Bioactive Polyketides and Benzene Derivatives from Two Mangrove Sediment-Derived Fungi in the Beibu Gulf
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Determination
2.2. Bioactive Assay
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Fermentation and Extraction
3.4. Isolation and Purification
3.5. Spectroscopic Data of New Compounds
3.6. ECD Calculation of 5
3.7. Antibacterial and Antifungal Activity Assay
3.8. Cytotoxicity Bioassay
3.9. NF-κB Bioassay
3.10. Enzyme Inhibitory Activities Assay
3.11. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J. Bioactive natural products derived from mangrove-associated microbes. RSC Adv. 2015, 5, 841–892. [Google Scholar] [CrossRef]
- Li, K.; Chen, S.; Pang, X.; Cai, J.; Zhang, X.; Liu, Y.; Zhu, Y.; Zhou, X. Natural products from mangrove sediments-derived microbes: Structural diversity, bioactivities, biosynthesis, and total synthesis. Eur. J. Med. Chem. 2022, 230, 114117. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X. Mangrove soil-derived Streptomyces: An important resource of pharmaceutical active natural products. J. Holist. Integr. Pharm. 2022, 3, 300–314. [Google Scholar]
- Lei, L.; Gong, L.; Jin, M.; Wang, R.; Liu, R.; Gao, J.; Liu, M.; Huang, L.; Wang, G.; Wang, D.; et al. Research advances in the structures and biological activities of secondary metabolites from Talaromyces. Front. Microbiol. 2022, 13, 984801. [Google Scholar] [CrossRef]
- Chen, C.; Chen, W.; Pang, X.; Liao, S.; Wang, J.; Lin, X.; Yang, B.; Zhou, X.; Luo, X.; Liu, Y.H. Pyrrolyl 4-quinolone alkaloids from the mangrove endophytic fungus Penicillium steckii SCSIO 41025: Chiral resolution, configurational assignment, and enzyme inhibitory activities. Phytochemistry 2021, 186, 112730. [Google Scholar] [CrossRef]
- Chen, C.; Chen, W.; Tao, H.; Yang, B.; Zhou, X.; Luo, X.W.; Liu, Y.H. Diversified polyketides and nitrogenous compounds from the mangrove endophytic fungus Penicillium steckii SCSIO41025. Chin. J. Chem. 2021, 39, 2132–2140. [Google Scholar] [CrossRef]
- Bai, M.; Zheng, C.J.; Chen, G.Y. Austins-type meroterpenoids from a mangrove-derived Penicillium sp. J. Nat. Prod. 2021, 84, 2104–2110. [Google Scholar] [CrossRef]
- Cai, J.; Chen, C.; Tan, Y.; Chen, W.; Luo, X.; Luo, L.; Yang, B.; Liu, Y.; Zhou, X. Bioactive polyketide and diketopiperazine derivatives from the mangrove-sediment-derived fungus Aspergillus sp. SCSIO41407. Molecules 2021, 26, 4851. [Google Scholar] [CrossRef]
- Cai, J.; Wang, X.; Gan, X.; Zhou, Q.; Luo, X.; Yang, B.; Liu, Y.; Ratnasekera, D.; Zhou, X. New chlorinated metabolites and antiproliferative polyketone from the mangrove sediments-derived fungus Mollisia sp. SCSIO41409. Mar. Drugs 2023, 21, 32. [Google Scholar] [CrossRef]
- Da Silva, P.; de Souza, M.; Bianco, E.; da Silva, S.; Soares, L.; Costa, E.; da Silva, F.; Barison, A.; Forim, M.; Cass, Q.; et al. Antifungal polyketides and other compounds from amazonian endophytic Talaromyces fungi. J. Brazil. Chem. Soc. 2018, 29, 622–630. [Google Scholar] [CrossRef]
- Omura, S.; Shiomi, K.; Asami, Y.; Kashima, Y.; Nonaka, K.; Hanaki, H. Novel Metallo-β-Lactamase Inhibitor Containing 2,5-Furandione Derivative, and Antiinfective Composition Containing the Same with β-Lactam. JP2016179964A, 13 October 2016. [Google Scholar]
- Isaka, M.; Tanticharoen, M.; Thebtaranonth, Y. Cordyanhydrides A and B. Two unique anhydrides from the insect pathogenic fungus Cordyceps pseudomilitaris BCC 1620. Tetrahedron. Lett. 2000, 41, 1657–1660. [Google Scholar] [CrossRef]
- Andrioli, W.J.; Conti, R.; Araujo, M.J.; Zanasi, R.; Cavalcanti, B.C.; Manfrim, V.; Toledo, J.S.; Tedesco, D.; de Moraes, M.O.; Pessoa, C.; et al. Mycoleptones A-C and polyketides from the endophyte Mycoleptodiscus indicus. J. Nat. Prod. 2014, 77, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Cai, X.L.; Yang, H.; Xia, X.K.; Guo, Z.Y.; Yuan, J.; Li, M.F.; She, Z.G.; Lin, Y.C. The bioactive metabolites of the mangrove endophytic fungus Talaromyces sp. ZH-154 isolated from Kandelia candel (L.) Druce. Planta Med. 2010, 76, 185–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Wang, W.; Han, X.; Yang, X. Three new hydroxyphenylacetic acid derivatives and a new alkaloid from endophytic fungus Mortierella sp. in Epimedium acuminatum Franch. and their antibacterial activity. Chem. Biodivers. 2021, 18, e2100741. [Google Scholar] [CrossRef]
- Liu, S.; Tang, X.; He, F.; Jia, J.; Hu, H.; Xie, B.; Li, M.; Qiu, Y. Two new compounds from a mangrove sediment-derived fungus Penicillium polonicum H175. Nat. Prod. Res. 2022, 36, 2370–2378. [Google Scholar] [CrossRef]
- Xiang, Y.; Xi, Y.; Luo, G.; Long, Y.; Yang, W. Synthesis of barbacic acid. J. Asian Nat. Prod. Res. 2022, 24, 1150–1156. [Google Scholar]
- Chen, J.; Lin, Y.; Day, S.; Hwang, T.; Chen, I. New benzenoids and anti-inflammatory constituents from Zanthoxylum nitidum. Food Chem. 2011, 125, 282–287. [Google Scholar] [CrossRef]
- Jouda, J.; Kusari, S.; Lamshöft, M.; Mouafo Talontsi, F.; Douala Meli, C.; Wandji, J.; Spiteller, M. Penialidins A–C with strong antibacterial activities from Penicillium sp., an endophytic fungus harboring leaves of Garcinia nobilis. Fitoterapia 2014, 98, 209–214. [Google Scholar] [CrossRef]
- Wu, H.; Su, Z.; Aisa, H.; Yili, A.; Hang, B. Components of Cichorium glandulosum seeds. Chem. Nat. Compd. 2007, 43, 472–473. [Google Scholar] [CrossRef]
- Zeng, F.; Chen, C.; Ali, A.A.C.; Zhou, Q.; Tong, Q.; Wang, W.; Zang, Y.; Gong, J.; Wu, Z.; Liu, J. Dibrefeldins A and B, a pair of epimers representing the first brefeldin A dimers with cytotoxic activities from Penicillium janthinellum. Bioorg. Chem. 2019, 86, 176–182. [Google Scholar] [CrossRef]
- Sugimoto, T.; Miyase, T.; Kuroyanagi, M.; Ueno, A. Limonoids and quinolone alkaloids from evodia rutaecarpa benth. Chem. Pharm. Bull. 2011, 36, 4453–4461. [Google Scholar] [CrossRef]
- Alamsjah, M.A.; Hirao, S.; Ishibashi, F.; Fujita, Y. Isolation and structure determination of algicidal compounds from Ulva fasciata. Biosci. Biotechnol. Biochem. 2005, 69, 2186–2192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Lee, K.R. Phytochemical constituents of Cirsium nipponicum (max.) makino. Korean J. Pharmacogn. 2005, 36, 145–150. [Google Scholar]
- Wang, M.; Chen, Y.; Sun, Z.; Tan, G.; Li, H.; Liu, H.; Yan, H.; Guo, X.; Zhang, W. Study on cytotoxic secondary metabolites of endophytic fungus Diaporthe longicolla A616 from Pogostemon cablin. Chin. J. Chin. Mater. Med. 2016, 41, 2112–2117. [Google Scholar]
- Lin, T.; Huang, Y.; Tang, G.; Cheng, Z.; Liu, X.; Luo, H.; Yin, S. Prenylated coumarins: Natural phosphodiesterase-4 inhibitors from Toddalia asiatica. J. Nat. Prod. 2014, 25, 955–962. [Google Scholar] [CrossRef]
- Luo, X.; Lin, X.; Tao, H.; Wang, J.; Li, J.; Yang, B.; Zhou, X.; Liu, Y. Isochromophilones A–F, cytotoxic chloroazaphilones from the marine mangrove endophytic fungus Diaporthe sp. SCSIO 41011. J. Nat. Prod. 2018, 81, 934–941. [Google Scholar] [CrossRef]
- Fang, W.; Wang, J.; Wang, J.; Shi, L.; Li, K.; Lin, X.; Min, Y.; Yang, B.; Tang, L.; Liu, Y.; et al. Cytotoxic and antibacterial eremophilane sesquiterpenes from the marine-derived fungus Cochliobolus lunatus SCSIO41401. J. Nat. Prod. 2018, 81, 1405–1410. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, J.; Yan, H.; Shi, M.; Zheng, Q.; Wang, Y.; Zhu, Y.; Miao, L.; Gao, X. Kaempferol inhibits benign prostatic hyperplasia by resisting the action of androgen. Eur. J. Pharmacol. 2021, 907, 174251. [Google Scholar] [CrossRef]
- Tan, Y.; Deng, W.; Zhang, Y.; Ke, M.; Zou, B.; Luo, X.; Su, J.; Wang, Y.; Xu, J.; Nandakumar, K.S.; et al. A marine fungus-derived nitrobenzoyl sesquiterpenoid suppresses receptor activator of NF-kappaB ligand-induced osteoclastogenesis and inflammatory bone destruction. British J. Pharmacol. 2020, 177, 4242–4260. [Google Scholar] [CrossRef]
- Ellman, G.; Courtney, K.; Andres, V.; Featherstone, R. A new and rapid colorimetric determination of acetylcholinesterase activitity. Biochem. Pharmacol. 1961, 7, 88–90. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. Software news and update autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [PubMed] [Green Version]
- Rydberg, E.H.; Brumshtein, B.; Greenblatt, H.M.; Wong, D.M.; Shaya, D.; Williams, L.D.; Carlier, P.R.; Pang, Y.P.; Silman, I.; Sussman, J.L. Complexes of alkylene-linked tacrine dimers with torpedo californica acetylcholinesterase: Binding of bis5-tacrine produces a dramatic rearrangement in the active-site gorge. J. Med. Chem. 2006, 49, 5491–5500. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, X.; Liu, Z.; Meng, F.; Sun, S.; Ye, F.; Liu, Y. Nonadride and spirocyclic anhydride derivatives from the plant endophytic fungus Talaromyces purpurogenus. J. Nat. Prod. 2019, 82, 2953–2962. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, C.; Huang, L.; Zhang, X.; Zhang, G.; Che, Q.; Li, D.; Zhu, T. Talarodrides A-F, nonadrides from the antarctic sponge-derived fungus Talaromyces sp. HDN1820200. J. Nat. Prod. 2021, 84, 3011–3019. [Google Scholar] [CrossRef] [PubMed]
Pos. | 1 | 4 | ||
---|---|---|---|---|
δC Type | δH (J in Hz) | δC Type | δH (J in Hz) | |
1 | 171.5, C | 171.4, C | ||
2 | 30.8, CH2 | 2.58 (dd, 9.5, 7.0) | 31.0, CH2 | 2.59 (t, 7.5) |
3 | 19.4, CH2 | 2.68 (t, 8.0) | 18.9, CH2 | 2.75 (t, 7.5) |
4 | 144.1, C | 137.9, C | ||
5 | 143.0, C | 136.8, C | ||
6 | 27.4, CH2 | 2.40 (m) 2.47 (overlapped) | 117.0, CH | 6.49 (dt, 16.0, 1.5) |
7 | 37.6, CH | 2.05 (m) | 147.5, CH | 7.05 (dt, 16.0, 6.5) |
8 | 27.9, CH2 | 2.47 (overlapped) | 26.6, CH2 | 2.29 (td, 7.1, 1.6) |
9 | 138.1, C | 12.5, CH3 | 1.05 (t, 7.5) | |
10 | 137.7, C | 165.8, C | ||
11 | 117.0, CH | 6.43 (dt, 15.5, 1.5) | 164.6, C | |
12 | 147.7, CH | 7.08 (dt, 15.5, 6.5) | 60.2, CH2 | 4.05 (q, 7.0) |
13 | 26.6, CH2 | 2.28 (m) | 14.0, CH3 | 1.17 (t, 7.0) |
14 | 12.5, CH3 | 1.05 (t, 7.5) | ||
15 | 165.5, C | |||
16 | 166.0, C | |||
17 | 166.2, C | |||
18 | 164.5, C | |||
19 | 25.7, CH2 | 1.30 (m) | ||
20 | 10.7, CH3 | 0.88 (t, 7.5) | ||
21 | 60.3, CH2 | 4.05 (q, 7.0) | ||
22 | 14.0, CH3 | 1.17 (t, 7.0) | ||
7-OH | ||||
8-OH |
Pos. | 10 | 11 | 12 | |||
---|---|---|---|---|---|---|
δC Type | δH (J in Hz) | δC Type | δH (J in Hz) | δC Type | δH (J in Hz) | |
1 | 126.2, C | 126.2, C | 126.1, C | |||
2 | 130.3, CH | 7.15 (d, 8.5) | 130.3, CH | 7.16 (d, 8.6) | 130.4, CH | 7.15 (d, 8.5) |
3 | 114.5, CH | 6.86 (d, 8.6) | 114.5, CH | 6.87 (d, 8.6) | 114.4, CH | 6.88 (d, 8.6) |
4 | 157.3, C | 157.3, C | 157.9, C | |||
5 | 114.5, CH | 6.86 (d, 8.6) | 114.5, CH | 6.87 (d, 8.6) | 114.4, CH | 6.88 (d, 8.6) |
6 | 130.3, CH | 7.15 (d, 8.5) | 130.3, CH | 7.16 (d, 8.6) | 130.4, CH | 7.15 (d, 8.5) |
7 | 51.6, CH2 | 3.58 (s) | 51.6, CH2 | 3.59 (overlapped) | 39.3, CH2 | 3.58 (s) |
8 | 171.9, C | 171.9, C | 172.0, C | |||
9 | 39.8, CH3 | 3.59 (s) | 39.2, CH3 | 3.59 (overlapped) | 51.6, CH3 | 3.59 (s) |
10 | 63.6, CH2 | 4.57 (d, 6.6) | 64.0, CH2 | 4.57 (d, 6.5) | 69.8, CH2 | 4.19 (dd, 10.1, 2.3) 3.76 (dd, 10.0, 8.0) |
11 | 121.1, CH | 5.43 (t, 6.3) | 118.1, CH | 5.63 (t, 6.3) | 75.8, CH | 3.52 (d, 7.9) |
12 | 140.4, C | 140.5, C | 70.9, C | |||
13 | 59.8, CH2 | 4.00 (s) | 65.4, CH2 | 3.84 (s) | 27.4, CH3 | 1.13 (s) |
14 | 21.0, CH3 | 1.75 (s) | 13.8, CH3 | 1.65 (s) | 24.3, CH3 | 1.07 (s) |
13-OH | 4.87 (s) | |||||
12-OH | 4.40 (s) | |||||
11-OH | 4.98 (s) |
Tested Compounds | ||||||
---|---|---|---|---|---|---|
Cells (IC50, μM) | 4 | Others | Positive | |||
PC-3 | >50 | >50 | 0.12 a | |||
22Rv1 | >50 | >50 | 0.03 a | |||
A549 | 15.5 | >50 | 29.95 a | |||
WPMY-1 | 22.9 | >50 | 0.51 a | |||
Bacteria (MIC, μg/mL) | 9 | 21 | 22 | Others | Positive | |
E. rhusiopathiae | >100 | >100 | 100 | >100 | 12.5 b | |
S. suis | 50 | 100 | 100 | >100 | 12.5 b | |
E.coli | >100 | >100 | >100 | >100 | 50 c | |
P. aeruginosa | >100 | >100 | >100 | >100 | 12.5 b | |
S. aureus | 100 | >100 | >100 | >100 | 12.5 b | |
Fungi (MIC, μg/mL) | 1 | 2 | 3 | 9 | Others | |
B. cinerea | 12.5 | 25 | >100 | >100 | >100 | 12.5 d |
V. dahlia | 100 | >100 | >100 | 50 | >100 | 12.5 d |
F. graminearum | 6.25 | 12.5 | 12.5 | 50 | >100 | 12.5 d |
F. oxysporum | 6.25 | 6.25 | 12.5 | 100 | >100 | 25 d |
R. solani | 6.25 | 6.25 | 12.5 | >100 | >100 | 25 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, B.; Cai, J.; Xiao, Z.; Liu, M.; Li, X.; Yang, B.; Fang, W.; Huang, Y.-Y.; Chen, C.; Zhou, X.; et al. Bioactive Polyketides and Benzene Derivatives from Two Mangrove Sediment-Derived Fungi in the Beibu Gulf. Mar. Drugs 2023, 21, 327. https://doi.org/10.3390/md21060327
Peng B, Cai J, Xiao Z, Liu M, Li X, Yang B, Fang W, Huang Y-Y, Chen C, Zhou X, et al. Bioactive Polyketides and Benzene Derivatives from Two Mangrove Sediment-Derived Fungi in the Beibu Gulf. Marine Drugs. 2023; 21(6):327. https://doi.org/10.3390/md21060327
Chicago/Turabian StylePeng, Bo, Jian Cai, Zimin Xiao, Manli Liu, Xinlong Li, Bin Yang, Wei Fang, Yi-You Huang, Chunmei Chen, Xuefeng Zhou, and et al. 2023. "Bioactive Polyketides and Benzene Derivatives from Two Mangrove Sediment-Derived Fungi in the Beibu Gulf" Marine Drugs 21, no. 6: 327. https://doi.org/10.3390/md21060327