Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = Weibull censored data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 835 KiB  
Article
Progressive First-Failure Censoring in Reliability Analysis: Inference for a New Weibull–Pareto Distribution
by Rashad M. EL-Sagheer and Mahmoud M. Ramadan
Mathematics 2025, 13(15), 2377; https://doi.org/10.3390/math13152377 - 24 Jul 2025
Viewed by 158
Abstract
This paper explores statistical techniques for estimating unknown lifetime parameters using data from a progressive first-failure censoring scheme. The failure times are modeled with a new Weibull–Pareto distribution. Maximum likelihood estimators are derived for the model parameters, as well as for the survival [...] Read more.
This paper explores statistical techniques for estimating unknown lifetime parameters using data from a progressive first-failure censoring scheme. The failure times are modeled with a new Weibull–Pareto distribution. Maximum likelihood estimators are derived for the model parameters, as well as for the survival and hazard rate functions, although these estimators do not have explicit closed-form solutions. The Newton–Raphson algorithm is employed for the numerical computation of these estimates. Confidence intervals for the parameters are approximated based on the asymptotic normality of the maximum likelihood estimators. The Fisher information matrix is calculated using the missing information principle, and the delta technique is applied to approximate confidence intervals for the survival and hazard rate functions. Bayesian estimators are developed under squared error, linear exponential, and general entropy loss functions, assuming independent gamma priors. Markov chain Monte Carlo sampling is used to obtain Bayesian point estimates and the highest posterior density credible intervals for the parameters and reliability measures. Finally, the proposed methods are demonstrated through the analysis of a real dataset. Full article
(This article belongs to the Section D1: Probability and Statistics)
Show Figures

Figure 1

30 pages, 16041 KiB  
Article
Estimation of Inverted Weibull Competing Risks Model Using Improved Adaptive Progressive Type-II Censoring Plan with Application to Radiobiology Data
by Refah Alotaibi, Mazen Nassar and Ahmed Elshahhat
Symmetry 2025, 17(7), 1044; https://doi.org/10.3390/sym17071044 - 2 Jul 2025
Viewed by 331
Abstract
This study focuses on estimating the unknown parameters and the reliability function of the inverted-Weibull distribution, using an improved adaptive progressive Type-II censoring scheme under a competing risks model. Both classical and Bayesian estimation approaches are explored to offer a thorough analysis. Under [...] Read more.
This study focuses on estimating the unknown parameters and the reliability function of the inverted-Weibull distribution, using an improved adaptive progressive Type-II censoring scheme under a competing risks model. Both classical and Bayesian estimation approaches are explored to offer a thorough analysis. Under the classical approach, maximum likelihood estimators are obtained for the unknown parameters and the reliability function. Approximate confidence intervals are also constructed to assess the uncertainty in the estimates. From a Bayesian standpoint, symmetric Bayes estimates and highest posterior density credible intervals are computed using Markov Chain Monte Carlo sampling, assuming a symmetric squared error loss function. An extensive simulation study is carried out to assess how well the proposed methods perform under different experimental conditions, showing promising accuracy. To demonstrate the practical use of these methods, a real dataset is analyzed, consisting of the survival times of male mice aged 35 to 42 days after being exposed to 300 roentgens of X-ray radiation. The analysis demonstrated that the inverted Weibull distribution is well-suited for modeling the given dataset. Furthermore, the Bayesian estimation method, considering both point estimates and interval estimates, was found to be more effective than the classical approach in estimating the model parameters as well as the reliability function. Full article
Show Figures

Figure 1

16 pages, 856 KiB  
Article
Comparison of Parametric Rate Models for Gap Times Between Recurrent Events
by Ivo Sousa-Ferreira, Ana Maria Abreu and Cristina Rocha
Mathematics 2025, 13(12), 1931; https://doi.org/10.3390/math13121931 - 10 Jun 2025
Viewed by 315
Abstract
Over the past two decades, substantial efforts have been made to develop survival models for gap times between recurrent events. An emerging approach involves considering rate models derived from a non-homogeneous Poisson process, thus allowing the conditional distribution of a gap time given [...] Read more.
Over the past two decades, substantial efforts have been made to develop survival models for gap times between recurrent events. An emerging approach involves considering rate models derived from a non-homogeneous Poisson process, thus allowing the conditional distribution of a gap time given the previous recurrence time to be deduced. Under this approach, some parametric rate models have been proposed, differing in their distributional assumptions on gap times. In particular, the extended exponential–Poisson, Weibull and extended Chen–Poisson distributions have been considered. Alternatively, a flexible rate model using restricted cubic splines is proposed here to capture complex non-monotonic rate shapes. Moreover, a comprehensive comparison of parametric rate models is presented. The maximum likelihood method is applied for parameter estimation in the presence of right-censoring. It is shown that some models include important special cases that allow testing of the independence assumption between a gap time and the previous recurrence time. The likelihood ratio test, as well as two information criteria, are discussed for model selection. Model fit is assessed using Cox–Snell residuals. Applications to two well-known clinical data sets illustrate the comparative performance of both the existing and proposed models, as well as their practical relevance. Full article
(This article belongs to the Special Issue Advances in Statistics, Biostatistics and Medical Statistics)
Show Figures

Figure 1

28 pages, 13036 KiB  
Article
Statistical Analysis of a Generalized Variant of the Weibull Model Under Unified Hybrid Censoring with Applications to Cancer Data
by Mazen Nassar, Refah Alotaibi and Ahmed Elshahhat
Axioms 2025, 14(6), 442; https://doi.org/10.3390/axioms14060442 - 5 Jun 2025
Viewed by 429
Abstract
This paper investigates an understudied generalization of the classical exponential, Rayleigh, and Weibull distributions, known as the power generalized Weibull distribution, particularly in the context of censored data. Characterized by one scale parameter and two shape parameters, the proposed model offers enhanced flexibility [...] Read more.
This paper investigates an understudied generalization of the classical exponential, Rayleigh, and Weibull distributions, known as the power generalized Weibull distribution, particularly in the context of censored data. Characterized by one scale parameter and two shape parameters, the proposed model offers enhanced flexibility for modeling diverse lifetime data patterns and hazard rate behaviors. Notably, its hazard rate function can exhibit five distinct shapes, including upside-down bathtub and bathtub shapes. The study focuses on classical and Bayesian estimation frameworks for the model parameters and associated reliability metrics under a unified hybrid censoring scheme. Methodologies include both point estimation (maximum likelihood and posterior mean estimators) and interval estimation (approximate confidence intervals and Bayesian credible intervals). To evaluate the performance of these estimators, a comprehensive simulation study is conducted under varied experimental conditions. Furthermore, two empirical applications on real-world cancer datasets underscore the efficacy of the proposed estimation methods and the practical viability and flexibility of the explored model compared to eleven other existing lifespan models. Full article
Show Figures

Figure 1

27 pages, 993 KiB  
Article
Statistical Inference of Inverse Weibull Distribution Under Joint Progressive Censoring Scheme
by Jinchen Xiang, Yuanqi Wang and Wenhao Gui
Symmetry 2025, 17(6), 829; https://doi.org/10.3390/sym17060829 - 26 May 2025
Viewed by 350
Abstract
In recent years, there has been an increasing interest in the application of progressive censoring as a means to reduce both cost and experiment duration. In the absence of explanatory variables, the present study employs a statistical inference approach for the inverse Weibull [...] Read more.
In recent years, there has been an increasing interest in the application of progressive censoring as a means to reduce both cost and experiment duration. In the absence of explanatory variables, the present study employs a statistical inference approach for the inverse Weibull distribution, using a progressive type II censoring strategy with two independent samples. The article expounds on the maximum likelihood estimation method, utilizing the Fisher information matrix to derive approximate confidence intervals. Moreover, interval estimations are computed by the bootstrap method. We explore the application of Bayesian methods for estimating model parameters under both the squared error and LINEX loss functions. The Bayesian estimates and corresponding credible intervals are calculated via Markov chain Monte Carlo (MCMC). Finally, comprehensive simulation studies and real data analysis are carried out to validate the precision of the proposed estimation methods. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

23 pages, 13777 KiB  
Article
The Sine Alpha Power-G Family of Distributions: Characterizations, Regression Modeling, and Applications
by Amani S. Alghamdi, Shatha F. ALoufi and Lamya A. Baharith
Symmetry 2025, 17(3), 468; https://doi.org/10.3390/sym17030468 - 20 Mar 2025
Cited by 1 | Viewed by 478
Abstract
This study develops a new method for generating families of distributions based on the alpha power transformation and the trigonometric function, which enables enormous versatility in the resulting sub-models and enhances the ability to more accurately characterize tail shapes. This proposed family of [...] Read more.
This study develops a new method for generating families of distributions based on the alpha power transformation and the trigonometric function, which enables enormous versatility in the resulting sub-models and enhances the ability to more accurately characterize tail shapes. This proposed family of distributions is characterized by a single parameter, which exhibits considerable flexibility in capturing asymmetric datasets, making it a valuable alternative to some families of distributions that require additional parameters to achieve similar levels of flexibility. The sine alpha power generated family is introduced using the proposed method, and some of its members and properties are discussed. A particular member, the sine alpha power-Weibull (SAP-W), is investigated in depth. Graphical representations of the new distribution display monotone and non-monotone forms, whereas the hazard rate function takes a reversed J shape, J shape, bathtub, increasing, and decreasing shapes. Various characteristics of SAP-W distribution are derived, including moments, rényi entropies, and order statistics. Parameters of SAP-W are estimated using the maximum likelihood technique, and the effectiveness of these estimators is examined via Monte Carlo simulations. The superiority and potentiality of the proposed approach are demonstrated by analyzing three real-life engineering applications. The SAP-W outperforms several competing models, showing its flexibility. Additionally, a novel-log location-scale regression model is presented using SAP-W. The regression model’s significance is illustrated through its application to real data. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

14 pages, 457 KiB  
Article
Proportional Log Survival Model for Discrete Time-to-Event Data
by Tiago Chandiona Ernesto Franque, Marcílio Ramos Pereira Cardial and Eduardo Yoshio Nakano
Mathematics 2025, 13(5), 800; https://doi.org/10.3390/math13050800 - 27 Feb 2025
Viewed by 454
Abstract
The aim of this work is to propose a proportional log survival model (PLSM) as a discrete alternative to the proportional hazards (PH) model. This paper presents the formulation of PLSM as well as the procedures for verifying its assumption. The parameters of [...] Read more.
The aim of this work is to propose a proportional log survival model (PLSM) as a discrete alternative to the proportional hazards (PH) model. This paper presents the formulation of PLSM as well as the procedures for verifying its assumption. The parameters of the PLSM are inferred using the maximum likelihood method, and a simulation study was carried out to investigate the usual asymptotic properties of the estimators. The PLSM was illustrated using data on the survival time of leukemia patients, and it was shown to be a viable alternative for modeling discrete survival data in the presence of covariates. Full article
(This article belongs to the Section D1: Probability and Statistics)
Show Figures

Figure 1

25 pages, 1811 KiB  
Article
Symmetric and Asymmetric Expansion of the Weibull Distribution: Features and Applications to Complete, Upper Record, and Type-II Right-Censored Data
by Mahmoud El-Morshedy, M. El-Dawoody and Adel A. El-Faheem
Symmetry 2025, 17(1), 131; https://doi.org/10.3390/sym17010131 - 17 Jan 2025
Viewed by 1068
Abstract
This paper introduces a new continuous lifetime model called the Odd Flexible Weibull-Weibull (OFW-W) distribution, which features three parameters. The new model is capable of modeling both symmetric and asymmetric datasets, regardless of whether they are positively or negatively skewed. Its hazard rate [...] Read more.
This paper introduces a new continuous lifetime model called the Odd Flexible Weibull-Weibull (OFW-W) distribution, which features three parameters. The new model is capable of modeling both symmetric and asymmetric datasets, regardless of whether they are positively or negatively skewed. Its hazard rate functions can exhibit various behaviors, including increasing, decreasing, unimodal, or bathtub-shaped. The key characteristics of the OFW-W model are discussed, including the quantile function, median, reliability and hazard rate functions, kurtosis and skewness, mean waiting (residual) lifetimes, moments, and entropies. The unknown parameters of the model are estimated using eight different techniques. A comprehensive simulation study evaluates the performance of these estimators based on bias, mean squared error (MSE), and mean relative error (MRE). The practical usefulness of the OFW-W distribution is demonstrated through four real datasets from the fields of engineering and medicine, including complete data, upper record data, and type-II right-censored data. Comparisons with five other lifetime distributions reveal that the OFW-W model exhibits superior flexibility and capability in fitting various data types, highlighting its advantages and improvements. In conclusion, we anticipate that the OFW-W model will prove valuable in various applications, including human health, environmental studies, reliability theory, actuarial science, and medical sciences, among others. Full article
Show Figures

Figure 1

21 pages, 445 KiB  
Article
Analysis of Block Adaptive Type-II Progressive Hybrid Censoring with Weibull Distribution
by Kundan Singh, Yogesh Mani Tripathi, Liang Wang and Shuo-Jye Wu
Mathematics 2024, 12(24), 4026; https://doi.org/10.3390/math12244026 - 22 Dec 2024
Viewed by 921
Abstract
The estimation of unknown model parameters and reliability characteristics is considered under a block adaptive progressive hybrid censoring scheme, where data are observed from a Weibull model. This censoring scheme enhances experimental efficiency by conducting experiments across different testing facilities. Point and interval [...] Read more.
The estimation of unknown model parameters and reliability characteristics is considered under a block adaptive progressive hybrid censoring scheme, where data are observed from a Weibull model. This censoring scheme enhances experimental efficiency by conducting experiments across different testing facilities. Point and interval estimates for parameters and reliability assessments are derived using both classical and Bayesian approaches. The existence and uniqueness of maximum likelihood estimates are established. Consequently, reliability performance and differences across different testing facilities are analyzed. In addition, a Metropolis–Hastings sampling algorithm is developed to approximate complex posterior computations. Approximate confidence intervals and highest posterior density credible intervals are obtained for the parametric functions. The performance of all estimators is evaluated through an extensive simulation study, and observations are discussed. A cancer dataset is analyzed to illustrate the findings under the block adaptive censoring scheme. Full article
(This article belongs to the Special Issue Statistical Simulation and Computation: 3rd Edition)
Show Figures

Figure 1

16 pages, 2449 KiB  
Article
Reliability Analysis for Unknown Age Class of Lifetime Distribution with Real Applications in Medical Science
by Mahmoud E. Bakr, Oluwafemi Samson Balogun, Asmaa A. El-Toony and Alaa. M. Gadallah
Symmetry 2024, 16(11), 1514; https://doi.org/10.3390/sym16111514 - 11 Nov 2024
Viewed by 871
Abstract
Analyzing the reliability of the aging class of life distribution provides important information about how long a product lasts and sustainability measures that are essential for determining the environmental impact and formulating resource-saving plans. The study emphasizes the goodness-of-fit technique of the nonparametric [...] Read more.
Analyzing the reliability of the aging class of life distribution provides important information about how long a product lasts and sustainability measures that are essential for determining the environmental impact and formulating resource-saving plans. The study emphasizes the goodness-of-fit technique of the nonparametric test for the NBRUmgf class because age data are crucial for applications. Evaluations were conducted using the test’s asymptotic properties and Pitman efficiency methodology for some selected asymmetric probability models, and the outcomes were compared with those of alternative methods. We assessed the test’s power against widely used reliability distributions for some well-known alternative asymmetric distributions, including the Weibull, Gamma, and linear failure rate (LFR) distributions, and provided percentiles for both censored and uncensored data. This study shows the efficacy of the test in various sectors using real-world datasets and comprehensive tables of test statistics. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

10 pages, 259 KiB  
Article
Modified Cox Models: A Simulation Study on Different Survival Distributions, Censoring Rates, and Sample Sizes
by Iketle Aretha Maharela, Lizelle Fletcher and Ding-Geng Chen
Mathematics 2024, 12(18), 2903; https://doi.org/10.3390/math12182903 - 18 Sep 2024
Viewed by 1889
Abstract
The classical Cox model is the most popular procedure for studying right-censored data in survival analysis. However, it is based on the fundamental assumption of proportional hazards (PH). Modified Cox models, stratified and extended, have been widely employed as solutions when the PH [...] Read more.
The classical Cox model is the most popular procedure for studying right-censored data in survival analysis. However, it is based on the fundamental assumption of proportional hazards (PH). Modified Cox models, stratified and extended, have been widely employed as solutions when the PH assumption is violated. Nevertheless, prior comparisons of the modified Cox models did not employ comprehensive Monte-Carlo simulations to carry out a comparative analysis between the two models. In this paper, we conducted extensive Monte-Carlo simulation to compare the performance of the stratified and extended Cox models under varying censoring rates, sample sizes, and survival distributions. Our results suggest that the models’ performance at varying censoring rates and sample sizes is robust to the distribution of survival times. Thus, their performance under Weibull survival times was comparable to that of exponential survival times. Furthermore, we found that the extended Cox model outperformed other models under every combination of censoring, sample size and survival distribution. Full article
(This article belongs to the Special Issue Statistical Simulation and Computation: 3rd Edition)
17 pages, 760 KiB  
Article
Parameter Estimation of Birnbaum-Saunders Distribution under Competing Risks Using the Quantile Variant of the Expectation-Maximization Algorithm
by Chanseok Park and Min Wang
Mathematics 2024, 12(11), 1757; https://doi.org/10.3390/math12111757 - 5 Jun 2024
Cited by 2 | Viewed by 1198
Abstract
Competing risks models, also known as weakest-link models, are utilized to analyze diverse strength distributions exhibiting multi-modality, often attributed to various types of defects within the material. The weakest-link theory posits that a material’s fracture is dictated by its most severe defect. However, [...] Read more.
Competing risks models, also known as weakest-link models, are utilized to analyze diverse strength distributions exhibiting multi-modality, often attributed to various types of defects within the material. The weakest-link theory posits that a material’s fracture is dictated by its most severe defect. However, multimodal problems can become intricate due to potential censoring, a common constraint stemming from time and cost limitations during experiments. Additionally, determining the mode of failure can be challenging due to factors like the absence of suitable diagnostic tools, costly autopsy procedures, and other obstacles, collectively referred to as the masking problem. In this paper, we investigate the distribution of strength for multimodal failures with censored data. We consider both full and partial maskings and present an EM-type parameter estimate for the Birnbaum-Saunders distribution under competing risks. We compare the results with those obtained from other distributions, such as lognormal, Weibull, and Wald (inverse-Gaussian) distributions. The effectiveness of the proposed method is demonstrated through two illustrative examples, as well as an analysis of the sensitivity of parameter estimates to variations in starting values. Full article
Show Figures

Figure 1

19 pages, 8913 KiB  
Article
Analysis of Production and Failure Data in Automotive: From Raw Data to Predictive Modeling and Spare Parts
by Cristiano Fragassa
Mathematics 2024, 12(4), 510; https://doi.org/10.3390/math12040510 - 6 Feb 2024
Cited by 2 | Viewed by 2833
Abstract
The present analysis examines extensive and consistent data from automotive production and service to assess reliability and predict failures in the case of an engine control device. It is based on statistical evaluation of production and lead times to determine vehicle sales. Mileages [...] Read more.
The present analysis examines extensive and consistent data from automotive production and service to assess reliability and predict failures in the case of an engine control device. It is based on statistical evaluation of production and lead times to determine vehicle sales. Mileages are integrated to establish the age of the vehicle fleet over time and to predict the censored data. Failure and censored times are merged in a multiple censored data and combined by the Kaplan-Meier estimator for survivals. The Weibull distribution is used as parametric reliability model and its parameters identified to assure precision in predictions (>95%). An average time to failure >80 years and a slightly increasing failure rate ensure a low risk. The study is based on real-world data from various sources, acknowledging that the data are not homogeneous, and it offers a comprehensive roadmap for processing this diverse raw data and evolving it into sophisticated predictive models. Furthermore, it provides insights from various perspectives, including those of the Original Equipment Manufacturer, Car Manufacturer, and Users. Full article
Show Figures

Figure 1

14 pages, 1941 KiB  
Article
Residual Control Chart Based on a Convolutional Neural Network and Support Vector Regression for Type-I Censored Data with the Weibull Model
by Pei-Hsi Lee and Shih-Lung Liao
Mathematics 2024, 12(1), 74; https://doi.org/10.3390/math12010074 - 25 Dec 2023
Viewed by 1594
Abstract
Control charts with conditional expected value (CEV) can be used with novel statistical techniques to monitor the means of moderately and lowly censored data. In recent years, machine learning and deep learning have been successfully combined with quality technology to solve many process [...] Read more.
Control charts with conditional expected value (CEV) can be used with novel statistical techniques to monitor the means of moderately and lowly censored data. In recent years, machine learning and deep learning have been successfully combined with quality technology to solve many process control problems. This paper proposes a residual control chart combining a convolutional neural network (CNN) and support vector regression (SVR) for type-I censored data with the Weibull model. The CEV and exponentially weighted moving average (EWMA) statistics are used to generate training data for the CNN and SVR. The average run length shows that the proposed chart approach outperforms the traditional EWMA CEV chart approach in various shift sizes and censored rates. The proposed chart approach is suitable to be used in detecting small shift size for highly censored data. An illustrative example presents the application of the proposed method in an electronics industry. Full article
(This article belongs to the Section D1: Probability and Statistics)
Show Figures

Figure 1

35 pages, 2277 KiB  
Article
Measuring the Risk of Vulnerabilities Exploitation
by Maria de Fátima Brilhante, Dinis Pestana, Pedro Pestana and Maria Luísa Rocha
AppliedMath 2024, 4(1), 20-54; https://doi.org/10.3390/appliedmath4010002 - 24 Dec 2023
Cited by 3 | Viewed by 2239
Abstract
Modeling the vulnerabilities lifecycle and exploitation frequency are at the core of security of networks evaluation. Pareto, Weibull, and log-normal models have been widely used to model the exploit and patch availability dates, the time to compromise a system, the time between compromises, [...] Read more.
Modeling the vulnerabilities lifecycle and exploitation frequency are at the core of security of networks evaluation. Pareto, Weibull, and log-normal models have been widely used to model the exploit and patch availability dates, the time to compromise a system, the time between compromises, and the exploitation volumes. Random samples (systematic and simple random sampling) of the time from publication to update of cybervulnerabilities disclosed in 2021 and in 2022 are analyzed to evaluate the goodness-of-fit of the traditional Pareto and log-normal laws. As censoring and thinning almost surely occur, other heavy-tailed distributions in the domain of attraction of extreme value or geo-extreme value laws are investigated as suitable alternatives. Goodness-of-fit tests, the Akaike information criterion (AIC), and the Vuong test, support the statistical choice of log-logistic, a geo-max stable law in the domain of attraction of the Fréchet model of maxima, with hyperexponential and general extreme value fittings as runners-up. Evidence that the data come from a mixture of differently stretched populations affects vulnerabilities scoring systems, specifically the common vulnerabilities scoring system (CVSS). Full article
Show Figures

Figure 1

Back to TopTop