reverse primers diluted to a standard concentration of 10 µM, 3 µL
of 5× ScreenMix (Evrogen, Moscow, Russia) and 9.2 µL of ddH2O. The temperature
profile for COI, CAD and Ca-ATPase genes was as follows: initial denaturation at 95 ◦C
for 5 min, followed by 35 cycles of denaturation at 94 ◦C for 30 s, annealing at 50 ◦C
(COI)/55 ◦C (CAD, Ca-ATPase)/60 ◦C (H3) for 30 s and extension at 72 ◦C for 1 min 30 s,
with a final extension at 72 ◦C for 10 min. The purified PCR products were subjected to
further sequencing. Sequencing of the double-stranded product was carried out at the
Research Resource Center for Molecular and Cell Technologies (St. Petersburg State Uni-
versity, St. Petersburg, Russia) using ABI 3500xL analyzer (Applied Biosystems, Waltham,
MA, USA).

2.4. Processing and Sequencing of Old Type Specimens

To obtain COI barcodes of the century-old type specimens we followed the protocol
described in detail by Li et al. [56]. In brief, a single leg was used for DNA extraction.
The DNA isolation protocol was non-destructive: the entire leg was soaked in a DNA
extraction solution overnight and was preserved after the extraction. Genomic libraries
were constructed from total DNA and sequenced for 150 bp from both ends on Illumina
HiSeq ×10 (Illumina, San Diego, CA, USA) in a pool with others. The sequences were
demultiplexed to assign to each specimen by the index and indices removed. The barcodes
were assembled using a reference sequence as a bait. All sequence reads matching the
reference were mapped to it using DIAMOND [57]. The coverage of the barcode sequence is
typically high (100 to 1000-fold or more), and overlapping reads resulted in an unambiguous
sequence. Further details of experimental and computational protocols can be found in [56].

http://www.boldsystems.org
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2.5. Detection of Wolbachia Endosymbionts

Colias specimens were screened for the presence of Wolbachia infection by amplify-
ing three Wolbachia genes, 16S ribosomal RNA (16S), Wolbachia surface protein (wsp) and
Filamentation temperature-sensitive protein Z (ftsZ). We used Wolbachia-specific primer pairs,
W-Specf/W-Specr [58], wsp81F/wsp691R [59] and ftsZ-F/ftsZ-R [60], amplifying ~ 396 bp
fragment of the 16S RNA gene, ~ 549 bp fragment of the wsp gene and ~ 510 bp fragment
of the ftsZ gene (actual length of PCR fragments may vary, depending on the individual
Wolbachia strain), respectively. The PCR amplifications were performed in a 15 µL reaction
volume. Each reaction contained 1 µL template DNA (ca. 10–50 ng genomic DNA), 0.8 µL
of both forward and reverse primers diluted to a standard concentration of 10 µM, 3 µL of
5× ScreenMix (Evrogen, Moscow, Russia) and 9.4 µL of ddH2O. The temperature profile
for 16S, wsp and ftsZ genes was as follows: initial denaturation at 95 ◦C for 5 min, followed
by 40 cycles of 30 s denaturation at 95 ◦C, 1 min annealing at 50 ◦C and extension at 72 ◦C
for 45 s, with a final extension at 72 ◦C for 5 min. Each PCR reaction contained two negative
(PCR mix with ddH2O instead of DNA sample) and one positive (genomic DNA of a
Wolbachia-infected Colias specimen, previously successfully amplified for 16S, wsp and ftsZ
genes) controls. PCR amplification was conducted twice for each specimen in order to
avoid technical errors. To ascertain the presence/absence of Wolbachia, each PCR product
was checked on 1% standard agarose gel. Our personal unpublished data suggests that the
standard screening procedure for Wolbachia allows detecting infection in host specimens
up to 30–35 years old but it sufficiency largely depends on the quality of the genomic
DNA and storage conditions of the specimens. Thus, to avoid false-negative results, we
excluded from the analysis samples collected more than twenty years ago (before the 2000s).
Specimens positive for three Wolbachia genes were sequenced at the Research Resource
Center for Molecular and Cell Technologies (St. Petersburg State University, St. Petersburg,
Russia) using ABI3500xL Genetic Analyzer (Applied Biosystems, Waltham, MA, USA).

2.6. Molecular Data Analysis and Phylogenetic Reconstructions

All sequences were checked for errors, edited and aligned using Geneious v.8.1.6 [61]
and BioEdit v.7.0.3 [62] software. Primer sequences were cropped. The final COI dataset
(alignment length 658 bp) included 101 sequences of C. mongola/C. tamerlana. Sequences
of pierids Leptidea juvernica (Linnaeus, 1758) and Colias croceus (Geoffroy, 1785) (GenBank
accession numbers MT210323 and OR178497, respectively) obtained previously were in-
cluded as an outgroup to root the phylogram. COI sequences were collapsed to unique
haplotypes using online tool FaBox v.1.61 (https://birc.au.dk/~palle/php/fabox/, ac-
cessed on 5 November 2022) [63]. The concatenated nuclear dataset (alignment length
1620 bp) included sequences of 17 C. mongola/C. tamerlana specimens representing all
revealed COI haplogroups. Phylogenetic reconstructions placed C. croceus within basal
lineages of the genus Colias, thus it was selected as the outgroup to root the mitochondrial
and nuclear phylograms [42,43]. Nucleotide substitution models for each dataset were
estimated based on the Bayesian information criterion (BIC) using jModelTest v.2.1.10 [64].
The best-fitting models were as follows: JC for COI dataset and HKY+I for concatenated
Ca-ATPase+H3+CAD nuclear genes fragments. Bayesian analyses were performed using
the MrBayes v.3.2.7a software [65]. Parameters were estimated using two independent runs
of 10 million generations each with four simultaneous chains (one cold and three heated).
The sampling of trees and parameters was set to every 1000 generations. The first 10% of
trees were discarded as burn-in prior to computing a consensus phylogeny and posterior
probabilities. TRACER v.1.6 was used for checking the stationarity and convergence of
Bayesian analyses between runs [66]. The consensuses of the obtained trees were visualized
using FigTree v.1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/, accessed on 5 November
2022). For the analysis of the phylogeographical structure of C. mongola and C. tamerlana, a
median-joining haplotype network [67] was built using popART v.1.7 software [68]. Genetic
distances among COI barcodes were calculated using MEGA v.7.0.14 [69]. The number of
polymorphic and parsimony informative sites, the number of haplotypes, haplotype (h)

https://birc.au.dk/~palle/php/fabox/
http://tree.bio.ed.ac.uk/software/figtree/
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and nucleotide (π) diversities were calculated in DnaSP v.6.12.03 [70]. DnaSP was further
used to infer the demographic history of C. mongola and C. tamerlana with Tajima’s D [71],
Fu and Li’s D [72], Fu and Li’s F [72] and Fu’s Fs [73] statistical tests for neutrality.

2.7. Molecular Characterization of Wolbachia

The BLAST algorithm implemented in NCBI (https://blast.ncbi.nlm.nih.gov, accessed
on 20 July 2023) was used to search for sequence similarities in GenBank database with
known DNA (BLASTN) sequences. We mined 43 16S, 74 wsp and 71 ftsZ sequences with
the highest percentage identity match, which were included in the alignment datasets. In
the final alignments, identical Wolbachia sequences of the same host species were limited
to one record. To estimate relationships among Wolbachia alleles, phylogenetic analyses
were conducted for each gene independently using the Bayesian inference (BI) approach,
applying GTR+G (for 16S gene fragment) and GTR + I +G (for wsp and ftsZ genes fragments)
substitution models, as suggested by jModelTest v.2.1.7 [64]. All other parameters of the
Bayesian analyses were the same as for COI alignment.

2.8. Data Availability

All sequences obtained for COI, CAD, Ca-ATPase and H3 Colias genes and for 16S, wsp and
ftsZ Wolbachia genes were deposited to GenBank under accession numbers OP946559–OP946652,
OR178498–OR178501, OR178497 (COI), OQ192178–OQ192194 (CAD), OQ1921161–OQ192177
(Ca-ATPase), OQ192144–OQ192151 (H3), OQ155222–OQ155235 (16S), OQ192116–OQ192129
(wsp) and OQ192130–OQ192143 (ftsZ) and listed in the electronic Supplementary Materials
(Table S2). Voucher specimens were deposited in the Department of Karyosystematics
of the Zoological Institute of the Russian Academy of Sciences and private collections
of A. Kir’yanov, A. Krupitsky, A. Marusov, A. Kurmaev, S. Churkin (Moscow, Russia),
B. Khramov (St. Petersburg, Russia) and R. Yakovlev (Barnaul, Russia).

3. Results
3.1. Haplotypic Diversity of C. mongola/C. tamerlana

Haplotype analysis of a dataset of 101 C. mongola and C. tamerlana specimens revealed
12 COI haplotypes clustering in four distinct haplogroups (HP_I–HP_IV) (Figure 4a). Each
haplogroup consists of one main haplotype and one to four satellites, differing from the
main haplotypes in one nucleotide substitution. The only one exception is haplogroup
HP_II, which consists of a single haplotype hp2. A low rate of genetic diversity ranging
from 0% to 0.07% ± 0.05% was detected within each haplogroup. On the contrary, sequence
divergence between haplogroups is relatively high (1.23% ± 0.41%–2.56% ± 0.62%), with a
maximum p-distance of 2.89% ± 0.62% between the most divergent haplotypes (Table 1).

Table 1. Summary of mitochondrial haplotype diversity of C. mongola/C. tamerlana. The number
of individuals sequenced (N), the number of haplogroups (HG) and haplotypes (H) revealed, the
number of polymorphic sites (S), nucleotide (π) and haplotype (h) diversities are given. Tajima’s D,
Fu and Li’s D, Fu and Li’s F, Fu’s Fs, max. p-distance, within and between group divergence values
with standard deviation (in brackets) are shown.

N HG H S π h Tajima’s D Fu and
Li’s D

Fu and
Li’s F Fu’s Fs Max.

P-Distance
Within Group

Divergence
Between Group

Divergence

101 4 12 28 0.0138656 0.7874 2.01246 1.21273 1.82127 7.422 2.89% HP_I 0.04%
(± 0.02%)

HP_I/HP_II 2.56%
(±0.59%)

0.1 > p > 0.05 p > 0.1 p < 0.05 p = 0.001 (±0.62%) HP_II 0.00%
(±0.00%)

HP_I/HP_III 2.40%
(±0.57%)

HP_III 0.07%
(±0.05%)

HP_I/HP_IV 2.56%
(±0.58%)

HP_I 0.04%
(±0.03%)

HP_II/HP_III 1.39%
(±0.42%)
HP_II/HP_IV 1.23%
(±0.41%)
HP_III/HP_IV
1.41% (±0.43%)

https://blast.ncbi.nlm.nih.gov
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Figure 4. Phylogenetic patterns of C. mongola/C. tamerlana based on the analysis of mitochon-
drial (COI) and nuclear (Ca-ATPase, H3 and CAD) markers. (a) Median-joining haplotype network
illustrating relationships of the revealed COI haplotypes; mutations are shown as 1-step edge.
(b,c) The Bayesian consensus trees of C. mongola/C. tamerlana inferred from COI sequences (b) and
concatenated alignment of three nuclear markers (c); numbers at nodes indicate Bayesian posterior
probabilities (PPs).

In general, haplotype distribution demonstrates no clear geographical structure: hap-
lotypes of all four haplogroups commonly occur in sympatry; at the same time, they
can be found in the geographically remote populations (Figure 3c–f). Twenty-six speci-
mens clustered in three haplotypes of the haplogroup HP_I was shared by 9 populations.
Seventeen specimens constituted a single haplotype of the haplogroup HP_II, which oc-
curred in 10 sampling sites. Forty-two specimens were grouped into five haplotypes of
the haplogroup HP_III and sixteen specimens constituted three haplotypes of the hap-
logroup HP_IV, which were found in 11 and 4 sampling sites, respectively. Four haplotypes,
namely hp1b, hp2, hp3a and hp4a, were the most commonly observed haplotypes out of
all screened individuals. On the contrary, haplotypes hp1c, hp3b, hp3c, hp4b and hp4c,
consisting of only one specimen each, were found in single sampling sites. Detailed data
on the distribution of the haplotypes among specimens and localities is given in Table 2.
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Table 2. Haplogroup and haplotype composition (the number of individuals constituted a hap-
logroup/haplotype (n), and the number of sampling sites where haplogroup/haplotype was found
(Sn) are given) and its geographical distribution (the number of individuals (n), the number of
haplogroups (HGn), the number of haplotypes (Hn) found in each locality and haplotype constitution
are shown). *—sampling sites correspond to Figure 3b.

Haplogroup n Sn COI Haplotype n Sn Sampling
Site * n HGn Hn COI Haplotype (n)

HP_I 26 9
hp1a 5 4 01 7 2 2 hp1b (2), hp3a (5)
hp1b 20 6 02 3 2 3 hp1a (1), hp1c (1), hp3b (1)
hp1c 1 1 03 3 1 1 hp2 (3)

HP_II 17 10 hp2 17 10 04 1 1 1 hp2 (1)

HP_III 42 11

hp3a 35 9 05 5 3 3 hp2 (2), hp3a (2), hp4a (1)
hp3b 1 1 06 6 3 3 hp2 (2), hp3c (1), hp4a (3)
hp3c 1 1 07 2 1 1 hp3a (2)
hp3d 3 1 08 1 1 1 hp4c (1)

hp3e 2 1 09 35 4 7 hp1a (2), hp2 (1), hp3a (17),
hp3d (3), hp3e (2), hp4a (9), hp4b (1)

HP_IV 16 4
hp4a 14 4 10 5 3 3 hp1a (1), hp2 (1), hp3a (3)
hp4b 1 1 11 2 1 1 hp3a (2)
hp4c 1 1 12 2 1 1 hp3a (2)

13 2 2 2 hp2 (1), hp3a (1)
14 9 3 4 hp1a (2), hp1b (5), hp2 (1), hp4a (1)
15 2 1 1 hp1b (2)
16 1 1 1 hp2 (1)
17 10 3 3 hp1b (5), hp2 (4), hp3a (1)
18 4 1 1 hp1b (4)

3.2. Phylogenetic Analyses of Mitochondrial and Nuclear Markers

The Bayesian phylogenetic tree for C. mongola/C. tamerlana COI haplotypes displayed
four strongly supported (PP = 1) lineages (Figure 4b), corresponding to four haplogroups
revealed by haplotype network analysis. Within the C. mongola/C. tamerlana clade, a
basal position is occupied by haplotype hp2, which is common and widespread across the
geographical area studied. Further splitting recovers the clade containing specimens of the
HP_IV haplogroup. This clade, in turn, appeared as a sister to the remaining two clusters,
consisting of haplotypes hp3a–hp3e and hp1a–hp1c, respectively.

Combined analysis of three nuclear markers (Ca-ATPase, H3 and CAD) resulted in an
unresolved tree for C. mongola/C. tamerlana that failed to recover clades revealed by BI anal-
ysis of COI barcodes (Figure 4c). In general, nuclear markers demonstrate a very shallow
divergence forming on the phylogenetic reconstructions two unsupported clades (PP = 0.58;
PP = 0.61), each consisting of specimens bearing COI haplotypes of different haplogroups.
Both intra-individual heterogeneities and single nucleotide substitutions were found in
sequenced fragments of Ca-ATPase, CAD and H3 nuclear genes among the 17 analyzed
specimens of C. mongola/C. tamerlana. However, polymorphic sites were distributed inho-
mogeneously across the three genes fragments. The 847 bp fragment of the CAD was the
most variable with 23 heterogeneities/substitutions found, whereas 445 bp fragment of the
Ca-ATPase gene and 328 bp fragment of the H3 gene were conserved, having four and one
polymorphic sites, respectively. Detailed information on the nucleotide variability of the
studied nuclear gene fragments is given in the electronic supplementary (Table S3).

3.3. Wolbachia Analysis

A total of 88 specimens of C. mongola/C. tamerlana, representing all four COI hap-
logroups recovered, was screened for the presence of the Wolbachia infection. Screening
for three Wolbachia genes (16S, wsp and ftsZ) did not reveal any cases of dissimilar re-
sults (i.e., when a specimen was positive for one Wolbachia gene, but negative for another
gene/genes). In total, 14 specimens out of 88 tested were scored positive for Wolbachia
infection (prevalence: 16%). Our analysis suggested a sex-dependent congruence between
a specific COI haplogroup and Wolbachia infection: all 14 infected specimens were females
of the COI haplogroup HP_II comprising a single haplotype hp2. Three analyzed males of
this haplogroup, as well as all other investigated specimens, were not infected (Figure 5).
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Our survey did not recover a specific geographical pattern of Wolbachia incidence: infected
specimens were randomly found in the geographically remote populations (Figure 3d).
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3.3.1. Wolbachia Allele Identified in C. mongola/C. tamerlana

Wolbachia 16S, wsp and ftsZ genes were sequenced for all infected specimens
(14 females) of C. mongola/C. tamerlana. These specimens were infected by a Wolbachia
strain belonging to the supergroup B (grouping according to [74], which was designated as
wTam (name following the widely accepted abbreviation style [59,75]).

Comparison with Wolbachia alleles found in other Colias taxa (personal unpublished
data) revealed that the wTam strain isolated from C. mongola/C. tamerlana was most similar
to one of the strains found in C. palaeno (Linnaeus, 1761), having, with the latter, identical
16S and ftsZ Wolbachia sequences and differing in one nucleotide substitution in the wsp
gene fragment. Infected C. mongola/C. tamerlana specimens share the 16S Wolbachia se-
quence with several insect taxa, belonging to orders Lepidoptera (Pieridae, Nymphalidae,
Tortricidae), Orthoptera (Acrididae), Hemiptera (Issidae, Lygaeidae) and wsp sequence
with Phengaris nausithous (Bergsträsser, 1779) (Lepidoptera, Lycaenidae). The closely related
Wolbachia alleles were found in Hemiptera families Aleyrodidae, Triozidae, Delphaci-
dae, Aphididae and Liviidae for the gene 16S; in insect orders Lepidoptera, Orthoptera,
Hemiptera, Diptera, Hymenoptera and spider mites (Trombidiformes) for the gene wsp;
and in Lepidoptera, Orthoptera, Hemiptera, Diptera, Hymenoptera, Coleoptera and Trom-
bidiformes for the gene ftsZ (https://blast.ncbi.nlm.nih.gov, accessed on 20 July 2023).

3.3.2. Phylogenetic Inferences

Bayesian analysis of the Wolbachia 16S gene fragment based on 43 most similar se-
quences with known host species mined from GenBank recovered two clades with high
(clade I, BS = 0.96) and low (clade II, BS = 0.78) support (Figure 6). All Wolbachia 16S
sequences isolated from infected C. mongola/C. tamerlana specimens were grouped within
clade II together with the Wolbachia alleles found in three insect orders: Lepidoptera,
Hemiptera and Orthoptera. The clade I included Wolbachia alleles found in various Lep-
idoptera families, Diptera, Coleoptera, Hemiptera and mites (Parasitiformes, Trombidi-
formes). Maximum p-distances within clade I and clade II were as high as 1.5% and 0.8%,
respectively; maximum p-distances between the two clades were 1.8%.

Bayesian analysis of the Wolbachia wsp gene fragment based on 74 most similar
sequences with known host species mined from GenBank revealed two clades: well-
supported clade I (BS = 1) and weakly supported clade II (BS = 0.69). The latter, in turn, is
subdivided into several unsupported lineages (Figure 7). Obtained in the present study
Wolbachia wsp sequences from C. mongola/C. tamerlana clustered within the subclade A of
the wsp clade II, which unites Wolbachia wsp alleles isolated from members of the insect
orders Lepidoptera, Orthoptera, Hemiptera, Diptera, Hymenoptera and spider mites (Trom-
bidiformes). Maximum p-distances within wsp clade I and wsp clade II were as high as 1.8%
and 5.7%, respectively; between the two clades was 7.1%; and within subclade A was 3%.

https://blast.ncbi.nlm.nih.gov
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For the phylogenetic analysis of the Wolbachia ftsZ gene fragment, we used additional
71 of the most similar sequences with known host species obtained from GenBank. Bayesian
analysis revealed several highly supported clades (Bayesian posterior probability > 0.95);
however, deeper nodes mostly remained poorly resolved (Figure 8). Wolbachia sam-
ples isolated from C. tamerlana specimens were grouped within a well-supported clade
(BS = 0.98), together with members of insect orders Lepidoptera, Orthoptera, Hemiptera,
Diptera, Hymenoptera, Coleoptera and Trombidiformes mites. Maximum p-distances
within this clade were as high as 1.77%; maximum p-distances among all analyzed ftsZ
samples reached 2.37%.
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4. Discussion
4.1. Molecular Analysis and Taxonomy of C. mongola/C. tamerlana

Mitochondrial DNA is widely used in phylogenetic reconstructions, taxonomic studies
and species identification and delimitation due to distinct advantages over other molecular
markers [76,77]. However, numerous studies underline the limited application of DNA
barcoding in the context of incomplete lineage sorting, mitochondrial introgression and
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infection by endosymbionts, such as Wolbachia [78–84]. Our analysis of the mitochondrial
barcodes alone revealed four differentiated clades within C. mongola/C. tamerlana with
genetic distances reaching 2.89%. Such values are comparable to “standard” species-level
COI divergence empirically estimated for Lepidoptera [85–88] and suggest a relatively old
separation of the recovered COI lineages. In fact, if we relied solely on COI barcodes, the
possible conclusion would have been that the observed lineages might represent unique
cryptic species, especially taking into account the comparatively young radiation of the
genus Colias [43,44]. However, this conclusion was not supported by subsequent analyses of
the nuclear genes and phenotypic traits. The recovered mtDNA phylogenetic structure was
not corroborated by the nuclear data: the specimens bearing different COI haplotypes were
randomly distributed across the nucDNA phylogenetic tree. The nuclear sequences showed
no signs of significant divergence between the clades, delimited by mitochondrial barcodes,
forming a single, nearly unstructured entity. Furthermore, butterflies collected from the
remote geographical localities show no traces of morphological differentiation despite
their phenotypic variability. The only exception is C. tamerlana sidonia, the geographically
isolated taxon from the Lake Khovsgol area (Mongolia), which differs from the typical
C. mongola/C. tamerlana in its larger size, less developed dark suffusion on the fore- and
hindwings and large submarginal light spots. Such prominent morphological differences
even force some authors to consider sidonia as a subspecies of the more easterly distributed
taxon, C. nastes. However, our data unequivocally show that sidonia undoubtedly belongs
to the C. mongola/C. tamerlana complex, sharing common and geographically widespread
COI haplotype hb1 with the latter. It should also be noted that in the case of cryptic
species, we should expect geographic isolation (in case of allopatry) or niche separation (in
case of sympatry) of revealed mtDNA clusters, which we consider as a putative cryptic
species [89–91]. Certainly, this is not the case for C. mongola/C. tamerlana, where butterflies
of different COI haplogroups were found flying together syntopically (in the same habitat)
and synchronously (at the same time), in other words in complete sympatry without any
niche separation.

The taxonomic status of C. mongola and C. tamerlana and the relationships of this pair of
taxa and allied species is also a subject of longstanding debates. Analysis of the century-old
type specimens, namely the lectotype of C. tamerlana, the paralectotype of C. tamerlana and
the lectotype of C. mongola, along with C. tamerlana sidonia specimens from the type locality,
presumably belonging to the type series, allowed us to shed light on this very controversial
issue of the Colias taxonomy. The type locality of C. mongola has been contradictorily
interpreted in the taxonomic literature and cannot be clearly ascertained. Thus, the limited
number of specimens originating from the type series stored in the museum collections
is the only reliable source of molecular data. Here, using NGS approach, we recover and
analyze DNA barcodes of these old museum specimens. We confirm the conspecificity
of C. tamerlana and C. mongola and show that the type specimens of these taxa share the
same COI haplotype hb1, common and widely spread over a large geographical area from
northwestern China through the south Siberian part of Russia to western Mongolia.

4.2. Wolbachia Infection in C. mongola/C. tamerlana

Recent investigations have suggested that Wolbachia infection is common and widespread
in Lepidoptera [92–94]; however, large-scale and comprehensive studies devoted to the
incidence, pattern of Wolbachia infection and its impact on phylogenetic inferences of host
species are still scarce [95–104]. To date, Wolbachia infection has been reported only for a
few Colias species, namely C. palaeno, C. hyale (Linnaeus, 1758), C. poliographus Motschulsky,
1861 and C. croceus [46,94,105,106]. Here, we designated a new Wolbachia allele wTam, which
had not been previously recorded in Colias. Surprisingly, none of the available Wolbachia wsp
and ftsZ STs (sequence types) found in Colias and deposited in public databases GenBank
(https://blast.ncbi.nlm.nih.gov, accessed on 20 July 2023) and PubMLST-Wolbachia (https://
pubmlst.org/organisms/wolbachia-spp, accessed on 25 July 2023) fall within the sequences

https://blast.ncbi.nlm.nih.gov
https://pubmlst.org/organisms/wolbachia-spp
https://pubmlst.org/organisms/wolbachia-spp
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with the highest percentage identity much to wTam. However, our personal unpublished
data suggest that alleles similar to wTam can be found in other Colias taxa.

The Wolbachia allele found in C. mongola/C. tamerlana is shared among different insect
species, families and even orders. Wolbachia infection is mainly vertically transmitted
to the progeny via maternal cytoplasm. Accordingly, one should expect the phylogeny
of Wolbachia to be consistent with the phylogeny of their hosts. Notwithstanding, the
horizontal transfer of Wolbachia between insect hosts have been suggested for many in-
sect taxa [107–112]; however, the mechanisms of this phenomenon remain to be charac-
terized. It has been suggested that Wolbachia can shift between distantly related hosts
through host-parasitoid interactions [113–116], shared host plants [117–120], hybridisation
events [99,121–124] and predator-prey associations [125].

Wolbachia 16S sequence obtained in our study is shared by two Lepidoptera species,
nymphalid Neonympha mitchellii French, 1889 distributed in the eastern USA and tortri-
cid moth Eucosma cana (Haworth, 1811), the meadow grasshopper Chorthippus parallelus
(Zetterstedt, 1821) (Orthopthera, Acrididae), the false chinch bug Nysius expressus Distant,
1883 (Hemiptera, Lygaeidae) and the planthopper Agalmatium flavescens (Olivier, 1791)
(Hemiptera, Issidae). The Wolbachia wsp sequence is shared by the lycaenid butterfly Phen-
garis nausithous (Lepidoptera, Lycaenidae). Our data evidenced that the same Wolbachia
strain may occur in very distant, not closely related taxa. Thus, we confirm previous studies
suggesting that horizontal transmissions events are quite common in nature [126,127].
Interestingly, the very similar wsp and ftsZ STs to C. mongola/C. tamerlana carry spider
mites (Acari, Trombidiformes). Mites are known as common parasites for Lepidoptera and
other insects and arthropods and have been suggested as potential vectors for Wolbachia
transmission [128,129]. Occurrence of closely related Wolbachia strains in butterflies and
Trombidiformes indicate that the Wolbachia host switches in Lepidoptera might be caused
by mites.

Screening for Wolbachia revealed infection in 14 specimens (out of 88 tested), suggest-
ing a relatively low infection rate in C. mongola/C. tamerlana (prevalence: 16%). One of the
most intriguing results obtained in the present study is that all infected specimens were
females of certain haplotype (hp2), indicating possible sex and haplotype selectiveness
of the Wolbachia infection. However, detailed studies based on more extensive sampling
and thorough inspection for Wolbachia in both reproductive and somatic tissues are needed
in order to confirm this hypothesis. To our knowledge, such sex-biased, selective and
total infection of certain mitochondrial lineage have never been observed in Lepidoptera.
Moreover, our personal unpublished data suggest that such patterns of selective infec-
tion can be found in other Colias taxa, presumably being a general characteristic of the
genus. It also should be noted that a surprisingly low number of publications devoted to
analysis of Wolbachia infection in Lepidoptera consider Wolbachia prevalence in males and
females independently [130,131], while the sex-dependent impact of Wolbachia on its hosts
is highly expected.

Interestingly, a somewhat similar pattern has been observed in another pierid genus
Eurema (Lepidoptera, Pieridae), belonging to the same subfamily Coliadinae, where the sex-
biased female lineages of Wolbachia were discovered in two Japanese species [132–134]. The
Wolbachia allele wFem was found at low frequencies only in the Eurema females and has not
been observed in the males. A causative role of wFem allele in feminization, a well-known
manipulation effect deployed by Wolbachia [135], has been proposed. It has been shown
that antibiotic treatment of infected larvae leads to occurrence of intersex individuals,
while treatment of adult females results in all-male progeny. We cannot exclude that the
sex-biased Wolbachia infection observed in C. mongola/C. tamerlana is also a consequence of
feminization, a phenomenon that has been rarely encountered within Lepidoptera [136].
However, further comprehensive studies based on the lab experiments and analysis of
additional material are needed to confirm such assumptions.
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5. Conclusions

Our study is the first large-scale investigation aimed at a detailed analysis of phylo-
geographical structure, geographical distribution and taxonomy of two enigmatic Colias
taxa with controversial taxonomic status, C. mongola and C. tamerlana. Our analysis clus-
tered DNA barcodes that were obtained for the present study in four distinct haplogroups;
however, no association between nuclear genes and mitochondrial clusters, as well as
between the distribution of mitochondrial haplotypes and geography, has been revealed.
Using NGS approach, we recover and analyze DNA barcodes of century-old C. mongola
and C. tamerlana type specimens. We show that the type specimens of these taxa share the
same COI haplotype. These results confirm the conspecificity of C. tamerlana and C. mongola,
solving a longstanding question about their taxonomic status, also demonstrating that
the application of modern techniques is of a great importance in cases when the type
locality is unknown or cannot be clearly ascertained, and old material originated from
the type series is the only reliable source of molecular data. We analyze the presence
and prevalence of Wolbachia in C. mongola/C. tamerlana and found strong correlations
between sex, specific mitochondrial lineage and Wolbachia infection. Phylogenetic anal-
ysis placed the Wolbachia strain of C. mongola/C. tamerlana together with members of
different insect families and even orders, indicating multiple events of host shifts, thus
being consistent with the former studies, evidencing that horizontal transmission is a
common mechanism of Wolbachia expansion. We conclude that the occurrence of deep
intraspecific divergences of DNA barcodes is not necessarily a consequence of cryptic
speciation but instead can be a result of Wolbachia infection and some other, most likely,
environmental factors.

6. Taxonomic Conclusions

The nomenclature of C. tamerlana and C. mongola is a subject of a longstanding de-
bate [1,3,13]. Here we follow the logic of Grieshuber [1], who pointed out that under
the International Code of Zoological Nomenclature (Article 8.1.2.) a work is regarded
as having been published only when it becomes available. The earliest confirmed date
for Romanoff‘s book is 18.12.1897, when the copy of 9th volume has been received by
the Harvard University library [1]. Consequently, the name tamerlana has priority over
mongola. Taking into account the molecular data obtained in the present study, we confirm
the conspecificity of the taxa in question and consider Colias nastes mongola Alphéraky,
1897 a junior subjective synonym of Colias tamerlana Staudinger, 1897, syn. nov. We did
not find any molecular evidence supporting subspecies status of Colias mongola ukokana
Korb and Yakovlev, 2000 and Colias cocandica sidonia Weiss, 1968, despite pronounced
differences in the external morphological characters of the latter. These populations
do not show any signs of divergence and should be considered as the nominotypical
Colias tamerlana.

Thus, we suggest the following rearrangements:

Colias nastes mongola Alphéraky, 1897 = Colias tamerlana Staudinger, 1897, syn. nov.
Colias mongola ukokana Korb and Yakovlev, 2000 = Colias tamerlana Staudinger, 1897, syn. nov.
Colias cocandica sidonia Weiss, 1968 = Colias tamerlana Staudinger, 1897, syn. nov.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/insects14120943/s1, Table S1: List of the studied specimens. Table S2:
GenBank accession numbers for sequence records. Table S3: A detailed summary of the nucleotide
variability of the studied Ca-ATPase, CAD and H3 nuclear genes fragments among the sequenced
samples of C.mongola/C. tamerlana.
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