Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = WPMY-1 cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3287 KiB  
Article
The C-X-C Motif Chemokine Ligand 5, Which Exerts an Antioxidant Role by Inducing HO-1 Expression, Is C-X-C Motif Chemokine Receptor 2-Dependent in Human Prostate Stroma and Cancer Cells
by Kang-Shuo Chang, Syue-Ting Chen, Shu-Yuan Hsu, Hsin-Ching Sung, Wei-Yin Lin, Ke-Hung Tsui, Yu-Hsiang Lin, Chen-Pang Hou and Horng-Heng Juang
Antioxidants 2024, 13(12), 1489; https://doi.org/10.3390/antiox13121489 - 5 Dec 2024
Cited by 1 | Viewed by 1615
Abstract
While the C-X-C motif chemokine ligand 5 (CXCL5) is recognized as an inflammatory mediator and a potent attractant for immune cells, its functions within the human prostate remain unclear. This study explored the expression, functions, and regulatory mechanisms of CXCL5 in prostate stroma [...] Read more.
While the C-X-C motif chemokine ligand 5 (CXCL5) is recognized as an inflammatory mediator and a potent attractant for immune cells, its functions within the human prostate remain unclear. This study explored the expression, functions, and regulatory mechanisms of CXCL5 in prostate stroma and cancer cells. CXCL5 secreted from prostate cancer cells enhanced neutrophil migration. CXCL5 induced cell proliferation and invasion of prostate cancer cells in vitro and tumorigenesis in a xenograft animal model. C-X-C motif chemokine receptor 2 (CXCR2) has been identified on the surface of prostate fibroblasts and cancer cells. The supernatant of LNCaP cells or CXCL5 overexpression enhanced the migration and contraction of prostate myofibroblast WPMY-1 cells; however, pretreatment with SB225002, a CXCR2 inhibitor, can reverse these effects. CXCL5 evinces antioxidant properties by upregulating heme oxygenase-1 (HO-1) to counteract H2O2-induced reactive oxygen species (ROS) in a CXCR2-dependent manner in WPMY-1 and prostate cancer cells. Our findings illustrate that CXCL5, through HO-1, plays a role in antioxidation, and determine that the CXCL5/CXCR2/HO-1 pathway facilitates antioxidative communication between fibroblasts and cancer cells in the prostate. Therefore, targeting the CXCL5/CXCR2 signaling pathway could provide a new strategy for managing oxidative stress within the prostate. Full article
(This article belongs to the Special Issue Oxidative Stress and Inflammation in Cancer Biology)
Show Figures

Graphical abstract

19 pages, 8744 KiB  
Article
Cucurbitacin B Inhibits the Proliferation of WPMY-1 Cells and HPRF Cells via the p53/MDM2 Axis
by Yangtao Jin, Ping Zhou, Sisi Huang, Congcong Shao, Dongyan Huang, Xin Su, Rongfu Yang, Juan Jiang and Jianhui Wu
Int. J. Mol. Sci. 2024, 25(17), 9333; https://doi.org/10.3390/ijms25179333 - 28 Aug 2024
Cited by 1 | Viewed by 1501
Abstract
Modern research has shown that Cucurbitacin B (Cu B) possesses various biological activities such as liver protection, anti-inflammatory, and anti-tumor effects. However, the majority of research has primarily concentrated on its hepatoprotective effects, with limited attention devoted to exploring its potential impact on [...] Read more.
Modern research has shown that Cucurbitacin B (Cu B) possesses various biological activities such as liver protection, anti-inflammatory, and anti-tumor effects. However, the majority of research has primarily concentrated on its hepatoprotective effects, with limited attention devoted to exploring its potential impact on the prostate. Our research indicates that Cu B effectively inhibits the proliferation of human prostate stromal cells (WPMY-1) and fibroblasts (HPRF), while triggering apoptosis in prostate cells. When treated with 100 nM Cu B, the apoptosis rates of WPMY-1 and HPRF cells reached 51.73 ± 5.38% and 26.83 ± 0.40%, respectively. In addition, the cell cycle assay showed that Cu B had a G2/M phase cycle arrest effect on WPMY-1 cells. Based on RNA-sequencing analysis, Cu B might inhibit prostate cell proliferation via the p53 signaling pathway. Subsequently, the related gene and protein expression levels were measured using quantitative real-time PCR (RT-qPCR), immunocytochemistry (ICC), and enzyme-linked immunosorbent assays (ELISA). Our results mirrored the regulation of tumor protein p53 (TP53), mouse double minute-2 (MDM2), cyclin D1 (CCND1), and thrombospondin 1 (THBS1) in Cu B-induced prostate cell apoptosis. Altogether, Cu B may inhibit prostate cell proliferation and correlate to the modulation of the p53/MDM2 signaling cascade. Full article
(This article belongs to the Special Issue Nutrients and Active Substances in Natural Products)
Show Figures

Figure 1

13 pages, 4443 KiB  
Article
Bioactive Polyketides and Benzene Derivatives from Two Mangrove Sediment-Derived Fungi in the Beibu Gulf
by Bo Peng, Jian Cai, Zimin Xiao, Manli Liu, Xinlong Li, Bin Yang, Wei Fang, Yi-You Huang, Chunmei Chen, Xuefeng Zhou and Huaming Tao
Mar. Drugs 2023, 21(6), 327; https://doi.org/10.3390/md21060327 - 26 May 2023
Cited by 13 | Viewed by 2654
Abstract
To discover bioactive natural products from mangrove sediment-derived microbes, a chemical investigation of the two Beibu Gulf-derived fungi strains, Talaromyces sp. SCSIO 41050 and Penicillium sp. SCSIO 41411, led to the isolation of 23 natural products. Five of them were identified as new [...] Read more.
To discover bioactive natural products from mangrove sediment-derived microbes, a chemical investigation of the two Beibu Gulf-derived fungi strains, Talaromyces sp. SCSIO 41050 and Penicillium sp. SCSIO 41411, led to the isolation of 23 natural products. Five of them were identified as new ones, including two polyketide derivatives with unusual acid anhydride moieties named cordyanhydride A ethyl ester (1) and maleicanhydridane (4), and three hydroxyphenylacetic acid derivatives named stachylines H–J (1012). Their structures were determined by detailed nuclear magnetic resonance (NMR) and mass spectroscopic (MS) analyses, while the absolute configurations were established by theoretical electronic circular dichroism (ECD) calculation. A variety of bioactive screens revealed three polyketide derivatives (13) with obvious antifungal activities, and 4 displayed moderate cytotoxicity against cell lines A549 and WPMY-1. Compounds 1 and 6 at 10 μM exhibited obvious inhibition against phosphodiesterase 4 (PDE4) with inhibitory ratios of 49.7% and 39.6%, respectively, while 5, 10, and 11 showed the potential of inhibiting acetylcholinesterase (AChE) by an enzyme activity test, as well as in silico docking analysis. Full article
Show Figures

Figure 1

22 pages, 7112 KiB  
Article
Changes in the Expression and Functional Activities of C-X-C Motif Chemokine Ligand 13 (CXCL13) in Hyperplastic Prostate
by Daoquan Liu, Mingzhou Li, Xun Fu, Shu Yang, Zhen Wang, Jianmin Liu, Yan Li, Yongying Zhou, Pengfei Ren, Yuhang Guo, Xinghuan Wang, Michael E. DiSanto, Ping Chen and Xinhua Zhang
Int. J. Mol. Sci. 2023, 24(1), 56; https://doi.org/10.3390/ijms24010056 - 21 Dec 2022
Cited by 8 | Viewed by 2823
Abstract
Background: C-X-C motif chemokine ligand 13 (CXCL13), a member of the CXC subtype in chemokine superfamily, affects numerous biological processes of various types of cells and the progress of a great number of clinical diseases. The purpose of the current study [...] Read more.
Background: C-X-C motif chemokine ligand 13 (CXCL13), a member of the CXC subtype in chemokine superfamily, affects numerous biological processes of various types of cells and the progress of a great number of clinical diseases. The purpose of the current study was to reveal the internal mechanism between CXCL13 and benign prostatic hyperplasia (BPH). Methods: Human serum, prostate tissues and human prostate cell lines (BPH-1, WPMY-1) were utilized. The effect of recombinant human CXCL13 (rHuCXCL13) protein and the influences of the knockdown/overexpression of CXCL13 on two cell lines were studied. Rescue experiments by anti-CXCR5 were also conducted. In vivo, rHuCXCL13 was injected into the ventral prostate of rats. Additionally, a tissue microarray of hyperplastic prostate tissues was constructed to analyze the correlations between CXCL13 and clinical parameters. Results: CXCL13 was highly expressed in the prostate tissues and upregulated in the BPH group. It was observed that CXCL13 modulated cell proliferation, apoptosis, and the epithelial–mesenchymal transition (EMT) through CXCR5 via AKT and the ERK1/2 pathway in BPH-1, while it contributed to inflammation and fibrosis through CXCR5 via the STAT3 pathway in WPMY-1. In vivo, rHuCXCL13 induced the development of rat BPH. Additionally, CXCL13 was positively correlated with the prostate volume and total prostate specific antigen. Conclusions: Our novel data demonstrated that CXCL13 modulated cell proliferation, cell cycle, the EMT of epithelial cells, and induced the fibrosis of prostatic stromal cells via a variety of inflammatory factors, suggesting that CXCL13 might be rediscovered as a potential therapeutic target for the treatment of BPH. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

23 pages, 4277 KiB  
Article
Inhibition of α1-Adrenergic, Non-Adrenergic and Neurogenic Human Prostate Smooth Muscle Contraction and of Stromal Cell Growth by the Isoflavones Genistein and Daidzein
by Ru Huang, Yuhan Liu, Sheng Hu, Alexander Tamalunas, Raphaela Waidelich, Frank Strittmatter, Christian G. Stief and Martin Hennenberg
Nutrients 2022, 14(23), 4943; https://doi.org/10.3390/nu14234943 - 22 Nov 2022
Cited by 8 | Viewed by 2301
Abstract
Isoflavone-rich legumes, including soy, are used for food production, as dietary supplements and in traditional medicine. Soy consumption correlates negatively with benign prostatic hyperplasia (BPH) and voiding symptoms. However, isoflavone effects on the prostate are hardly known. Here, we examined the effects on [...] Read more.
Isoflavone-rich legumes, including soy, are used for food production, as dietary supplements and in traditional medicine. Soy consumption correlates negatively with benign prostatic hyperplasia (BPH) and voiding symptoms. However, isoflavone effects on the prostate are hardly known. Here, we examined the effects on human prostate smooth muscle contractions and stromal cell growth, which are driving factors of voiding symptoms in BPH. Smooth muscle contractions were induced in prostate tissues from radical prostatectomy. Growth-related functions were studied in cultured stromal cells (WPMY-1). Neurogenic, α1-adrenergic and non-adrenergic contractions were strongly inhibited with 50 µM and by around 50% with 10 µM genistein. Daidzein inhibited neurogenic contractions using 10 and 100 µM. Agonist-induced contractions were inhibited by 100 µM but not 10 µM daidzein. A combination of 6 µM genistein with 5 µM daidzein still inhibited neurogenic and agonist-induced contractions. Proliferation of WPMY-1 cells was inhibited by genistein (>50%) and daidzein (<50%). Genistein induced apoptosis and cell death (by seven-fold relative to controls), while daidzein induced cell death (6.4-fold) without apoptosis. Viability was reduced by genistein (maximum: 87%) and daidzein (62%). In conclusion, soy isoflavones exert sustained effects on prostate smooth muscle contractions and stromal cell growth, which may explain the inverse relationships between soy-rich nutrition, BPH and voiding symptoms. Full article
(This article belongs to the Special Issue Advances in Legumes for Human Nutrition)
Show Figures

Graphical abstract

15 pages, 4492 KiB  
Article
Individual and Combined Effect of Bisphenol A and Bisphenol AF on Prostate Cell Proliferation through NF-κB Signaling Pathway
by Kaiyue Wang, Dongyan Huang, Ping Zhou, Xin Su, Rongfu Yang, Congcong Shao, Aicui Ma and Jianhui Wu
Int. J. Mol. Sci. 2022, 23(20), 12283; https://doi.org/10.3390/ijms232012283 - 14 Oct 2022
Cited by 10 | Viewed by 2872
Abstract
The ubiquitous environmental endocrine disruptor bisphenol A (BPA) can induce prostatic dysfunction. However, to date, studies have focused little on the perturbations of prostate health initiated by the BPA derivative bisphenol AF (BPAF) and co-exposure to bisphenol compounds. An in vivo study orally [...] Read more.
The ubiquitous environmental endocrine disruptor bisphenol A (BPA) can induce prostatic dysfunction. However, to date, studies have focused little on the perturbations of prostate health initiated by the BPA derivative bisphenol AF (BPAF) and co-exposure to bisphenol compounds. An in vivo study orally administrated male rats with BPA (10, 90 μg/kg), BPAF (10, 90 μg/kg) and the inhibitor of nuclear transcription factor-κB (NF-κB), pyrrolidinedithiocarbamate (PDTC, 100 mg/kg). Based on the anatomical analysis, pathological observations and PCNA over-expression, we considered that low-dose BPA and BPAF facilitated ventral prostatic hyperplasia in rats. The results of IHC and ELISA mirrored the regulation of NF-κB p65, COX-2, TNF-α and EGFR in BPA- and BPAF-induced prostatic toxicity. An in vitro study found that the additive effect of combined exposure to BPA (10 nM) and BPAF (10 nM) could cause an elevation in the proliferation of and a reduction in the apoptosis level of human prostate stromal cells (WPMY−1) and fibroblasts (HPrF). Meanwhile, the underlying biomarkers of the NF-κB signaling pathway also involved the abnormal proliferative progression of prostate cells. The findings recapitulated the induction of BPAF exposure and co-treatment with BPA and BPAF on prostatic hyperplasia and emphasized the modulation of the NF-κB signaling pathway. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

18 pages, 5493 KiB  
Article
WNT1 Inducible Signaling Pathway Protein 1 Is a Stroma-Specific Secreting Protein Inducing a Fibroblast Contraction and Carcinoma Cell Growth in the Human Prostate
by Kang-Shuo Chang, Syue-Ting Chen, Hsin-Ching Sung, Shu-Yuan Hsu, Wei-Yin Lin, Chen-Pang Hou, Yu-Hsiang Lin, Tsui-Hsia Feng, Ke-Hung Tsui and Horng-Heng Juang
Int. J. Mol. Sci. 2022, 23(19), 11437; https://doi.org/10.3390/ijms231911437 - 28 Sep 2022
Cited by 11 | Viewed by 2598
Abstract
The WNT1 inducible signaling pathway protein 1 (WISP1), a member of the connective tissue growth factor family, plays a crucial role in several important cellular functions in a highly tissue-specific manner. Results of a RT-qPCR indicated that WISP1 expressed only in cells of [...] Read more.
The WNT1 inducible signaling pathway protein 1 (WISP1), a member of the connective tissue growth factor family, plays a crucial role in several important cellular functions in a highly tissue-specific manner. Results of a RT-qPCR indicated that WISP1 expressed only in cells of the human prostate fibroblasts, HPrF and WPMY-1, but not the prostate carcinoma cells in vitro. Two major isoforms (WISP1v1 and WISP1v2) were identified in the HPrF cells determined by RT-PCR and immunoblot assays. The knock-down of a WISP1 blocked cell proliferation and contraction, while treating respectively with the conditioned medium from the ectopic WISP1v1- and WISPv2-overexpressed 293T cells enhanced the migration of HPrF cells. The TNFα induced WISP1 secretion and cell contraction while the knock-down of WISP1 attenuated these effects, although TNFα did not affect the proliferation of the HPrF cells. The ectopic overexpression of WISP1v1 but not WISP1v2 downregulated the N-myc downstream regulated 1 (NDRG1) while upregulating N-cadherin, slug, snail, and vimentin gene expressions which induced not only the cell proliferation and invasion in vitro but also tumor growth of prostate carcinoma cells in vivo. The results confirmed that WISP1 is a stroma-specific secreting protein, enhancing the cell migration and contraction of prostate fibroblasts, as well as the proliferation, invasion, and tumor growth of prostate carcinoma cells. Full article
(This article belongs to the Special Issue Proteomics and Its Applications in Cancers 2.0)
Show Figures

Graphical abstract

10 pages, 2011 KiB  
Article
Bmal1 Regulates Prostate Growth via Cell-Cycle Modulation
by Masakatsu Ueda, Jin Kono, Atsushi Sengiku, Yoshiyuki Nagumo, Bryan J. Mathis, Shigeki Shimba, Makoto Mark Taketo, Takashi Kobayashi, Osamu Ogawa and Hiromitsu Negoro
Int. J. Mol. Sci. 2022, 23(19), 11272; https://doi.org/10.3390/ijms231911272 - 24 Sep 2022
Cited by 5 | Viewed by 2282
Abstract
The circadian clock system exists in most organs and regulates diverse physiological processes, including growth. Here, we used a prostate-specific Bmal1-knockout mouse model (pBmal1 KO: PbsnCre+; Bmal1fx/fx) and immortalized human prostate cells (RWPE-1 and WPMY-1) to elucidate the role of [...] Read more.
The circadian clock system exists in most organs and regulates diverse physiological processes, including growth. Here, we used a prostate-specific Bmal1-knockout mouse model (pBmal1 KO: PbsnCre+; Bmal1fx/fx) and immortalized human prostate cells (RWPE-1 and WPMY-1) to elucidate the role of the peripheral prostate clock on prostate growth. Bmal1 KO resulted in significantly decreased ventral and dorsolateral lobes with less Ki-67-positive epithelial cells than the controls. Next, the cap analysis of gene expression revealed that genes associated with cell cycles were differentially expressed in the pBmal1 KO prostate. Cdkn1a (coding p21) was diurnally expressed in the control mouse prostate, a rhythm which was disturbed in pBmal1 KO. Meanwhile, the knockdown of BMAL1 in epithelial RWPE-1 and stromal WPMY-1 cell lines decreased proliferation. Furthermore, RWPE-1 BMAL1 knockdown increased G0/G1-phase cell numbers but reduced S-phase numbers. These findings indicate that core clock gene Bmal1 is involved in prostate growth via the modulation of the cell cycle and provide a rationale for further research to link the pathogenesis of benign prostatic hyperplasia or cancer with the circadian clock. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 2901 KiB  
Article
Magmas Inhibition in Prostate Cancer: A Novel Target for Treatment-Resistant Disease
by Jianhui Yang, Bhaskar C. Das, Omar Aljitawi, Avinash Kumar, Sasmita Das and Peter Van Veldhuizen
Cancers 2022, 14(11), 2732; https://doi.org/10.3390/cancers14112732 - 31 May 2022
Cited by 8 | Viewed by 2442
Abstract
The purpose of our study was to evaluate Magmas as a potential target in prostate cancer. In addition, we evaluated our synthetic Magmas inhibitor (BT#9) effects on prostate cancer and examined the molecular mechanism of BT#9. A cell viability assay showed that treatment [...] Read more.
The purpose of our study was to evaluate Magmas as a potential target in prostate cancer. In addition, we evaluated our synthetic Magmas inhibitor (BT#9) effects on prostate cancer and examined the molecular mechanism of BT#9. A cell viability assay showed that treatment with BT#9 caused a significant decrease in the viability of DU145 and PC3 prostate cancer cells with little effect on the viability of WPMY-1 normal prostate cells. Western blot proved that BT#9 downregulated the Magmas protein and caspase-3 activation. Flow cytometry studies demonstrated increased apoptosis and disturbed mitochondrial membrane potential. However, the main mode of cell death was caspase-independent necrosis, which was correlated with the accumulation of mitochondrial and intra-cellular Reactive Oxygen Species (ROS). Taken together, our data suggest Magmas is a potential molecular target for the treatment of prostate cancer and that Magmas inhibition results in ROS-dependent and caspase-independent necrotic cell death. Full article
Show Figures

Figure 1

20 pages, 8212 KiB  
Article
Hydralazine and Panobinostat Attenuate Malignant Properties of Prostate Cancer Cell Lines
by Mariana Brütt Pacheco, Vânia Camilo, Nair Lopes, Filipa Moreira-Silva, Margareta P. Correia, Rui Henrique and Carmen Jerónimo
Pharmaceuticals 2021, 14(7), 670; https://doi.org/10.3390/ph14070670 - 13 Jul 2021
Cited by 20 | Viewed by 4646
Abstract
Among the well-established alterations contributing to prostate cancer (PCa) pathogenesis, epigenetics is an important player in its development and aggressive disease state. Moreover, since no curative therapies are available for advanced stage disease, there is an urgent need for novel therapeutic strategies targeting [...] Read more.
Among the well-established alterations contributing to prostate cancer (PCa) pathogenesis, epigenetics is an important player in its development and aggressive disease state. Moreover, since no curative therapies are available for advanced stage disease, there is an urgent need for novel therapeutic strategies targeting this subset of patients. Thus, we aimed to evaluate the combined antineoplastic effects of DNA methylation inhibitor hydralazine and histone deacetylase inhibitors panobinostat and valproic acid in several prostate cell lines. The effect of these drugs was assessed in four PCa (LNCaP, 22Rv1, DU145 and PC-3) cell lines, as well as in non-malignant epithelial (RWPE-1) and stromal (WPMY-1) cell lines, using several assays to evaluate cell viability, apoptosis, proliferation, DNA damage and clonogenic potential. We found that exposure to each epidrug separately reduced viability of all PCa cells in a dose-dependent manner and that combined treatments led to synergic growth inhibitory effects, impacting also on colony formation, invasion, apoptotic and proliferation rates. Interestingly, antitumoral effects of combined treatment were particularly expressive in DU145 cells. We concluded that hydralazine and panobinostat attenuate malignant properties of PCa cells, constituting a potential therapeutic tool to counteract PCa progression. Full article
(This article belongs to the Special Issue Epigenetic Drugs)
Show Figures

Figure 1

13 pages, 3239 KiB  
Article
Resveratrol Attenuates the Proliferation of Prostatic Stromal Cells in Benign Prostatic Hyperplasia by Regulating Cell Cycle Progression, Apoptosis, Signaling Pathways, BPH Markers, and NF-κB Activity
by Jowon Jang, Junhui Song, Jiyun Lee, Sung-Kwon Moon and Bokyung Moon
Int. J. Mol. Sci. 2021, 22(11), 5969; https://doi.org/10.3390/ijms22115969 - 31 May 2021
Cited by 10 | Viewed by 4295
Abstract
Resveratrol can inhibit cell proliferation and metastasis and induce apoptosis. However, the mechanisms of action through which resveratrol inhibits the abnormal proliferation of prostate stromal cells, causing prostatic hyperplasia, have not been fully elucidated. Here, we evaluated the inhibitory effects of resveratrol on [...] Read more.
Resveratrol can inhibit cell proliferation and metastasis and induce apoptosis. However, the mechanisms of action through which resveratrol inhibits the abnormal proliferation of prostate stromal cells, causing prostatic hyperplasia, have not been fully elucidated. Here, we evaluated the inhibitory effects of resveratrol on cell proliferation associated with prostatic hyperplasia using WPMY-1 cells. Our results showed that resveratrol inhibited the proliferation of WPMY-1 cells via the induction of G0/G1-phase cell cycle arrest, which was caused by downregulated expression of cyclins and cyclin-dependent kinases regulated by increased p21WAF1 and p27KIP1 expression level. In addition, resveratrol treatment suppressed the phosphorylation of phosphatidylinositol 3-kinase/AKT and extracellular signal-regulated kinase 1/2. The expression levels of molecular markers affecting prostate development were also reduced by treatment with resveratrol. Finally, resveratrol attenuated the binding activity of the transcription factor nuclear factor-κB in WPMY-1 cells, and accelerated apoptotic cell death via intrinsic cascade pathway. These results indicate that resveratrol may be useful for the prevention or treatment of prostatic hyperplasia. Full article
(This article belongs to the Special Issue Health Benefits of Resveratrol 3.0)
Show Figures

Graphical abstract

18 pages, 3985 KiB  
Article
2-Deoxy-d-glucose Promotes Buforin IIb-Induced Cytotoxicity in Prostate Cancer DU145 Cells and Xenograft Tumors
by Yangke Wanyan, Xixi Xu, Kehang Liu, Huidan Zhang, Junai Zhen, Rong Zhang, Jumei Wen, Ping Liu and Yuqing Chen
Molecules 2020, 25(23), 5778; https://doi.org/10.3390/molecules25235778 - 7 Dec 2020
Cited by 8 | Viewed by 3617
Abstract
Inhibition of the glycolytic pathway is a critical strategy in anticancer therapy because of the role of aerobic glycolysis in cancer cells. The glycolytic inhibitor 2-Deoxy-d-glucose (2-DG) has shown potential in combination with other anticancer agents. Buforin IIb is an effective [...] Read more.
Inhibition of the glycolytic pathway is a critical strategy in anticancer therapy because of the role of aerobic glycolysis in cancer cells. The glycolytic inhibitor 2-Deoxy-d-glucose (2-DG) has shown potential in combination with other anticancer agents. Buforin IIb is an effective antimicrobial peptide (AMP) with broad-spectrum anticancer activity and selectivity. The efficacy of combination treatment with 2-DG and buforin IIb in prostate cancer remains unknown. Here, we tested the efficacy of buforin IIb as a mitochondria-targeting AMP in the androgen-independent human prostate cancer cell line DU145. Combining 2-DG with buforin IIb had a synergistic toxic effect on DU145 cells and mouse xenograft tumors. Combination treatment with 2-DG and buforin IIb caused stronger proliferation inhibition, greater G1 cell cycle arrest, and higher apoptosis than either treatment alone. Combination treatment dramatically decreased L-lactate production and intracellular ATP levels, indicating severe inhibition of glycolysis and ATP production. Flow cytometry and confocal laser scanning microscopy results indicate that 2-DG may increase buforin IIb uptake by DU145 cells, thereby increasing the mitochondria-targeting capacity of buforin IIb. This may partly explain the effect of combination treatment on enhancing buforin IIb-induced apoptosis. Consistently, 2-DG increased mitochondrial dysfunction and upregulated Bax/Bcl-2, promoting cytochrome c release to initiate procaspase 3 cleavage induced by buforin IIb. These results suggest that 2-DG sensitizes prostate cancer DU145 cells to buforin IIb. Moreover, combination treatment caused minimal hemolysis and cytotoxicity to normal WPMY-1 cells. Collectively, the current study demonstrates that dual targeting of glycolysis and mitochondria by 2-DG and buforin IIb may be an effective anticancer strategy for the treatment of some advanced prostate cancer. Full article
Show Figures

Figure 1

15 pages, 1953 KiB  
Article
Dysregulation of Transcription Factor Activity during Formation of Cancer-Associated Fibroblasts
by Przemysław Kapusta, Joanna Dulińska-Litewka, Justyna Totoń-Żurańska, Agnieszka Borys, Paweł S. Konieczny, Paweł P. Wołkow and Michał T. Seweryn
Int. J. Mol. Sci. 2020, 21(22), 8749; https://doi.org/10.3390/ijms21228749 - 19 Nov 2020
Cited by 9 | Viewed by 3401
Abstract
The reciprocal interactions between cancer cells and the quiescent fibroblasts leading to the activation of cancer-associated fibroblasts (CAFs) serve an important role in cancer progression. Here, we investigated the activation of transcription factors (TFs) in prostate fibroblasts (WPMY cell line) co-cultured with normal [...] Read more.
The reciprocal interactions between cancer cells and the quiescent fibroblasts leading to the activation of cancer-associated fibroblasts (CAFs) serve an important role in cancer progression. Here, we investigated the activation of transcription factors (TFs) in prostate fibroblasts (WPMY cell line) co-cultured with normal prostate or tumorous cells (RWPE1 and RWPE2 cell lines, respectively). After indirect co-cultures, we performed mRNA-seq and predicted TF activity using mRNA expression profiles with the Systems EPigenomics Inference of Regulatory Activity (SEPIRA) package and the GTEx and mRNA-seq data of 483 cultured fibroblasts. The initial differential expression analysis between time points and experimental conditions showed that co-culture with normal epithelial cells mainly promotes an inflammatory response in fibroblasts, whereas with the cancerous epithelial, it stimulates transformation by changing the expression of the genes associated with microfilaments. TF activity analysis revealed only one positively regulated TF in the RWPE1 co-culture alone, while we observed dysregulation of 45 TFs (7 decreased activity and 38 increased activity) uniquely in co-culture with RWPE2. Pathway analysis showed that these 45 dysregulated TFs in fibroblasts co-cultured with RWPE2 cells may be associated with the RUNX1 and PTEN pathways. Moreover, we showed that observed dysregulation could be associated with FER1L4 expression. We conclude that phenotypic changes in fibroblast responses to co-culturing with cancer epithelium result from orchestrated dysregulation of signaling pathways that favor their transformation and motility rather than proinflammatory status. This dysregulation can be observed both at the TF and transcriptome levels. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1969 KiB  
Article
HBX-6, Standardized Cornus officinalis and Psoralea corylifolia L. Extracts, Suppresses Benign Prostate Hyperplasia by Attenuating E2F1 Activation
by Bo-Ram Jin, Hyo-Jung Kim, Jong-Hwan Seo, Myoung-Seok Kim, Kwang-Ho Lee, Il-Joo Yoon and Hyo-Jin An
Molecules 2019, 24(9), 1719; https://doi.org/10.3390/molecules24091719 - 2 May 2019
Cited by 9 | Viewed by 4244
Abstract
Background: The aim of this study was to simplify and identify the contents of the herbal formula, HBX-5. This study was carried out to evaluate the therapeutic effects of HBX-6 in a mouse model of benign prostatic hyperplasia (BPH). Based on in vitro, [...] Read more.
Background: The aim of this study was to simplify and identify the contents of the herbal formula, HBX-5. This study was carried out to evaluate the therapeutic effects of HBX-6 in a mouse model of benign prostatic hyperplasia (BPH). Based on in vitro, we selected a candidate, reconstituted an experimental agent and investigated the effects on testosterone-induced BPH rats. Cell viability was determined by MTT assay in RWPE-1 and WPMY-1 cells. The expression of androgen receptor (AR) was measured in dihydrotestosterone-stimulated RWPE-1 and WPMY-1 cells. BPH was induced in mice by a subcutaneous injection of testosterone propionate for four weeks. Animals were divided into six groups: Group 1, control mice; Group 2, mice with BPH; Group 3, mice with BPH treated with finasteride; Group 4, mice with BPH treated with 200 mg/kg HBX-5; Group 5, mice with BPH treated with 100 mg/kg HBX-6; and Group 6, mice with BPH treated with 200 mg/kg HBX-6. Changes in prostate weight were measured after treatments, and the thickness of the epithelium was evaluated. The expression levels of proteins associated with prostatic cell proliferation and cell cycle-related proteins were determined. Based on previous reports and in vitro results, we selected Cornus officinalis and Psoralea corylifolia among HBX-5 components and reconstituted the experimental agent, and named it HBX-6. The result represented a new herbal formula, HBX-6 that suppressed the pathological alterations in BPH and showed a marked reduction in proliferation-related protein expression compared to mice with BPH. Our results indicate that HBX-6 has a better therapeutic effect in the BPH murine model than those of HBX-5 and finasteride, suggesting the role of HBX-6 as a new BPH remedial agent. Full article
Show Figures

Graphical abstract

16 pages, 2477 KiB  
Article
Anti-Proliferative Effects of HBX-5 on Progression of Benign Prostatic Hyperplasia
by Bo-Ram Jin, Hyo-Jung Kim, Sang-Kyun Park, Myoung-Seok Kim, Kwang-Ho Lee, Il-Joo Yoon and Hyo-Jin An
Molecules 2018, 23(10), 2638; https://doi.org/10.3390/molecules23102638 - 14 Oct 2018
Cited by 15 | Viewed by 7956
Abstract
Benign prostatic hyperplasia (BPH), an age-dependent disorder with a prevalence percentage of 60% in the 60s, has been found to involve an androgenic hormone imbalance that causes confusion between cell apoptosis and proliferation. Because general medications for BPH treatment have undesirable side effects, [...] Read more.
Benign prostatic hyperplasia (BPH), an age-dependent disorder with a prevalence percentage of 60% in the 60s, has been found to involve an androgenic hormone imbalance that causes confusion between cell apoptosis and proliferation. Because general medications for BPH treatment have undesirable side effects, the development of effective alternative medicines has been considered. HBX-5 is a newly developed formula with the aim of improving BPH, and is composed of nine medicinal herbs. BPH was induced in the rats by intramuscular injection of testosterone propionate after castration. Rats were divided into six groups, and the efficacy of HBX-5 on testosterone-induced BPH in rats was estimated. In addition, RWPE-1 and WPMY-1 cells were used to demonstrate the effect of HBX-5 on BPH in vitro model. Compared with the control group, HBX-5 administration group suppressed BPH manifestations, such as excessive development of prostate, and increase of serum dihydrotestosterone and 5α-reductase concentrations. Furthermore, immunohistochemistry analysis revealed that HBX-5 significantly decreased the expression of androgen receptor (AR) and proliferating cell nuclear antigen (PCNA). In addition, results of RWPE-1 and WPMY-1 cells showed that HBX-5 inhibited the over-expression of AR and PSA in DHT-induced prostate hyperplastic microenvironments. Full article
(This article belongs to the Collection Herbal Medicine Research)
Show Figures

Graphical abstract

Back to TopTop