Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (198)

Search Parameters:
Keywords = WC-17Co coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5496 KiB  
Article
Optimisation of Response Surface Methodology Based on Finite Element Analysis for Laser Cladding of Highly Hardened WC(Co,Ni) Coatings
by Dezheng Wu, Canyu Ding and Mingder Jean
Materials 2025, 18(15), 3658; https://doi.org/10.3390/ma18153658 - 4 Aug 2025
Viewed by 189
Abstract
In the present work, the optimization of ceramic-based composite WC(Co,Ni) welds by laser cladding was carried out using response surface methodology based on finite element analysis. The heat distribution and temperature field of laser-melted WC(Co,Ni) ceramic coatings were simulated using ANSYS software, which [...] Read more.
In the present work, the optimization of ceramic-based composite WC(Co,Ni) welds by laser cladding was carried out using response surface methodology based on finite element analysis. The heat distribution and temperature field of laser-melted WC(Co,Ni) ceramic coatings were simulated using ANSYS software, which allowed the computation of the distribution of residual stresses. The results show that the isotherms in the simulation of the temperature field are elliptical in shape, and that the isotherms in front of the moving heat source are dense with a larger temperature gradient, while the isotherms behind the heat source are sparse with a smaller temperature gradient. In addition, the observed microstructural evolution shows that the melting zone domains of WC(Co,Ni) are mainly composed of unmelted carbides. These carbides are dendritic, rod-like, leaf-like, or net-like, and are agglomerated into smaller groups. The W content of these unmelted carbides exceeds 80%, while the C content is around 1.5–3.0%. The grey areas are composed of WC, Co and Ni compounds. Based on the regression model, a quadratic model was successfully constructed. A three-dimensional profile model of the residual stress behaviour was further explored. The estimated values of the RSM-based FEA model for residual stress are very similar to the actual results, which shows that the model is effective in reducing residual stress by laser cladding. Full article
(This article belongs to the Special Issue Advances in Plasma and Laser Engineering (Second Edition))
Show Figures

Figure 1

16 pages, 10539 KiB  
Article
Comparative Corrosion and Wear Behaviors of Cermet Coatings Obtained from Conventional and Recycled Powders
by Dino Woelk, Julian Eßler, Ion-Dragos Utu and Gabriela Marginean
Appl. Sci. 2025, 15(14), 7654; https://doi.org/10.3390/app15147654 - 8 Jul 2025
Viewed by 346
Abstract
Many components in industry are subjected to high loads during operation and therefore often do not reach their intended service life. Conventional steels frequently do not provide sufficient protection against wear and corrosion. One solution is to coat these components using methods like [...] Read more.
Many components in industry are subjected to high loads during operation and therefore often do not reach their intended service life. Conventional steels frequently do not provide sufficient protection against wear and corrosion. One solution is to coat these components using methods like thermal spraying to apply cermet coatings such as Cr3C2-NiCr or WC-Co-Cr. In light of increasingly strict environmental regulations, more eco-friendly alternatives are needed, especially ones that use little or no Cr, Ni, Co, or W. Another alternative is the recycling of powder materials, which is the focus of this research project. This study investigated whether filter dust from an HVOF system could be used to develop a new coating suitable for use in applications requiring resistance to wear and corrosion. This is challenging as the filter dusts have heterogeneous compositions and irregular particle sizes. Nevertheless, this recycled material, referred to as “Green Cermets” (GCs), offers previously untapped potential that may also be of ecological interest. An established WC-Co-Cr coating served as a reference. In addition to friction wear and corrosion resistance, the study also examined particle size distribution, hardness, microstructure, and susceptibility to crack formation at the interface and inside the coating. Even though the results revealed a diminished performance of the GC coatings relative to the conventional WC-CoCr, they may still be applicable in various industrial applications. Full article
Show Figures

Figure 1

22 pages, 8571 KiB  
Article
Optimization of Micro-Sandblasting Parameters for Enhanced Adhesion and Wear Resistance of AlTiSiN-Coated Tools
by Junlong Wang, Jiaxuan Du, Zhipeng Liu, Hongliang Qian and Qi Wang
Coatings 2025, 15(7), 757; https://doi.org/10.3390/coatings15070757 - 26 Jun 2025
Viewed by 396
Abstract
Micro-sandblasting pretreatment was applied to AlTiSiN-coated WC–Co tools to enhance cutting performance in 316 L stainless steel milling. An L9(33) Taguchi orthogonal array varied passivation pressure (0.1, 0.2, and 0.3 MPa), gun traverse speed (60, 80, and 100 m/min), [...] Read more.
Micro-sandblasting pretreatment was applied to AlTiSiN-coated WC–Co tools to enhance cutting performance in 316 L stainless steel milling. An L9(33) Taguchi orthogonal array varied passivation pressure (0.1, 0.2, and 0.3 MPa), gun traverse speed (60, 80, and 100 m/min), and tool rotation speed (20, 30, and 40 r/min). Coating thickness varied only from 0.93 to 1.19 μm, and surface roughness remained within 0.044–0.077 μm, confirming negligible thickness and roughness effects. Under optimized conditions, coating adhesion strength and nano-hardness both exhibited significant improvements. A weighted-scoring method balancing these two responses identified the optimal pretreatment parameters as 0.1 MPa, 80 m/min, and 20 r/min. Milling tests at 85 m/min—using flank wear VBₘₐₓ = 0.1 mm as the failure criterion—demonstrated a cutting distance increase from 4.25 m (untreated) to 12.75 m (pretreated), a 200% improvement. Wear progressed through three stages: rapid initial wear, extended steady wear due to Al2O3 protective-film formation and Si-induced oxygen-diffusion suppression, and accelerated wear. Micro-sandblasting further prolonged the steady-wear phase by removing residual cobalt binder, exposing WC grains, and offsetting tensile residual stresses. These findings establish a practical, cost-effective micro-sandblasting pretreatment strategy that significantly enhances coating adhesion, hardness, and tool life, providing actionable guidance for improving the durability and machining performance of coated carbide tools in difficult-to-cut applications. Full article
Show Figures

Figure 1

31 pages, 2429 KiB  
Review
A Comprehensive Review of Improving the Durability Properties of Agricultural Harrow Discs by Atmospheric Plasma Spraying (APS)
by Corneliu Munteanu, Iurie Melnic, Bogdan Istrate, Mark Hardiman, Lidia Gaiginschi, Fabian Cezar Lupu, Vlad Nicolae Arsenoaia, Daniela Lucia Chicet, Constantin Zirnescu and Vladimir Badiul
Coatings 2025, 15(6), 632; https://doi.org/10.3390/coatings15060632 - 25 May 2025
Viewed by 623
Abstract
This paper presents a comprehensive analysis of recent advancements in the application of thermal spraying techniques to enhance the durability and wear resistance of agricultural machinery components, with a particular focus on disc harrow assemblies. Given the harsh conditions under which tillage tools [...] Read more.
This paper presents a comprehensive analysis of recent advancements in the application of thermal spraying techniques to enhance the durability and wear resistance of agricultural machinery components, with a particular focus on disc harrow assemblies. Given the harsh conditions under which tillage tools operate—characterized by abrasive wear, impact stresses, and chemical exposure from various soil types—thermal sprayed coatings have emerged as a viable solution to extend the service life of these components. The study discusses various deposition methods, particularly Atmospheric Plasma Spraying (APS), and evaluates their effectiveness in creating high-performance surface layers that resist wear, corrosion, and mechanical degradation. The review also summarizes experimental and field test results for coatings based on materials such as NiCrBSi, WC-Co-Cr, TiO2, Al2O3, Cr2O3, and ceramic–metal composites, highlighting their significant improvements in hardness, friction reduction, and resistance to delamination and oxidation. The paper highlights research using thermal spraying techniques, especially APS for agricultural applications, with emphasis mostly on components intended for soil processing and requiring good resistance to abrasive wear. Full article
(This article belongs to the Special Issue Emerging Trends in the Future of Plasma Science and Technology)
Show Figures

Figure 1

30 pages, 8581 KiB  
Article
Improvement of Surface Properties of Carbon Steel Through Electrospark Coatings from Multicomponent Hard Alloys
by Todor Penyashki, Georgi Kostadinov and Mara Kandeva
Materials 2025, 18(10), 2211; https://doi.org/10.3390/ma18102211 - 10 May 2025
Cited by 1 | Viewed by 447
Abstract
This work demonstrates the possibility of creating effective composite coatings with a complex structure and phase composition on carbon steel C45 via electrospark deposition (ESD) with multicomponent electrodes with a bonding mass composition of Co-Ni-Cr-B-Si semi-self-fluxing alloys and superhard compounds WC, B4 [...] Read more.
This work demonstrates the possibility of creating effective composite coatings with a complex structure and phase composition on carbon steel C45 via electrospark deposition (ESD) with multicomponent electrodes with a bonding mass composition of Co-Ni-Cr-B-Si semi-self-fluxing alloys and superhard compounds WC, B4C and TiB2. The variation in the roughness, thickness, composition, structure, microhardness and wear at the friction of the coatings as a function of the ratios between the bonding mass and the high-hardness components in the composition of the electrode and of the pulse energy for ESD has been studied. It has been established that with a content of the bonding mass in the electrode of 25–35%, coatings with improved adhesion and simultaneously higher hardness and toughness are obtained. Suitable electrode compositions and optimal pulse energy have been defined, which provide dense and uniform coatings with an increased amount of crystalline-amorphous structures, as well as intermetallic and wear-resistant phases, with thickness, roughness and microhardness that can be changed by the ESD modes in the ranges of δ = 8–65 µm, Ra = 1.5–7 µm, and HV 8.5–15.0 GPa, respectively, and minimal wear of the coated surfaces that is up to 5 times lower than that of the substrate and up to 1.5 times lower than that obtained with conventional WC-Co electrodes. Full article
(This article belongs to the Special Issue Advances in Metal Coatings for Wear and Corrosion Applications)
Show Figures

Figure 1

19 pages, 7023 KiB  
Article
The Effect of CeO2 Content on the Microstructure and Properties of TiC/WC/Co Composite Cladding Layers
by Wenhui Tong, Qingqi Xu, Yunyi Liu, Zi’ao Qi, Jie Wang and Jiadong Liu
Coatings 2025, 15(5), 530; https://doi.org/10.3390/coatings15050530 - 29 Apr 2025
Viewed by 400
Abstract
To address the issue that the insufficient surface hardness and wear resistance of ductile iron under harsh working conditions are likely to lead to early failure, using a cladding layer with dual hard phases is an effective method to improve the surface properties. [...] Read more.
To address the issue that the insufficient surface hardness and wear resistance of ductile iron under harsh working conditions are likely to lead to early failure, using a cladding layer with dual hard phases is an effective method to improve the surface properties. However, the issue that a large amount of hard phases decompose under the action of a high-energy laser to generate brittle phases in the microstructure is quite troublesome. Therefore, by adding CeO2 to the cladding layer, a TiC/WC/Co composite cladding layer containing CeO2 is prepared on the substrate by means of a fiber laser. Through OM, SEM-EDS, XRD, and Rockwell hardness tests, the effects of the CeO2 content on the microstructure, phase composition, and hardness of the coating were studied to determine the optimal addition amount. The results show that the secondary dendrite arm spacing (SDAS) of the γ-Co phase and the sizes of TiWC2 and WC dendrites exhibit a non-monotonic trend of first decreasing and then increasing with the increase in the CeO2 content, and the morphology of TiWC2 evolves from a cross shape to a granular shape and then to a dendritic shape. When the CeO2 content is 2 wt.%, the WC dendrites are completely inhibited, and the SDAS of γ-Co reaches the minimum value; when the content increases to 4 wt.%, WC dendrite coarsening occurs, and at the same time, the γ-Co dendrite packing density increases significantly, and the eutectic fraction decreases obviously. The hardness of the coating first increases and then decreases with the increase in the CeO2 addition amount, and reaches a peak value of 91.4 HRC when the CeO2 content is 4 wt.%, which is approximately 2.57 times the hardness of the substrate. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

19 pages, 23277 KiB  
Article
Metal Matrix Composite Coatings Deposited by Laser Cladding: On the Effectiveness of WC Reinforcement for Wear Resistance and Its Synergy with the Matrix Material (Ni Versus Co Alloys)
by Leandro João da Silva, Jeferson Trevizan Pacheco, Edja Iandeyara Freitas Moura, Douglas Bezerra de Araújo, Ruham Pablo Reis and Ana Sofia Clímaco Monteiro D’Oliveira
Coatings 2025, 15(4), 468; https://doi.org/10.3390/coatings15040468 - 15 Apr 2025
Cited by 2 | Viewed by 734
Abstract
This work investigates the effect of the addition of tungsten carbide (WC) particles as reinforcements to Ni (Inconel 625) versus Co (Stellite 6) alloys during deposition by laser cladding to form wear-resistant metal matrix composite (MMC) coatings. While the related literature often associates [...] Read more.
This work investigates the effect of the addition of tungsten carbide (WC) particles as reinforcements to Ni (Inconel 625) versus Co (Stellite 6) alloys during deposition by laser cladding to form wear-resistant metal matrix composite (MMC) coatings. While the related literature often associates the presence of WC with the enhanced wear performance of MMC coatings, this work shows that such an effect is not universal as it may critically depend on the metallic matrix employed. Thus, to demonstrate whether the reinforcement and matrix act synergically in such a scenario or not, MMC coatings formed by Inconel 625 and Stellite 6, both with WC content ranging from 10% to 40%, were deposited under the same laser cladding setup on AISI 304 stainless steel substrates, being WC-free samples produced together for comparison basis. As expected, the hardness levels increased with more WC presence in both matrices, but the wear resistance was specifically evaluated by means of the metal wheel abrasion test (ASTM B611). The results revealed that the use of WC as a reinforcement indeed affects the matrix materials differently; for Stellite 6, the wear resistance increased with up to 20% of WC (in contrast to the hardness indication), whereas for Inconel 625, the wear resistance progressively decreased with more WC content. It was observed via scanning electron microscopy (SEM) that the WC particles within the Inconel 625 alloy tended to intensive cracking, being in this way more prone to detach from the matrix and hence representing a weakening factor for the effectiveness of the coatings produced. Thus, it is concluded that the addition of WC particles, as potential reinforcements for MMC coatings, is not always effective (synergic with the matrix) in providing wear resistance, hence, opposing the prevailing consensus. This outcome and its reasons will certainly help with insights into proper design of MMC coatings, starting with the importance of matrix material selection. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Graphical abstract

13 pages, 11281 KiB  
Article
In Situ-Reinforced Phase Evolution and Mechanical Properties of CoCrFeNi High-Entropy Alloy Composite Coating on Q235B by Laser Cladding with Nb Addition
by Feimuyun Yang, Zhixuan Xiao, Zehuan Chen, Hongtao Jin, Chao Gao and Jiang Huang
Materials 2025, 18(7), 1572; https://doi.org/10.3390/ma18071572 - 31 Mar 2025
Viewed by 383
Abstract
Q235B is widely used in marine engineering materials; however, its wear resistance and corrosion resistance are poor. To improve wear and corrosion resistance, a CoCrFeNi high-entropy alloy (HEA) composite coating was cladded using laser cladding (LC) technology. Different proportions of tungsten carbide (WC) [...] Read more.
Q235B is widely used in marine engineering materials; however, its wear resistance and corrosion resistance are poor. To improve wear and corrosion resistance, a CoCrFeNi high-entropy alloy (HEA) composite coating was cladded using laser cladding (LC) technology. Different proportions of tungsten carbide (WC) and Nb elements were added to the CoCrFeNi HEA coating, and the microstructure, phase, hardness, wear, and corrosion resistance of three different composite coatings were analyzed. The results show that the in situ synthetic phase is composed of Face central cubic (FCC) (Cr3C2) and strengthening phases such as W, WC, and NbC. In the process of LC, Nb will react with WC in situ, which not only reduces the morphology of the CoCrFeNi HEA cladding coating changed by adding WC, but also generates NbC, which leads to the dissolution of WC particles and improves the uniformity of particle distribution of the coating. The hardness of the coating with Nb is increased by 1.40 times, the wear resistance is enhanced, and the peeling of the hard phase is reduced during wear. The corrosion resistance of the coating with only WC particles is the best. Nb reduces the morphology of CoCrFeNi HEA cladding coating changed by WC particles. Although the coating with Nb is not as strong as that with WC particles only, it has outstanding hardness and wear resistance. Full article
Show Figures

Figure 1

15 pages, 5202 KiB  
Article
Characterization of AlCrN Coated on Tungsten Carbide Substrate by a Continuous Plasma Nitriding-HiPIMS Hybrid Process
by Fu-Sen Yang, Yu-Lin Kuo, Jian-Fu Tang, Ting-Wei Liu and Chi-Lung Chang
Coatings 2025, 15(3), 353; https://doi.org/10.3390/coatings15030353 - 19 Mar 2025
Viewed by 546
Abstract
Plasma nitriding (PN) is often used to enhance the mechanical properties (surface hardness, wear and corrosion resistance) of bulk alloys. High-quality AlCrN hard coatings were obtained using high-power pulsed magnetron sputtering (HiPIMS) technology. This study proposes a combination of two surface treatment methods [...] Read more.
Plasma nitriding (PN) is often used to enhance the mechanical properties (surface hardness, wear and corrosion resistance) of bulk alloys. High-quality AlCrN hard coatings were obtained using high-power pulsed magnetron sputtering (HiPIMS) technology. This study proposes a combination of two surface treatment methods (plasma nitriding and hard coating deposition) in a continuous plasma process to optimize the application and service life of cutting tools. The main feature of this study is to verify the mechanical properties and adhesion strength of nitride tungsten carbide (WC-Co) bulk at a lower temperature (∼300 °C) and shorter time (0.5 to 1.5 h) of PN treatment. After 1.5 h of PN treatment on the WC-Co substrate without subsequent coating, the ultra-thin WNx diffusion interlayer (thickness ∼11.5 nm) on the subsurface was directly observed via TEM analysis, and the types of chemical bonding were confirmed by XPS analysis. Vickers analysis indicated that the surface hardness of the nitrided WC-Co substrate was enhanced by PN treatment from 1534 to 2034 Hv. The AlCrN coating deposited on the nitrided WC-Co substrate significantly enhances the surface mechanical properties, including adhesion strength (increasing from 70 to 150 N), hardness (rising from 2257 to 2568 HV), and wear resistance (with the wear rate decreasing from 14.5 to 3.4 × 10−8 mm3/Nm). Composite surface technology has a high commercial application value because it enhances the value of products under the existing equipment of manufacturers. Full article
(This article belongs to the Special Issue Advances in Novel Coatings)
Show Figures

Figure 1

13 pages, 9377 KiB  
Article
Wear Resistance of WC-10Co-4Cr Cemented Carbide Coatings Prepared by Atmospheric Plasma Spraying and Laser Cladding
by Zhanji Geng, Feng Liu and Yuping Wang
Metals 2025, 15(3), 309; https://doi.org/10.3390/met15030309 - 12 Mar 2025
Cited by 1 | Viewed by 728
Abstract
This paper adopts an atmospheric plasma spraying and laser cladding process to prepare WC-10Co-4Cr cemented carbide coatings on the substrate surfaces of 304 stainless steel and 316 stainless steel, respectively, and comparatively analyzes the microstructures, phase compositions, average hardness, and friction and wear [...] Read more.
This paper adopts an atmospheric plasma spraying and laser cladding process to prepare WC-10Co-4Cr cemented carbide coatings on the substrate surfaces of 304 stainless steel and 316 stainless steel, respectively, and comparatively analyzes the microstructures, phase compositions, average hardness, and friction and wear performances of the coatings prepared under the two processes. The analysis showed that the plasma sprayed coating showed a lamellar structure, and the interface between the coating and the substrate was mechanically occluded, while the laser melting coating showed a dendritic structure, and the interface between the coating and the substrate was metallurgically bonded. After decarburization of the plasma sprayed coatings, the W2C phase dominated, while the laser cladding coatings were still dominated by the WC phase. In addition, the average microhardness, coefficient of friction, and mass loss of the plasma sprayed coatings were about 1341.7 HV, 0.45, and 0.005 g, respectively, while those of the laser cladding coatings were about 1440.5 HV, 0.4, and 0.002 g. The overall performance of the laser cladding coatings was better than that of the plasma sprayed coatings. The quality of the prepared WC-10Co-4Cr coatings was improved, which provides guidance for the preparation of WC-10Co-4Cr coatings by laser melting. Full article
Show Figures

Figure 1

17 pages, 3367 KiB  
Article
Removing High-Velocity Oxyfuel Coatings Through Electrolytic Dissolution
by Zdeněk Pitrmuc, Vivek Rana, Michal Slaný, Jiří Kyncl, Sunil Pathak and Libor Beránek
J. Manuf. Mater. Process. 2025, 9(2), 40; https://doi.org/10.3390/jmmp9020040 - 29 Jan 2025
Viewed by 889
Abstract
High-velocity oxyfuel (HVOF) coatings are used to protect components from corrosion and wear at higher temperatures and from wearing out after a certain period of time. Hence, to enhance the life of components, further recoating is required, but removing the older coating is [...] Read more.
High-velocity oxyfuel (HVOF) coatings are used to protect components from corrosion and wear at higher temperatures and from wearing out after a certain period of time. Hence, to enhance the life of components, further recoating is required, but removing the older coating is a challenging task due to its high hardness. Thus, this research work studied the electrolytic dissolution process of removing WC-CoCr 86/10/4 HVOF coatings and found that at a voltage of 3 V, the coating was not removed, but at a slightly higher voltage of 6 V, the coating was removed completely. When the voltage was 12 V, the surface was damaged, and corrosion also occurred. A combination of tartaric acid (C4H6O6), sodium bicarbonate (NaHCO3), and water was used as an electrolyte. By using a combination of a voltage of 4.5 V, a current of 1.6 A, and an electrode distance of 55 mm, the coating was completely removed after 10 h, with negligible attacks on the base material. Where the corrosion of the base material is unacceptable, voltages in the range of 4 to 6 V are recommended. If parts have coatings on all surfaces, a voltage within the range of 6 to 12 V can be recommended. The coating from tab SB-002JI-5 TOOLOX-11 and hexagonal mandrel SB-00EA-1 160 TIS was also removed successfully. Full article
Show Figures

Figure 1

15 pages, 7854 KiB  
Article
Use of Computational Fluid Dynamics (CFD) Methods to Analyze Combustion Chamber Processes at HVOF Spraying and Their Comparison with Experimental Data
by Bauyrzhan Rakhadilov, Nazerke Muktanova, Aidar Kengesbekov and Nurtoleu Magazov
Modelling 2025, 6(1), 4; https://doi.org/10.3390/modelling6010004 - 13 Jan 2025
Cited by 1 | Viewed by 1082
Abstract
This paper discusses the process of high-velocity oxygen fuel (HVOF) spraying with modeling of the gas flow parameters and behavior of WC-Co-Cr powder particles of different fractions (up to 20 µm, 21–35 μm and 36–45 μm). It was found that the temperature of [...] Read more.
This paper discusses the process of high-velocity oxygen fuel (HVOF) spraying with modeling of the gas flow parameters and behavior of WC-Co-Cr powder particles of different fractions (up to 20 µm, 21–35 μm and 36–45 μm). It was found that the temperature of the gas stream reaches a maximum of about 2700 °C, after which it gradually decreases, and the pressure in the combustion chamber (before the exit of gases through the nozzle) reaches maximum values, exceeding 400,000 Pa, and the pressure at the exit of the nozzle stabilizes at about 100,000 Pa, which corresponds to the standard atmospheric pressure. The gas velocity increases to 1300–1400 m/s and then decreases to 400 m/s at a distance of about 150 mm. It was determined that powder particles of the 21–35 µm fraction provide more stable parameters of velocity and temperature. Small particles (up to 20 µm) lose velocity and temperature faster as they advance, which deteriorates the coating quality, which was also experimentally confirmed. All results obtained from the HVOF process modeling fully align with the data from experimental studies. Full article
(This article belongs to the Special Issue Finite Element Simulation and Analysis)
Show Figures

Figure 1

14 pages, 16266 KiB  
Article
The Microstructure and Mechanical Properties of Laser-Cladded CoCrFeNiAl/WC Coatings on H13 Steel
by Junbo Zhang, Bing Du, Fuzhen Sun, Yan Li and Yang Liu
Coatings 2025, 15(1), 52; https://doi.org/10.3390/coatings15010052 - 6 Jan 2025
Cited by 2 | Viewed by 1039
Abstract
Previous studies have focused on the laser cladding of high-entropy alloys (HEAs) on untreated H13 steel, yielding promising results. However, there is limited research on laser cladding HEAs on heat-treated H13 steel, which is more common in the automotive mold industry. In this [...] Read more.
Previous studies have focused on the laser cladding of high-entropy alloys (HEAs) on untreated H13 steel, yielding promising results. However, there is limited research on laser cladding HEAs on heat-treated H13 steel, which is more common in the automotive mold industry. In this study, CoCrFeNiAl/WC high-entropy alloy composite coatings were fabricated on heat-treated H13 steel using laser cladding, addressing the gap in applying HEAs on heat-treated tool steels. The influence of the WC content on the phase composition, microstructure, and mechanical properties of the composite coating was investigated. The coating exhibits a dual-layer microstructure consisting of a working layer and a transition layer with different compositions. The results indicate that the CoCrFeNiAl/WC working layer primarily consists of FCC phases. As the WC content increases, metallurgical reactions occur in the working layer, forming (Fe,Co)3W3C, Co4W2C, and Cr7C3 carbide precipitates. This significantly enhances the hardness and wear resistance of the coating, with the final hardness being 1.23 times that of the substrate, the wear weight loss being only 0.21 times that of the substrate, and the average friction coefficient being only 0.82 times that of the substrate. Full article
Show Figures

Figure 1

13 pages, 51039 KiB  
Article
Effects of Sliding Speed on Wear Behavior of High-Velocity Oxygen Fuel-Sprayed FeCrMoNiCuBSiC Metallic Glass Coatings
by Lei Qiao, Botao Zhou, Ruifeng Li, Taotao Li, Yue Zhao, Xiaoqiang Zhang and Chul-Hee Lee
Lubricants 2025, 13(1), 10; https://doi.org/10.3390/lubricants13010010 - 30 Dec 2024
Cited by 3 | Viewed by 981
Abstract
A FeCrMoNiCuBSiC metallic glass coating was designed and then deposited by the high-velocity oxygen fuel (HVOF) spraying technique. X-ray diffraction, a scanning electron microscope, and a microhardness tester were applied to characterize the phase, microstructure, and mechanical properties of the coating. The amorphous [...] Read more.
A FeCrMoNiCuBSiC metallic glass coating was designed and then deposited by the high-velocity oxygen fuel (HVOF) spraying technique. X-ray diffraction, a scanning electron microscope, and a microhardness tester were applied to characterize the phase, microstructure, and mechanical properties of the coating. The amorphous phase was the main phase in the coating, and crystal phases were almost undetectable in the XRD results. The coating had a dense structure (the porosity was 1.47 ± 0.32%) and high Vickers microhardness (848 ± 22 HV0.3). The wear behavior of the coatings sliding against WC-Co was studied with a pin-on-disc wear test system and was compared with that of 316L stainless steel. The coating improved the wear resistance of the steel by around 7–9 times at different sliding speeds. As the sliding speed was increased, the wear loss rate of the steel obviously increased, yet the loss rate of the coating decreased first and then increased. This happened because the contact flash temperature induced by friction increases with the sliding speed, which results in oxidative behavior and crystallization events in the coating. The dominating wear mechanism of the coating is fatigue wear combined with oxidative wear. Full article
(This article belongs to the Special Issue Wear-Resistant Coatings and Film Materials)
Show Figures

Figure 1

20 pages, 15044 KiB  
Article
The Influence of Load and Ball on the Sliding Wear Characteristics of HVOF-Sprayed WC-12Co Composite Coating
by Ali Avcı
Coatings 2025, 15(1), 9; https://doi.org/10.3390/coatings15010009 - 25 Dec 2024
Cited by 2 | Viewed by 1016
Abstract
This study examines the impact of various abrasive balls and sliding loads on WC-12Co coatings. For this purpose, 4 N, 8 N, and 12 N loads were applied to the WC-12Co composite coatings with Al2O3 and Si3N4 [...] Read more.
This study examines the impact of various abrasive balls and sliding loads on WC-12Co coatings. For this purpose, 4 N, 8 N, and 12 N loads were applied to the WC-12Co composite coatings with Al2O3 and Si3N4 balls. WC-12 Co composite was deposited by the high-velocity oxygen fuel method on the AISI 304 substrate. The wear tests were conducted in accordance with ASTM G99 on a ball-on-disc tribometer at room temperature. In order to study the results of the coating tests, wear volume loss was measured against each counter body. Surface roughness and microstructure changes before and after wear were examined by electron microscopy. The resulting wear tracks were examined with an optical profilometer and the wear amount was calculated. When comparing the Al2O3 ball with the Si3N4 ball, the Al2O3 ball corrodes WC-12Co coatings more and is most susceptible to abrasive grooving, brittle cracking, and spalling. Wear rates rose by 77%, 58%, and 67% when the Si3N4 abrasive sample and the samples with Al2O3 coating were subjected to 4 N, 8 N, and 12 N loads, respectively. WC-12Co coating layers and powders were subjected to X-ray diffraction analyses, which revealed that coarse WC-12Co powder underwent less decarburization due to HVOF spraying. Full article
Show Figures

Figure 1

Back to TopTop