Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = W-SBA-15

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2293 KB  
Article
An Evaluation of the Safety, Immunogenicity, and Protective Efficacy of a Combined Diphtheria–Tetanus–Acellular Pertussis, Haemophilus influenzae Type b, and ACYW135 Meningococcal Conjugate Vaccine in Murine and Rat Models
by Xiuwen Sui, Zhujun Shao, Yuanyuan Ji, Hairui Wang, Qingfu Xu, Bochao Wei, Zhuojun Duan, Chang Wang, Ying Yang, Jiayu Zhao and Tao Zhu
Vaccines 2025, 13(7), 724; https://doi.org/10.3390/vaccines13070724 - 3 Jul 2025
Viewed by 1296
Abstract
Background: The combined diphtheria–tetanus–acellular pertussis (three-component), Haemophilus influenzae type b (Hib, conjugate), and ACYW135 meningococcal (conjugate) vaccine (DTaP-Hib-MCV4) offers a promising alternative to single-component vaccines, potentially simplifying immunization schedules and improving vaccination coverage. Methods: We evaluated the safety, immunogenicity, and protective [...] Read more.
Background: The combined diphtheria–tetanus–acellular pertussis (three-component), Haemophilus influenzae type b (Hib, conjugate), and ACYW135 meningococcal (conjugate) vaccine (DTaP-Hib-MCV4) offers a promising alternative to single-component vaccines, potentially simplifying immunization schedules and improving vaccination coverage. Methods: We evaluated the safety, immunogenicity, and protective efficacy of DTaP-Hib-MCV4 in animal models. Acute and long-term toxicity studies were conducted in Sprague-Dawley (SD) rats with equal numbers of male and female animals. Immunogenicity was assessed in female NIH mice and SD rats using a three-dose regimen at 14-day intervals. Orbital blood was collected 14 days post-immunization to measure IgG titers against pertussis, diphtheria, tetanus, Hib, and meningococcal antigens. The protective efficacy was determined using potency tests for the pertussis, diphtheria, and tetanus components; passive protection studies for Hib; and serum bactericidal antibody (SBA) titers against A/C/Y/W135 meningococcal serogroups. Results: Acute and repeated-dose toxicity studies in SD rats showed no signs of abnormal toxicity or irritation at either high (three doses/rat) or low (one dose/rat) doses levels. The no-observed-adverse-effect level (NOAEL) for DTaP-Hib-MCV4 was established at three doses/rat after 8 weeks of repeated intramuscular administration and a 4-week recovery period. Specific IgG antibodies against all the vaccine components were detected in animal sera at both one and three doses/rat, with no evidence of immunotoxicity. Following two-dose primary immunization in murine models, the combined vaccine elicited robust antigen-specific antibody responses, with geometric mean titers (GMTs) as follows: 1,280,000 for pertussis toxin (PT); 761,093 for filamentous hemagglutinin (FHA); 1,159,326 for pertactin (PRN); 1,659,955 for diphtheria toxoid (DT); 1,522,185 for tetanus toxoid (TT); 99 for Haemophilus influenzae type b (Hib); and 25,600, 33,199, 8300, and 9051 for serogroups A, C, Y, and W135 of Neisseria meningitidis, respectively. In the rat models, three-dose primary immunization also elicited robust antigen-specific antibody responses. Protection studies demonstrated efficacy against pertussis, tetanus toxin, and diphtheria toxin challenges. In the Hib challenge study, none of the 10 animals given anti-DTaP-Hib-MCV4 antiserum developed bacteremia after the live Hib challenge (vs. 5814/0.1 mL in the negative control, p < 0.001). In addition, the SBA titers against meningococcal serogroups exceeded the protective threshold (≥1:8) in 92.2% of the immunized mice and 100% of the immunized rats. Crucially, the combined vaccine induced potent immune responses and protective efficacy, with antibody levels and protection against each component antigen comparable to or greater than those of the individual components: DTaP, Hib, and MCV4. Conclusions: These findings demonstrate that the DTaP-Hib-MCV4 combined vaccine is both safe and immunogenic, supporting its potential as a viable alternative to individual vaccines. This combined vaccine may streamline immunization programs and enhance vaccination coverage. Full article
Show Figures

Figure 1

17 pages, 3135 KB  
Article
Amide-Based Anti-Wear/Extreme-Pressure Additives for Silica-Thickened Greases: Structure and Wear Resistance
by Jolanta Drabik, Kamil Korasiak, Justyna Chrobak, Rafał Kozdrach, Julia Woch, Michał Cyl, Magdalena Zarębska, Bernadetta Kaźmierczak, Jolanta Iłowska and Katarzyna Szymańska
Molecules 2025, 30(12), 2492; https://doi.org/10.3390/molecules30122492 - 6 Jun 2025
Cited by 2 | Viewed by 945
Abstract
The lubricating properties of three secondary amides were evaluated using the four-ball apparatus method. It was found that the studied amides—N-propylpropanamide (AC3C3), N-propyloctanamide (AC3C8), and N-propyldodecanamide (AC3C12)—could be a promising group of new AW/EP (anti-wear/extreme-pressure) additives for lubricants, especially for silica-thickened greases. Of [...] Read more.
The lubricating properties of three secondary amides were evaluated using the four-ball apparatus method. It was found that the studied amides—N-propylpropanamide (AC3C3), N-propyloctanamide (AC3C8), and N-propyldodecanamide (AC3C12)—could be a promising group of new AW/EP (anti-wear/extreme-pressure) additives for lubricants, especially for silica-thickened greases. Of the amides tested, AC3C8 was found to have the best properties. The synthesized amide structures were immobilized on SBA-15 nanosilica and examined as described above. Notably, SBA-15 has not previously been reported as a potential lubricant additive. The results of the tribological tests showed that SBA-15-immobilized amides performed better than non-immobilized amides. Nevertheless, the lack of stability of the amide-grafted SBA-15 when dispersed in oil limits its use in targeted formulations and should be improved through further research. By testing a silica-thickened grease, a synergistic effect was observed between the free-amide AC3C8 and a commercially available additive containing butylated triphenyl phosphate. A 240% increase in the Goz40 parameter (anti-wear properties) and a 150% increase in welding load (extreme-pressure properties) were obtained with the addition of 2%w/w of commercial additive and 3%w/w of AC3C8 to a base oil. Full article
Show Figures

Graphical abstract

25 pages, 5688 KB  
Article
Correlating the Characteristics and Catalytic Performance of Mn-Na-W-Ox/SiO2 for Oxidative Coupling of Methane
by Hamid Reza Godini, Stefan Berendts, Rafael Kleba-Ehrhardt, Asma Tufail Shah and Oliver Görke
Inorganics 2025, 13(4), 106; https://doi.org/10.3390/inorganics13040106 - 28 Mar 2025
Viewed by 924
Abstract
Chemical–structural characteristics of three differently synthesized research-benchmark Mn-Na-W-Ox/SiO2 catalysts for the Oxidative Coupling of Methane (OCM) were systematically studied in this research. XRD, EDX, ICP-OES, and SEM/FIB-SEM techniques, as well as Carrier Gas Hot Extraction (CGHE) and high-temperature XRD analyses, [...] Read more.
Chemical–structural characteristics of three differently synthesized research-benchmark Mn-Na-W-Ox/SiO2 catalysts for the Oxidative Coupling of Methane (OCM) were systematically studied in this research. XRD, EDX, ICP-OES, and SEM/FIB-SEM techniques, as well as Carrier Gas Hot Extraction (CGHE) and high-temperature XRD analyses, were performed to explain the functional features of the studied catalysts, in particular, the features affecting the quantity and quality of the interactions of oxygen and methane with the catalyst surface and with other molecular and radical species. These enable tracking the potential for the oxygen activation and dynamic transformation of the solid-state chemistry on the surface and sub-surface of these Mn-Na-W-Ox/SiO2 catalysts. These catalysts were synthesized, respectively, via the sol–gel synthesis method (Cat1) and the incipient wetness impregnation of the non-structured silica support (Cat2) and structured SBA-15 silica support (Cat3), under different sets of temperatures and gas compositions. The catalysts with the homogenous distribution of active components, namely Cat1 and Cat3, showed similar trends in terms of their dynamic interaction with oxygen species. They also showed higher levels of crystallinity of the active materials and higher catalytic selectivity towards ethane and ethylene. An explanation is given as to how the structural characteristics of the catalysts on the nanometer–micrometer scale contribute to these. The gained knowledge will be crucial in the selection and treatment of the support and developing a proper synthesis approach for the ultimate goal of designing a selective OCM catalyst. Full article
Show Figures

Figure 1

18 pages, 5538 KB  
Article
A Novel Method for Eliminating Glint in Water-Leaving Radiance from UAV Multispectral Imagery
by Jong-Seok Lee, Sin-Young Kim and Young-Heon Jo
Remote Sens. 2025, 17(6), 996; https://doi.org/10.3390/rs17060996 - 12 Mar 2025
Cited by 1 | Viewed by 1606
Abstract
Unmanned Aerial Vehicle (UAV) high-resolution remote sensing imagery has been used for unprecedented coastal environment monitoring with ground sampling distance and time intervals of a few centimeters and seconds, respectively. However, high spatial-time resolutions of UAV remote sensing data consist of unexpected signals [...] Read more.
Unmanned Aerial Vehicle (UAV) high-resolution remote sensing imagery has been used for unprecedented coastal environment monitoring with ground sampling distance and time intervals of a few centimeters and seconds, respectively. However, high spatial-time resolutions of UAV remote sensing data consist of unexpected signals from water surface level changes induced by wind-driven currents and waves. This leads to non-linear and non-stationary forms of sun and sky glints in the UAV sea surface image. Consequently, these surface glints interfere with the detection of water body reflections and objects, reducing the accuracy and usability of the measurements. This study employed Fast and Adaptive Multidimensional Empirical Mode Decomposition (FA-MEMD) to separate the spatial periodicity of time-continuous multispectral images of the sea surface from the original data and retain non-oscillatory signals called residual images. The residual images effectively represented the spatial-temporal radiance and flow variations in the water body by correcting the regions of surface glint. This study presents three key findings: First, homogeneous surface radiance data with surface glint removed from the raw image sequence was acquired using FA-MEMD. Second, the continuous surface glint removal effect is validated through water-leaving radiance (Lw-SBA) measurements obtained via the Skylight-Blocked Approach (SBA) method. Comparisons showed that R2 values for the data obtained from clear water before and after surface glint removal were 0.02 and 0.56 with RMSE values of 8.37 × 10−5 and 5.51 × 10−5 W·m−2·sr−1, respectively, indicating an improvement rate of 34.19%. Third, a comparative analysis with previous study methods demonstrated that our approach yielded spatially and temporally uniform homogeneous surface radiance data with less variability than traditional methods. The spatially and temporally synchronized residual images and the Lw-SBA data showed high similarity, confirming that the FA-MEMD technique effectively removed the surface glint from wave-induced roughness, enhancing the reliability of high-resolution UAV sea color observations. Full article
Show Figures

Figure 1

19 pages, 3704 KB  
Article
Catalytic Reduction of the Compounds Generated When Heating Heet Tobacco in Presence of USY and Beta Zeolites and Silica Lovel 6000 and SBA-15 Silicate in Oxidative and Inert Atmospheres: Effect of Temperature and Catalyst Content
by Antonio Marcilla, Deseada Berenguer, María Isabel Beltrán and Catalina Farcas
ChemEngineering 2024, 8(6), 125; https://doi.org/10.3390/chemengineering8060125 - 6 Dec 2024
Cited by 1 | Viewed by 1670
Abstract
The thermal decomposition of a heat-not-burn (HNB) tobacco at four temperatures (250–400 °C) was studied via thermogravimetric analysis (TGA) and Multi-shot pyrolizer experiments (Py-GC/MS), and the effect of four potential additives, USY Beta and beta zeolites and Silica Lovel 6000 and SBA-15 silicates [...] Read more.
The thermal decomposition of a heat-not-burn (HNB) tobacco at four temperatures (250–400 °C) was studied via thermogravimetric analysis (TGA) and Multi-shot pyrolizer experiments (Py-GC/MS), and the effect of four potential additives, USY Beta and beta zeolites and Silica Lovel 6000 and SBA-15 silicates at three concentrations (5, 15 and 25% w/w) under an inert and oxidative atmosphere was analyzed. Different techniques were applied showing that the presence of the additives modifies the decomposition processes (TGA). Py-GC/MS showed that these tobaccos generate large amounts of Nicotine and Glycerine. Acid compounds are the most abundant compounds under an inert atmosphere, while Oxygenated compounds predominate under an oxidative atmosphere. In both atmospheres, Furans and Aromatics present in a significant abundance at high temperatures. The additives used reduce both the number and the concentration of most of the compounds generated, especially at high temperatures and concentrations. Moreover, SBA-15 shows good aptitudes to reduce the formation of some individual compounds included in the FDA’s HPHC list, such as Acetone and Acetaldehyde. Finally, smoking experiments corroborated that all additives produce marked reductions in TPM, i.e., the majority fraction obtained, and in practically all the compounds generated. Phenol, a toxicant compound that was detected in a significant amount, is also markedly reduced. SBA-15 is the material that presents a major reduction in the TPM and the principal compounds generated. These results may be of great interest for further reducing the toxicity of smoking this type of heat-not-burn tobacco product. Full article
Show Figures

Graphical abstract

24 pages, 5128 KB  
Article
Achieving Ultra-Low-Sulfur Model Diesel Through Defective Keggin-Type Heteropolyoxometalate Catalysts
by Natali de la Fuente, Jin An Wang, Lifang Chen, Miguel A. Valenzuela, Luis E. Noreña, Elizabeth Rojas, Julio González, Mu He, Jiang Peng and Xiaolong Zhou
Inorganics 2024, 12(11), 274; https://doi.org/10.3390/inorganics12110274 - 23 Oct 2024
Cited by 2 | Viewed by 1552
Abstract
Various Keggin-type heteropolyoxometalate catalysts with structural defects and surface acidity were synthesized by immobilizing 12-phosphotungstic acid (HPW) on mesoporous SBA−15, to produce near-zero-sulfur diesel fuel. As the calcination temperature increased, the W=O and the corner-shared W–O–W bonds in the Keggin unit partially [...] Read more.
Various Keggin-type heteropolyoxometalate catalysts with structural defects and surface acidity were synthesized by immobilizing 12-phosphotungstic acid (HPW) on mesoporous SBA−15, to produce near-zero-sulfur diesel fuel. As the calcination temperature increased, the W=O and the corner-shared W–O–W bonds in the Keggin unit partially broke, creating oxygen defects, as evidenced by the Rietveld refinement and in situ FTIR characterization. All the catalysts contained Lewis (L) and Brønsted (B) acid sites, with L acidity predominant. The relative intensity of the IR band (I980) of W=O bond inversely correlated with the number of L acid sites as the calcination temperature varied, suggesting that oxygen defects contributed to the Lewis acid sites formation. In the oxidation of dibenzothiophene (DBT) in a model diesel within a biphasic system, DBT conversion exceeded 99% under the optimal reaction conditions (reaction temperature 70 °C, reaction time 60 min, H2O2/sulfur molar ratio 8, H2O2/formic acid molar ratio 1.5, catalyst concentration 2 mg/mL). The influence of fuel composition and addition of indole and 4,6-DMDBT on DBT oxidation were also evaluated. Indole and cyclohexene negatively impacted the DBT oxidative removal. Oxygen defects served as active centers for competitive adsorption of sulfur compound and oxidant. Both L and B acid sites were involved in transferring O atom from peroxophosphotungstate complex to sulfur in DBT, resulting in DBTO2 sulfone, which was immediately extracted by polar acetonitrile. This study confirms that structural defects and surface acidity are crucial in the deep oxidative desulfurization (ODS) reaction, and in enabling the simultaneous oxidation and separation of refractory organosulfur compounds in a highly efficient model diesel. Full article
Show Figures

Figure 1

14 pages, 794 KB  
Article
Removal and Recovery of Europium with a New Functionalized Mesoporous Silica-Based Adsorbent
by Charith Fonseka, Seongchul Ryu, Jaya Kandasamy, Harsha Ratnaweera and Saravanamuthu Vigneswaran
Sustainability 2024, 16(13), 5636; https://doi.org/10.3390/su16135636 - 30 Jun 2024
Cited by 2 | Viewed by 2885
Abstract
The discharge of acid mine drainage (AMD), characterized by a high concentration of rare earth elements (REEs), poses a significant threat to the health of ecosystems surrounding water sources. The global market demand for REEs has experienced a notable surge in the past [...] Read more.
The discharge of acid mine drainage (AMD), characterized by a high concentration of rare earth elements (REEs), poses a significant threat to the health of ecosystems surrounding water sources. The global market demand for REEs has experienced a notable surge in the past decade. Consequently, recovering REEs from waste streams like AMD not only benefits the environment but also offers financial advantages. Europium (Eu), the rarest among REEs, constitutes only 0.1% w/w in monazite and bastnaesite ores. Eu is extensively used in the production of phosphors, alloys, and additives, and is a critical raw material for developing smart devices, ranging from high-resolution color screens to circuitry. Traditional adsorbents typically exhibit limited selectivity towards REE recovery. Mesoporous silica materials, such as SBA15 (Santa Barbara Amorphous-15), provide excellent tunability and modification capabilities, making them an attractive and cost-effective alternative. This research focused on two key aspects: (i) evaluating the dynamic adsorption column performance of granulated SBA15–NH–PMIDA to preferentially recover Eu, and (ii) employing mathematical modeling to optimize the dynamic adsorption column’s operating conditions for real-world applications with a minimal number of experimental runs. Granulated SBA15–NH–PMIDA was chosen as the adsorbent due to its high adsorptive capacity and selectivity in capturing Eu. The study revealed that granulated SBA15–NH–PMIDA exhibited 57.47 mg/g adsorption capacity and an 81% selectivity towards Eu. Furthermore, SBA15–NH–PMIDA demonstrated preferential adsorption toward Eu in complex multi-component solutions, such as AMD. The linear driven force approximation model (LDFAM) provided an acceptable simulation (R2 > 0.91) under varying operational conditions. This validates the use of the model as a tool to effectively simulate and optimize column experiments that used granulated SBA15–NH–PMIDA to recover Eu. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

12 pages, 1242 KB  
Article
Immunogenicity of the Conjugate Meningococcal ACWY-TT Vaccine in Children and Adolescents Living with HIV
by Arantxa Berzosa, Sara Guillen, Cristina Epalza, Luis Escosa, Maria Luisa Navarro, Luis M. Prieto, Talía Sainz, Santiago Jimenez de Ory, Marina Montes, Raquel Abad, Julio A. Vázquez, Irene Serrano García and José Tomás Ramos-Amador
Microorganisms 2024, 12(1), 30; https://doi.org/10.3390/microorganisms12010030 - 23 Dec 2023
Cited by 1 | Viewed by 1810
Abstract
Background: Children and adolescents living with HIV (CALHIV) are at high risk of meningococcal infections and may present lower immune responses to vaccines. The objectives of this study were to assess the immunogenicity of the quadrivalent Men ACWY-TT vaccine (Nimenrix®) in [...] Read more.
Background: Children and adolescents living with HIV (CALHIV) are at high risk of meningococcal infections and may present lower immune responses to vaccines. The objectives of this study were to assess the immunogenicity of the quadrivalent Men ACWY-TT vaccine (Nimenrix®) in CALHIV after a two-dose schedule and to describe possible HIV-related factors that may affect the immunogenic response. Methods: A multicenter prospective study was designed, including CALHIV followed in five hospitals in Madrid, between 2019 and 2021. Two doses of the Men ACWY-TT vaccine were administered. Serum bactericidal antibody (SBA) assays using rabbit complement (rSBA) against serogroups C, W, and Y were used to determine seroprotection and vaccine response (the proportion achieving a putative protective titer of ≥eight or a ≥four-fold rise in titer from baseline). Serum was collected at baseline, and at 3 and 12 months after vaccination. Results: There were 29 CALHIV included, 76% of whom were perinatally infected. All were receiving TAR and presented a good immunovirological and clinical status overall. At baseline, 45% of CALHIV had seroprotective titers to at least one serogroup, with individual seroprotection rates of 24%, 28%, and 32% against C, W, and Y, respectively. After a two-dose schedule, vaccine response was 83% for each serogroup, eliciting a vaccine response to all serogroups in 69% of them. One year after vaccination, 75% of CALHIV maintained seroprotective titers against the C serogroup, and 96% against W and Y. None of the HIV-related characteristics analyzed could predict vaccine response or antibody duration. Conclusions: CALHIV who received effective TAR and presented a good immuno-virological situation achieved an appropriate vaccine response after two doses of the Men ACWY-TT vaccine, and antibody-mediated protection against serogroups C, W, and Y was maintained in more than 70% of the patients one year after vaccination. Full article
Show Figures

Figure 1

20 pages, 3196 KB  
Article
Sustainably Sourced Mesoporous Carbon Molecular Sieves as Immobilization Matrices for Enzymatic Biofuel Cell Applications
by Federica Torrigino, Marcel Nagel, Zhujun Peng, Martin Hartmann and Katharina Herkendell
Catalysts 2023, 13(11), 1415; https://doi.org/10.3390/catal13111415 - 4 Nov 2023
Cited by 3 | Viewed by 3153
Abstract
Ordered mesoporous carbon CMK-3 sieves with a hexagonal structure and uniform pore size have recently emerged as promising materials for applications as adsorbents and electrodes. In this study, using sucrose as the sustainable carbon source and SBA-15 as a template, CMK-3 sieves are [...] Read more.
Ordered mesoporous carbon CMK-3 sieves with a hexagonal structure and uniform pore size have recently emerged as promising materials for applications as adsorbents and electrodes. In this study, using sucrose as the sustainable carbon source and SBA-15 as a template, CMK-3 sieves are synthesized to form bioelectrocatalytic immobilization matrices for enzymatic biofuel cell (EFC) electrodes. Their electrochemical performance, capacitive features, and the stability of enzyme immobilization are analyzed and compared to commercially available multi-walled carbon nanotubes (MWCNT) using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The anodic reaction in the presence of glucose oxidase (GOx) and ferrocene methanol (FcMeOH) on the sustainably sourced CMK-3-based electrodes produces bioelectrocatalytic current responses at 0.5 V vs. saturated calomel electrode (SCE) that are twice as high as on the MWCNT-based electrodes under saturated glucose conditions. For the cathodic reaction, the MWCNT-based cathode performs marginally better than the CMK-3-based electrodes in the presence of bilirubin oxidase (BOD) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS2−). The CMK-3-based EFCs assembled from the GOx anode and BOD cathode results in a power output of 93 μW cm−2. In contrast, the output power of MWCNT-based EFCs is approximately 53 μW cm−2. The efficiency of CMK-3 as a support material for biofuel cell applications is effectively demonstrated. Full article
Show Figures

Figure 1

12 pages, 3279 KB  
Article
W-SBA-15 as an Effective Catalyst for the Epoxidation of 1,5,9-Cyclododecatriene
by Marcin Kujbida, Agnieszka Wróblewska, Grzegorz Lewandowski, Piotr Miądlicki and Beata Michalkiewicz
Molecules 2022, 27(24), 8769; https://doi.org/10.3390/molecules27248769 - 10 Dec 2022
Cited by 1 | Viewed by 1681
Abstract
The results of a study on the epoxidation of 1,5,9-cyclododecatriene (CDT) on a W-SBA-15 catalyst using the batch and half-periodic methods are presented. During this study, the activity of the W-SBA-15 catalyst was compared to that of the Ti-SBA-15 catalyst, and the W-SBA-15 [...] Read more.
The results of a study on the epoxidation of 1,5,9-cyclododecatriene (CDT) on a W-SBA-15 catalyst using the batch and half-periodic methods are presented. During this study, the activity of the W-SBA-15 catalyst was compared to that of the Ti-SBA-15 catalyst, and the W-SBA-15 catalyst was found to be about 20 times more active than the Ti-SBA-15 catalyst. The highest CDT conversion so far, amounting to 86 mol%, was obtained after carrying out the 4 h epoxidation process. Conducting the studied process using the semi-batch method did not result in the significant improvement in value functions describing this process (CDT conversion and selectivity of CDT transformation to ECDD), but the fastest H2O2 dosing rate (246 µL/h) allowed us to obtain 9 mol% higher CDT conversion in comparison to the batch method. Full article
(This article belongs to the Special Issue Porous Materials as Catalysts and Sorbents)
Show Figures

Graphical abstract

11 pages, 3848 KB  
Article
Transition Metal Carbides Filler-Reinforced Composite Polymer Electrolyte for Solid-State Lithium-Sulfur Batteries at Room Temperature: Breakthrough
by Basem Al Alwan, Zhao Wang, Wissam Fawaz and K. Y. Simon Ng
Energies 2022, 15(21), 7827; https://doi.org/10.3390/en15217827 - 22 Oct 2022
Cited by 7 | Viewed by 2147
Abstract
All solid-state room-temperature lithium-sulfur (Li-S) batteries have gained increasing attention due to their ability to eliminate the polysulfides shuttle effects and the safety dangers associated with the liquid electrolytes. Herein, a novel composite solid-state electrolyte, which is nickel-tungsten carbides (NiWC) over mesoporous silica [...] Read more.
All solid-state room-temperature lithium-sulfur (Li-S) batteries have gained increasing attention due to their ability to eliminate the polysulfides shuttle effects and the safety dangers associated with the liquid electrolytes. Herein, a novel composite solid-state electrolyte, which is nickel-tungsten carbides (NiWC) over mesoporous silica (SBA-15) filled polyethylene oxide (PEO), was developed and investigated for Li-S batteries. The filler minimizes the crystallinity of the PEO and increases the ionic conductivity of the electrolyte, resulting in lowering the AC impedance of electrolyte composite from 26,256 ohm to 2416 ohm and to 5734 ohm after adding the electrolyte material with Ni/W ratios of 1:1 and 9:1, respectively. A high initial specific capacity of 1305 mAh g−1 and a capacity retention of 66.7% after 8 cycles at C/10 was obtained at room temperature after adding NiWC/SBA-15 with a Ni/W ratio of 1:1. This novel composite solid-state electrolyte shows a remarkable long-term performance at high current rates (1, 2, 4, and 5C) and rate capabilities at 0.1, 0.2, 0.5, 1, 2, 4 and back to 0.1C. The battery was able to recover 77% of the initial specific capacity at 0.1C. The materials were characterized by XRD and SEM-EDX to study the crystallinity and elemental distributions, respectively. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

15 pages, 2979 KB  
Article
C–O Hydrogenolysis of C3–C4 Polyols Selectively to Terminal Diols over Pt/W/SBA-15 Catalysts
by Susmita Bhowmik, Nagasuresh Enjamuri, Banu Marimuthu and Srinivas Darbha
Catalysts 2022, 12(9), 1070; https://doi.org/10.3390/catal12091070 - 19 Sep 2022
Cited by 6 | Viewed by 3701
Abstract
Pt/W/SBA-15 catalysts (with Pt-loading = 0.5–4 wt% and W-loading = 1 wt%) prepared by the sequential impregnation method were evaluated for selective C–O cleavage of erythritol and glycerol in an aqueous medium. The Pt and W particles dispersed on SBA-15 approached close proximity [...] Read more.
Pt/W/SBA-15 catalysts (with Pt-loading = 0.5–4 wt% and W-loading = 1 wt%) prepared by the sequential impregnation method were evaluated for selective C–O cleavage of erythritol and glycerol in an aqueous medium. The Pt and W particles dispersed on SBA-15 approached close proximity at higher Pt loadings and afforded synergistic enhancement in C–O hydrogenolysis activity/selectivity. 1,4-Butanediol yields of 30.9% (at 190 °C, 50 bar H2 and 24 h) and 1,3-propanediol yields of 34.4% (at 190 °C, 50 bar H2 and 12 h of reaction) were obtained over these catalysts. Pt nanoparticles (facilitating dissociative H2 adsorption and spillover) and W (present as acidic oligomeric WOx species; activating and coordinating the polyol via 1°-OH group) worked in tandem for the selective hydrogenolysis of polyols yielding terminal diols of industrial demand. Full article
Show Figures

Graphical abstract

20 pages, 7915 KB  
Article
Dual Receiver EGNOS+SDCM Positioning with C1C and C1W Pseudo-Range Measurements
by Mieczysław Bakuła, Kamil Krasuski and Karol Dawidowicz
Remote Sens. 2022, 14(13), 3152; https://doi.org/10.3390/rs14133152 - 30 Jun 2022
Cited by 1 | Viewed by 2261
Abstract
The paper presents an approach to the simultaneous use of SDCM and EGNOS corrections for two GNSS receivers placed at a constant distance. The SDCM and EGNOS corrections were applied for two GPS code measurements on L1 frequency: C1C and C1W. The approach [...] Read more.
The paper presents an approach to the simultaneous use of SDCM and EGNOS corrections for two GNSS receivers placed at a constant distance. The SDCM and EGNOS corrections were applied for two GPS code measurements on L1 frequency: C1C and C1W. The approach is based mainly on the constrained least squares adjustment, but for the horizontal and vertical coordinates, the Kalman Filter was applied in order to reduce pseudo-range noises. It allows for obtaining a higher autonomous accuracy of GPS/(SDCM+EGNOS) positioning than when using only the GPS/EGNOS or GPS/SDCM system. The final dual-redundant solution, in which two SBAS systems were used (EGNOS+SDCM) and two GPS pseudo-ranges (C1C+C1W) were present, yielded RMS errors of 0.11 m for the horizontal coordinates and 0.25 m for the vertical coordinates. Moreover, the accuracy analysis in the developed mathematical model for the determined 3D coordinates with simultaneous use of EGNOS and SDCM systems proved to be much more reliable than using only a single EGNOS or SDCM system. The presented approach can be used not only for precise navigation, but also for some geoscience applications and remote sensing where the reliable accuracy of autonomous GPS positioning is required. Full article
(This article belongs to the Special Issue Satellite Navigation and Signal Processing)
Show Figures

Figure 1

20 pages, 8775 KB  
Article
Kinematics of Active Landslides in Achaia (Peloponnese, Greece) through InSAR Time Series Analysis and Relation to Rainfall Patterns
by Varvara Tsironi, Athanassios Ganas, Ioannis Karamitros, Eirini Efstathiou, Ioannis Koukouvelas and Efthimios Sokos
Remote Sens. 2022, 14(4), 844; https://doi.org/10.3390/rs14040844 - 11 Feb 2022
Cited by 35 | Viewed by 4893
Abstract
We studied the kinematic behaviour of active landslides at several localities in the area of Panachaikon Mountain, Achaia (Peloponnese, Greece) using Sentinel (C-band) InSAR time series analysis. We processed LiCSAR interferograms using the SBAS tool, and we obtained average displacement maps for the [...] Read more.
We studied the kinematic behaviour of active landslides at several localities in the area of Panachaikon Mountain, Achaia (Peloponnese, Greece) using Sentinel (C-band) InSAR time series analysis. We processed LiCSAR interferograms using the SBAS tool, and we obtained average displacement maps for the period 2016–2021. We found that the maximum displacement rate of each landslide is located at about the center of it. The average E-W velocity of the Krini landslide is ~3 cm/year (toward the east) and 0.6 cm/year downward. The line-of-sight (LOS) velocity of the landslide (descending orbit) compares well to a co-located GNSS station within (±) 3 mm/yr. Our results also suggest a correlation between rainfall and landslide motion. For the Krini landslide, a cross-correlation analysis of our data suggests that the mean time lag was 13.5 days between the maximum seasonal rainfall and the change in the LOS displacement rate. We also found that the amount of total seasonal rainfall controls the increase in the displacement rate, as 40–550% changes in the displacement rate of the Krini landslide were detected, following to a seasonal maximum of rainfall values at the nearby meteorological station of Kato Vlassia. According to our results, it seems that large part of this mountainous region of Achaia suffers from slope instability that is manifested in various degrees of ground displacement greatly affecting its morphological features and inhabited areas. Full article
(This article belongs to the Special Issue Mapping and Monitoring of Geohazards with Remote Sensing Technologies)
Show Figures

Figure 1

21 pages, 6079 KB  
Article
Retrieving and Verifying Three-Dimensional Surface Motion Displacement of Mountain Glacier from Sentinel-1 Imagery Using Optimized Method
by Yanqiang Wang, Jun Zhao, Zhongqin Li, Mingjun Zhang, Yuchun Wang, Jialiang Liu, Jianxia Yang and Zhihui Yang
Water 2021, 13(13), 1793; https://doi.org/10.3390/w13131793 - 29 Jun 2021
Cited by 8 | Viewed by 2292
Abstract
The time series study of glacier movement is of special importance for rational management of freshwater resources, studying glacier evolution, understanding mechanism of glacier movement, and assessing disasters caused by glacier movement. In this paper, we put forward an optimization scheme for the [...] Read more.
The time series study of glacier movement is of special importance for rational management of freshwater resources, studying glacier evolution, understanding mechanism of glacier movement, and assessing disasters caused by glacier movement. In this paper, we put forward an optimization scheme for the shortcomings in the calculation method of using remote sensing to invert the three-dimensional (3D) surface motion displacement of glacier. The optimized method consists of Offset Tracking method, Optimizing the offset tracking results by means of iterative filtering, OT-SBAS technology and Conversion of 3D surface motion displacement of glacier. The Urumqi Glacier No. 1 was selected to test the optimized method. The 3D surface motion displacement of Urumqi Glacier No. 1 was retrieved by using the optimized method based on the ascending and descending Sentinel-1 datasets from 19 April to 29 August 2018. The distribution of 3D surface velocity of the Urumqi Glacier No. 1 was obtained in time series, and the accuracy of the inversion results was evaluated by using the field measurement data. The results show that the accuracies of the inverted displacements of east branch of Urumqi Glacier No. 1 (UG1E) were about 0.062, 0.063, and 0.152 m in the east, north and vertical directions, and these values for the west branch (UG1W) were 0.015, 0.020 and 0.026 m, respectively. It is indicated that using Sentinel-1 ascending and descending data and using the optimized method to retrieve the 3D surface motion displacement of glacier should satisfy the requirements of inversing the 3D surface motion displacement of high-latitude mountain glaciers in China. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop